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Chapter 1

Introduction

1.1 Motivations

In Artificial Intelligence research, optimization problems appear in many areas
conceptualized as Constraint Optimization Problems (COP) [Kum92]. This
class of problems has produced a growing research interest in the computer
science community because of its high difficulty (NP-Complete) and many real-
world applications.

Many real life problems such as resource allocation, planning, scheduling,
routing and auctions can be formalized as COPs. These problems have been
widely studied for many years and by a lot of researchers. Very efficient algo-
rithms have been developed for solving some of these problems (by exploiting
their characteristics). Moreover, constraint programming is a technology that
provides huge economical outcomes, since it can really improve production pro-
cesses, logistics, etc.

There are a lot of techniques for solving optimization problems, such as
Backtracking, Branch & Bound, Genetic Algorithms, Linear Programming, etc.
Furthermore, about any constraint optimization problem can be modeled with
any technique. Some of the techniques are able to find the optimal solution, that
is, the solution fulfilling a set of constraints, while maximizing or minimizing
a given objective function. However, this task is known to be NP-Complete
[PS98] and therefore unfeasible with large and generic constraint optimization
problems. On the other hand, the methods that focus on finding a solution
quickly, usually cannot assure that the solution found is optimal neither compute
how much time it will take to find it.

Combinatorial auctions have arisen in recent years to become one of the most
studied constraint optimization modeling systems by researchers, and the prob-
lem of determining the winners of the auction, called the Winner Determina-
tion Problem (WDP) has been a prolific source of new and powerful algorithms
[dVV03].

Although finding the optimal solution is the main goal of constraint opti-
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mization solvers, sometimes it is not the best choice, since it could fail in case
the environment changed (a machine breaking down, a process taking longer
than expected, etc.). In such cases, it would be much better to have a robust
solution that could still be applicable even if unexpected events occurred. This
quality is desirable in many systems providing the ability to maintain function-
ality even with unpredictable changes on the environment. Obviously, the price
of robustness is optimality [BS04], since usually a robust solution will be subop-
timal. Therefore, there is a need of balancing the optimality and the robustness
of the solutions.

Although robustness has already been addressed in the field of planning
and scheduling, unfortunately there are not so many robustness techniques for
combinatorial auctions, which take into account this desirable robustness of the
solution found.

The objective of this research is to tackle constraint optimization problems
as combinatorial auctions taking into account the robustness of the resulting
solution.

1.2 Example application domains

In the following sections we present two different environments where constraint
optimization methods together with robustness are desirable:

• Water quality improvement

• Transport optimization

Both of them can be modeled as a combinatorial auction. Later on Chapter
3 we will show how to do this modeling and what are the advantages of this
approach.

1.2.1 Water quality improvement

The treatment of the waste water discharged from industries is vital to assure
the quality of the river. For this purpose, the water coming from the sewage
is treated in a waste water treatment plant (WWTP). Its job is to remove
contaminants and produce an (up to a certain degree) clean waterstream that
can be put back into the river. In order to ensure that the treatment process is
correctly performed two conditions must hold:

• Keep the incoming water flow below the WWTP hydraulic capacity (that
is, the total amount of water the plant can absorb at any instant in time);
otherwise, the overflowed water goes directly to the river without receiving
any treatment, increasing its contamination level.

• Keep the contamination level of the incoming water below the WWTP
treatment capacity. The contamination level is defined by a set of quality
variables (oxygen demand, nitrogen level, etc.). If the level of any of these

8



Figure 1.1: Water treatment system

variables is above the WWTP capacity, the water cannot be fully treated,
and it increases the contamination of the river. Moreover, if the levels were
too high, the micro-organisms used to treat the water may be damaged and
the whole process could be stopped until these were regenerated. During
this time, the plant could not accept any incoming water and it would be
redirected to the river without any treatment.

The water entering the WWTP comes from three different sources: domestic
use, rainfall and industries. Current regulations and legislations are in place so
as to minimize the contaminating effects of industrial waste discharges. How-
ever this is not sufficient to guarantee the proper treatment of the water. The
problem is that, although these regulations enforce industries to not contami-
nate more than some quantity, they do not take into account that simultaneous
discharges by different industries may exceed these thresholds; for example if all
the industries discharge at the same time, in such a case no industry would be
breaking the rules, but the effect would be to have overflow or overcontaminated
water going to the WWTP.

A typical water treatment system is depicted in Figure 1.1. The indus-
tries discharge their wastes to a sewage system, which directs the water to the
WWTP. The plant, once the water has been treated, puts it back to the river.
The main goal of the system is to ensure that the water flow entering the WWTP
and its contamination levels are below some given thresholds, so that it can be
correctly treated. It can be achieved by coordinating the discharges performed
by the industries.

Through this coordination, the different discharges would be temporally dis-
tributed so that the WWTP is capable of processing all the incoming water.
This would be beneficial at an environmental and health level, and is in the
direction of having a more integrated management of the river-basin and all the
involved systems.

The industries have some kind of working plan that allows them to foresee
what discharges will be necessary in the near future, according to their produc-
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tion process. This knowledge would permit the industries to inform the WWTP
about the characteristics of their discharges (starting time, duration, flow and
contaminants levels), so that coordination can be achieved.

Each industry has a tank where it can store its waste in case a discharge is
not authorized. Obviously, if the industry is denied to discharge and its tank
is full, it will be forced to realize the discharge anyway. As this situation can
affect negatively the process in the WWTP, it should be avoided. It is assumed
that an industry can perform two discharges at the same time: one coming from
the production process, and another one coming from the retention tank.

The coordination mechanism tackles this problem by distributing the autho-
rizations among the industries, trying to avoid that any of them has to perform
unauthorized discharges.

A conflict arises when the set of discharges in a given instant exceeds the
WWTP hydraulic capacity or the contamination levels. Once the discharges in-
volved in a conflict are detected, the corresponding industry agents are informed
about it, and the coordination process begins. The WWTP agent has to select
a subset of the conflicting discharges that will be authorized, while some others
will be asked to be delayed.

In this scenario, the robustness involves a resolution of the conflicts that
produces solutions that are resistant to changes. These changes include modifi-
cations on the discharges times and flows of the industries, and also discharges of
industries that are not allowed to do so. Changes can also occur in the WWTP,
increasing or decreasing the hydraulic capacity or some of the components ca-
pacity, because of the micro-organisms variable life. And finally, changes can
even arise with the weather variations, for example rain can create a sudden
increase in the incoming flow entering the WWTP that will reduce its chances
to treat industries discharges appropriately.

1.2.2 Road transportation optimization

In the road passenger transportation problem we are presented with a set of
resources (drivers), and a set of tasks (services), to be performed using the
resources. The problem consists in finding the best assignment of drivers to
services given a cost function and subject to the constraints and preferences
provided by administrations (local, national or European). In this constraint
optimization problem (COP) we are trying to minimize the driver’s costs, both
in time and distance. The solution of the problem should be a complete alloca-
tion of the driver’s activities that covers the complete set of services.

Each driver is characterized by a basic cost imposed by his contract, a cost
per kilometer, a cost per time unit, a starting point and a final point (often
the same), and the number of hours that he/she has driven during the last two
weeks. The cost per kilometer refers to the cost of the vehicle associated to the
driver.

A service consists in transporting passengers from a start location to a final
location. Therefore, each service is characterized by the start location and the
final location (where the service is), the start time and the final time (when).
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There are several constraints regarding driving time which are quite complex
in this transport domain. The problem is related to coach transportation and
timetables are as strict as with other forms of transportation (train, buses);
what is important is accomplishing the driving time regulated by law.

Here a robust assignation of services to drivers allows (up to a certain degree)
variations in both the time schedules and driving constraints. It will turn into
more relaxed drivers as they do not have so strict times, and less reschedules.

1.3 Overview of the contributions

The contributions of this work include the following:

• Study of the state of the art in both constraint optimization problems
(focusing in auctions) and robustness.

• Modelization of some real-world constraint optimization problems using
auctions.

• Development of robustness mechanisms to be applied in auctions.

• Development of a new algorithm for the Winner Determination Problem
in combinatorial auctions.

1.4 Outline

This report is structured in five chapters as follows:

• Chapter 1 gives an introduction of this work and explains the two case
examples (waste water treatment plant and road transportation problem)
that have motivated this research.

• Chapter 2 discusses the related research on the areas where these kind of
problems have been studied, mainly COP and auctions.

• Chapter 3 presents an exploratory work done in this area, composed by a
robustness mechanism and a winner determination algorithm for combi-
natorial auctions.

• In Chapter 4 a proposal for the thesis together with a working plan are
described.

• Finally, Chapter 5 shows the contributions of the work as publications in
conferences and journals.

11



Chapter 2

State of the Art

This chapter surveys relevant research that has been done in the related areas.
The first section discusses research in constraint optimization problems. After
that, standard techniques for solving them are reviewed including both optimal
and non-optimal methods. Next, auctions are overviewed and typified, followed
by combinatorial and recurrent auctions. Finally, work made on robustness and
particularly robustness in combinatorial auctions is addressed.

2.1 CSP, COP and NP-Hard Problems

Constraint satisfaction and optimization originated in the 1970s in the field
of applied mathematics and computer science, related to operations research,
artificial intelligence, software engineering, algorithm theory and computational
complexity theory.

This kind of problems appear in many areas such as resource allocation,
routing, planning and scheduling, and many other real-world and theoretical
problems may be modeled using this generic framework. The objective of Con-
straint Satisfaction is to assign values to a set of decision variables such that
the constraints (restrictions) are not violated. In Constraint Optimization the
problem is extended, providing additionally a function of these variables to be
maximized or minimized (while satisfying the constraints). A constraint opti-
mization (maximization) problem is defined as [VJRS96, Bar99]:

maximize f(x1, ..., xn)

subject to: ri, i ∈ [1,m]
(2.1)

where X = {x1, ..., xn} is a set of decision variables, R = {r1, ..., rm} is
a set of constraints (or restrictions) limiting the values that the variables can
simultaneously take and f is a general mathematical function. For each variable
xi some authors also define its domain Di, which is a finite set of possible values.
However, these domains can be easily converted to additional restrictions.

12



Mathematicians were the first to study Constraint Optimization Problems
in the 1800s and early 1900s. Since then many researchers have been attracted
for such problems due to its hardness to be solved in most cases, and have
inverted much work trying to develop efficient methods. Unfortunately, nobody
has been able to develop an “always-fast-and-optimal” algorithm for any of
these problems, and that despite many decades of research effort invested on
this subject by the most brilliant researchers worldwide. In fact, it seems to
be the case that such problems are inherently difficult to solve, exhibiting an
exponential growth in computing time when the size of the problem increases.
The hypothesis that no efficient algorithm exists for solving these problems has
been mathematically corroborated by advances in the field of computational
complexity.

Complexity theory is the field of both mathematics and computer science (or
theory of computation) concerned in classifying problems according to its intrin-
sic difficulty; dealing with the resources required during computation to solve
a given problem, mainly execution time and space -memory- required. Many
complexity classes exist, beginning with classes containing trivial problems (for
example deciding if a number is, or is not multiple of 2) and ending with classes
with problems that have been proved to be unsolvable or undecidable (for ex-
ample the Halting problem [Tur36]).

The most cited complexity classes in complexity theory are P and NP, which
separate respectively “easy” and “hard” problems. More precisely, P stands for
polynomial-time, and problems are said to be in this class if they can be solved
in a Deterministic Turing Machine [Tur36] using algorithms that require an ex-
ecution time that is a polynomial function of the input’s size. Alternatively, P
is often taken to be the class of computational problems which are “tractable”
or “efficiently solvable” by current computers. On the other hand, the class NP
stands for “non-deterministic polynomial-time” and is the set of problems solv-
able in polynomial time on a Non-deterministic Turing Machine1. Practically,
problems in NP become unfeasible because all known practical -deterministic-
algorithms for them require an exponential amount of execution time to solve
them.

An important notion in this context is the concept of NP-Completeness.
The class of NP-Complete problems is a separate sub-class in NP and might be
informally described as the “toughest” problems in NP in the sense that they
are the ones most likely not to be in P. Figure 2.1 shows a diagram of all these
complexity classes.

Formally, a problem is said to be NP-Complete if any problem in NP is poly-
nomially transformable to it, and the problem itself belongs to NP. A problem
is called NP-Hard if only the first condition holds. By definition, NP-Complete
problems are NP-Hard, but also problems not contained in NP can be NP-Hard.
All famous and classical combinatorial problems in its decisional version such as
the Traveling Salesman Problem, Map Coloring Problem, Satisfiability, Graph

1Equivalently, the class NP can be defined as the set of problems whose solutions can be
“verified” by a Deterministic Turing machine in polynomial time.
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P

NP

NP-Hard

NP-Complete

Figure 2.1: Complexity Classes

Partitioning, Vehicle Routing, Knapsack, Bin Packing, etc. belong to the NP-
Complete class (see [CK95] and [Pap93] for a comprehensive list of NP-Complete
problems).

All the NP-Complete problems can be mechanically transformed one to the
other in polynomial time. Consequently, if there is a polynomial-time and de-
terministic algorithm for even one of them, then there is a polynomial-time
algorithm for all the problems in NP, implying that NP is in fact equal to
P. Because of this, and because dedicated research has failed to find a poly-
nomial algorithm for any NP-complete problem, it is widely conjectured that
no NP-complete problem is polynomially solvable deterministically2 [Gas02].
Therefore, once a problem has been proved to be NP-Complete this is widely
regarded as a sign that an efficient algorithm for this problem is unlikely to
exist.

The interested reader is referred to classical texts on computational com-
plexity by Papadimitriou and Steiglitz [PS98] and Garey and Johnson [GJ79]
for a more formal and extensive description of these studies.

2.2 Techniques for solving COPs

Algorithms for solving COPs are generally faced with problems that are NP-
hard. As mentioned in Section 2.1, such problems are not believed to be effi-
ciently solvable in general. However, some approximations of complexity theory
propose that some “small” instances of these problems can be solved efficiently.
This is indeed the case, and such instances often lead to important practical
ramifications.

Techniques used in constraint satisfaction and optimization problems de-
pend on the kind of variables being considered. There exist two main types of

2Whether these problems are really undecidable in polynomial time is one of the greatest
open questions in theoretical computer science. It is generally agreed to be one of the most
important unsolved problems also in mathematics. In fact this problem, known as the P vs
NP problem, is included in the Millennium Prize Problems proposed by the Clay Mathematics
Institute, offering a $1 million US prize for the first correct answer to this question.
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variables:

• Discrete variables.

• Continuous variables.

Problems that have to deal with variables on a discrete and finite domain
(integer variables) are usually solved with search, in particular a form of back-
tracking or local search, trying to explore the habitually large search space. This
search space is typically represented as a tree, or a graph, with the undesired
feature of exponential growth with the input’s size. For algorithms to be able
to complete this search, methods for reducing the effective size of the space
(pruning the tree), and procedures to explore efficiently the search space are
applied.

Other considered kinds of variables are on continuous domains (real or ratio-
nal numbers). Solving problems on these domains is usually done via variable
elimination or Linear Programming using the simplex algorithm or other interior
point methods.

A large number of methods proposed for solving optimization problems (in-
cluding the majority of commercially available algorithms) are only concerned
on finding a feasible solution quickly. But usually they are not capable to dis-
tinct between local optimal solutions and rigorous optimal solutions, treating
the former as actual solutions to the problem. Research that focus on fast but
non-optimal techniques is called Local optimization. Aside from this, the task of
finding the absolutely best assignment of values to variables in order to achieve
the optimal solution is called Global Optimization.

A diagram of the most common constraint optimization techniques divided
by its category is shown in Figure 2.2. We next give an overview of these
commonly used techniques.

2.2.1 Global optimization

Global optimization is the branch of applied mathematics and numerical analysis
concerned with the development of deterministic algorithms capable of finding
in finite time the real optimal solution of a problem with constraints, formulated
in mathematical terms.

Some of the algorithms include the following:

• Generate and Test

• Uninformed Search

• Backtracking

• A*

• Branch & Bound

• Linear Programming

15



Global Optimization Techniques Local Optimization Techniques
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Ant Colony
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Tabu Search

Bio Inspired

Local SearchSe
ar

ch Heuristic

Integer Programming

Mixed Integer Programming

Uninformed Search

Figure 2.2: Constraint optimization techniques

Almost every global optimization technique can be modified to fit also in the
local optimization section (for example stopping the execution at some point and
returning the best current solution). Likewise, many of these optimal algorithms
are able to utilize non-optimal techniques as an heuristic to explore efficiently
the search space and achieve better anytime performance3. Therefore, albeit
we will discuss separately global and local optimization techniques, they are
actually quite connected.

Generate and Test

A first attempt to solve CSP and COP problems is using the generate-and-test
paradigm, also known as trial-and-error or brute force search.

Solvers adhering to this paradigm use two basic modules.

• The generator. Enumerates possible solutions.

• The tester. Evaluates each proposed solution, either accepting or rejecting
that solution.

The algorithm consists in creating a possible solution using the generator,
applying it to the problem using the tester and, if it is not successful, generate
subsequently the next possible solution. The process ends when a possibility
yields a solution.

3Anytime performance is defined as the ability of an optimization algorithm to quickly
generate good solutions.
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Good generators combine these three properties:

• Complete: They eventually produce all possible solutions. Otherwise,
the method is not complete and would turn into a local optimization
technique.

• Non-redundant: They never compromise efficiency by proposing the same
solutions twice.

• Informed: They use possibility-limiting information, restricting the pro-
posed solutions accordingly.

With small or easy CSPs this is an easy-to-implement and fast algorithm, but
in general this method will not be appropriate to find the solution in a reasonable
amount of time with not-so-small instances. Furthermore, this method is only
recommended for CSPs, given that with COPs (where the best solution has to
be found) even though this paradigm is -rudimentarily- applicable, it is often
useless, since all the possible candidates have to be tried, which is typically not
feasible.

Uninformed Search

Uninformed search algorithms are exhaustive methods for systematically travers-
ing or searching all the nodes in a tree or a graph to find a solution. They begin
at the root node and continue expanding every node with some strategy until a
solution is found. There exist mainly two strategies to explore the search space:

• Depth-first search (DFS).

• Breadth-first search (BFS).

BFS [THCS01] explores the search space in levels. It begins at the root node
and expands all its child nodes. Then, for each of these nodes, it explores their
unexplored child nodes, and so on, until it reaches the solution. Since all nodes
discovered so far have to be stored, the space and time complexity of BFS is
O(|V |+ |E|) where |V | is the total number of nodes and |E| the number of edges
in the tree or graph. This method can be useful when the solution is located
on the upper levels, but it is often impractical for harder problems due to its
enormous demand for space.

In contrast, DFS [Pea84] explores the search space in branches. Starting at
the root it goes as far as possible through each branch exploring continuously
the first child node that appears and therefore going deeper and deeper until a
solution is found, or until it reaches a node without children. Then the search
returns to the most recent node it had not finished exploring. Time complexity
is the same as BFS in the worst case but space complexity is much lower than
BFS (as it only stores a single branch of the search tree).
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Solution

Figure 2.3: Backtracking (continuous arrows indicate branches, and discontin-
uous arrows represent backtracks).

Backtracking

Backtracking tis a generalization of recursive algorithms that performs a depth-
first search with some improvements. Like DFS, all variables are initially unas-
signed and at each step, a variable is chosen, assigning all of its possible values
to it in turn. To reduce the search size, for each attempted value, backtracking
checks the correctness of the partial assignment, and only in case of consis-
tency a recursive call is performed. When all possible values have been tried,
the algorithm backtracks, i.e. continues with the previous variable. This con-
sistency checking allows the algorithm to eliminate multiple solutions without
being explicitly examined, with the saving of time that this implies.

Figure 2.3 shows a simple example with three variables to be assigned (three
levels in the tree) and two possible values for each variable (two child nodes).
The algorithm keeps on assigning values to variables until the third level, where
it realizes that there is no possible solution this way. Then it backtracks to the
previous variable and tries another value for it. The solution is neither in this
branch, so the algorithms backtracks up to the first variable, to try the second
value and finally find the solution.

In the basic backtracking algorithm, consistency is only concerned on satis-
fying all the constraints whose variables have been all assigned. Several variants
of backtracking and consistency checking exists.

• Backmarking improves the efficiency of checking consistency by maintain-
ing information about the last value assigned to a variable xi and in-
formation about the values that caused inconsistency (i.e. violation of
constraints).

• Backjumping allows going up more than one level in some cases when
performing a backtrack.

• Constraint learning improves efficiency by inferring and storing new con-
straints whenever an inconsistency is found that can be later used to avoid
part of the search.
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• Look-ahead and forward-checking are sub-procedures that attempt to fore-
see the effects of an action (choosing a variable or a value to instantiate
it).

Constraint propagation and local consistency techniques are methods to re-
duce variables’ domain, therefore simplifying the problem. These techniques
achieve this by checking the consistency of a subset of variables or constraints.
This method in some kinds of problems and for some forms of constraint prop-
agation may convert it to a triviality and a prove of either satisfiability or
unsatisfiability would be straightforward. However, this is not guaranteed to
happen in general. The most known and used forms of local consistency are:

• Node consistency requires the domain of every variable to be consistent
with its unary constraints. For example, consider a variable x with a
domain of [0, 1, 2, 3] and a constraint x > 1, then its domain can be reduced
to [2, 3] and the constraint removed.

• Arc consistency enforces consistency between the domains of two variables
connected with a binary constraint. For example, given two variables with
a domain of [0, 1, 2] and a constraint a < b. It is easy to see that value 2
can be removed from variable a’s domain and value 0 from b’s. The most
popular arc consistency method is the AC-3 4 algorithm.

• Path consistency is a property similar to arc consistency, but considers a
third variable that has to be consistent (path-consistent) with each con-
sistent evaluation of the other two variables.

• Hyper-arc consistency or generalized arc consistency is a wider general-
ization of arc consistency, examining all the constraints (not only binary
constraints) and assuring consistency in the domains of the variables in-
volved.

There exist many other types of consistency such as directional consistency,
bucket elimination and relational consistency, which carry out more processing
in order to reduce even more the effective size of the space to be searched.
However, although consistency techniques simplify problems, they generally do
not produce solutions on their own.

A*

A* (pronounced “A star”) was first described in 1968 by Peter Hart, Nils Nilsson,
and Bertram Raphael. In their paper [HPE68], it was called algorithm A;
applying to this algorithm an appropriate heuristic acquires optimal behavior,
hence A*. This algorithm is a form of best-first-search as it expands the most
promising node according to some rule, called an heuristic. The particularity

4The AC-3 (Arc Consistency Algorithm #3) algorithm, developed by Alan K. Mackworth
in 1977 [Mac81], is one of the most used algorithms in the whole constraint propagation area.
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of A* is that its heuristic also takes into account the distance already traveled
ranking each node with an estimate of the best route that goes through that
node.

To guarantee that the A* algorithm will find the optimal solutions, if one ex-
ists, the heuristic must be admissible, meaning that it must never over-estimate
the distance from a state to the goal state. Formally:

f(x) ≤ f(y) ∀y ∈ child(x)
f(x) = g(x) + h(x)

where g(x) is the distance from the initial state to x, h(x) is the estimation
(heuristic) of getting from x to the goal node and, accordingly, f(x) is the
estimate of the best solution that goes through x.

A* is also optimally efficient for any heuristic h, in the sense that no algo-
rithm employing the same heuristic will expand fewer nodes than A*, except
when there are numerous partial solutions where h predicts the cost of the
optimal path exactly.

Depth-first search and breadth-first search can be seen as two special cases
of A* algorithm. Breadth-first search is the special case where h(x) = 0 ∀x. To
perform a Depth-first search, each time a new node is discovered we assign to
h(x) a value (beginning with a big value) that is subsequently decreased.

Time complexity of A* is highly dependent on the accuracy of the heuristic
function. In the worst case, the algorithm runs in exponential time because it
expands several nodes at each level, but it is able to reach polynomial time if
the heuristic function h meets this condition [RN03]:

|h(x)− h∗(x)| ∈ O(log h∗(x)) (2.2)

where h∗(x) is a perfect heuristic. In other words, the error of the used
heuristic should not grow faster than the logarithm of an exact heuristic. How-
ever, since we are commonly facing NP-Hard problems, this condition is never
met.

Branch & Bound

Branch and bound (B&B) is a rather general optimization technique to explore
the search space partitioning recursively it, together with an smart procedure
to cut the non-promising areas. The method was first proposed by A. H. Land
and A. G. Doig in 1960 for integer programming [LD60].

Its design strategy is very similar to backtracking in that both use a state
space tree to solve a problem. However, they differ in that the branch and
bound method is not limited to an unique way of traversing the tree and it is
used only for optimization problems. Its key features include:

• Branching: Divide the search space in separate regions.

• Bounding: Calculate bounds to reduce the search space.
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• Pruning: Avoid exploring entire subregions.

The general idea of B&B approach is a Best-first-search for the optimal so-
lution, except that not all nodes get expanded. Rather, a carefully selected
criterion determines which node to expand and when, and another criterion
notifies the algorithm when the optimal solution has been found. Criteria com-
bine lower-bounding and upper-bounding. In maximization problems, a lower
bound represents the minimum profit that a branch can provide (e.g. a feasi-
ble solution). On the other hand, an upper bound is an approximation of the
best revenue that a branch can offer (possibly it will may not exist any solution
with this income, as it is an optimistic estimation). For minimization problems,
lower and upper bounds get interchanged. Another important tool of B&B is
its effectiveness cutting called pruning. At any node of the tree it is checked
whether the optimal solution can take place in any of its descendants. If the
optimal solution can be proved to not be in a branch then the tree at that node
can be “pruned”. Note that it is always possible to find a feasible (sub-optimal)
solution to a problem, and it can be used together with an upper bound (lower
bound when minimizing) to discard entire regions of the tree.

The algorithm starts considering the original problem and the complete
search space. Then it calculates a lower and an upper bound to the root prob-
lem. If they match, it means that the optimal solution has been found and
the procedure terminates. Otherwise, the feasible search space is subdivided
into many regions (ideally, splitting it into subregions), each one covering an
strict subregion of the original, which together cover the whole feasible region.
This is called branching, since this procedure is repeated recursively to each
child, generating a tree of subproblems. If an optimal solution is found to a
subproblem, it is actually a feasible solution to the full problem, although not
necessarily globally optimal. However it can be used by the pruning mechanism.
The search continues until all nodes have been either solved or pruned.

If the branches of the search tree can be pruned enough, we may be able
to reduce the search space to a computationally manageable size. Note that
solutions in the leaves of the pruned branches are not ignored, they are left out
of consideration after we have made sure that the optimal solution cannot be
at any one of these nodes. Therefore, the B&B approach is not an heuristic, or
approximate, procedure, but it is an exact, optimal procedure.

Linear Programming

In mathematics, linear programming [Dan68] problems are defined as optimiza-
tion problems consisting in an objective linear function and several equalities
and inequalities (constraints). This subject dates back at least from Fourier
(1768-1830), who created a -computationally expensive- method named Fourier-
Motzkin elimination for solving a system of linear inequalities. However, it was
in the 1940s where this discipline began to get important advances due to the
models developed during the second world war to solve complex planning prob-
lems in wartime operations. Nevertheless, those mathematical models were kept
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Figure 2.4: Graphical representation of the mechanism used by the Simplex
algorithm to find the optimal solution.

in secret many years until they were made public postwar in 1947. Since then,
its development accelerated enormously as many industries found valuable uses
for linear programming.

The generally accepted founder of the subject is the mathematician George
B. Dantzig, who created the simplex method in 1947 [Dan56], which is still now
a popular method for solving linear programming models. However, Leonid
Kantorovich, used similar techniques in economics before Dantzig (and won the
Nobel prize in economics in 1975) [Kan59]. John von Neumann developed the
theory of the duality, very important in linear programming, in 1947 [vN45].
The term “linear programming” was first proposed by T. J. Koopmans during
a visit Dantzig made to the RAND corporation in 1948 to discuss his ideas.

Dantzig’s simplex algorithm [Dan56] has been the standard technique for
numerical solution of the linear programming problem since 1940’s. In brief,
the simplex method solves LP problems by constructing an admissible solution
at a vertex of the polyhedron and then walking from vertex to vertex on the
boundary of the feasible polyhedron with successively higher values of the objec-
tive function, until either an optimal solution is found, or it is established that
no solution exists. Figure 2.4 shows a graphical representation of the simplex
algorithm behavior.

In 1972, Klee and Minty gave an example [KM72] of a linear program-
ming problem in which they showed that the simplex method as formulated
by Dantzig visits all 2n vertices before arriving at the optimal vertex. This
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Figure 2.5: Graphical representation of an example solution using the Kar-
markar’s Algorithm.

shows that the complexity of the simplex algorithm in the worst-case is expo-
nential time. However, in practice the method is remarkably efficient, typically
requiring a number of steps which is just a small multiple of the number of
variables.

In 1979 the Russian-born mathematician Leonid Khachiyan was the first
to show that the linear programming problem is solvable in polynomial time.
He presented the Ellipsoid algorithm [Kha79], guaranteed to solve any linear
program in a number of steps which is a polynomial function of the amount
of data defining the linear program. However, due to the high degree of the
polynomial, in practice the simplex algorithm is far superior to the ellipsoid
method. Even though, it has inspired other randomized algorithms for convex
programming and is considered a significant theoretical breakthrough.

A larger major theoretical and practical progress in the field came in 1984
when Narendra Karmarkar introduced a new interior point method for solving
linear programming problems, known as the Karmarkar’s algorithm [Kar84],
combining the desirable theoretical properties of the ellipsoid method and prac-
tical advantages of the simplex method. Its success initiated an explosion in
the development of interior-point methods. These do not pass from vertex to
vertex, but only through the interior of the feasible region as shown in Figure
2.5. Though this property is easy to state, the analysis of interior-point meth-
ods is a subtle subject which is much less easily understood than the behavior
of the simplex method. Interior-point methods are now generally considered
competitive with the simplex method in most, though not all, applications, and
sophisticated software packages implementing them are now available. Whether
they will ultimately replace the simplex method in industrial applications is not
clear.

When in the linear program the unknown variables are all restricted to be
integers instead of real, then this restricted version is called an Integer Linear
Programming problem. Due to this, and because of the above algorithms are
continuous by nature, they do not work so brilliantly with discrete variables. If
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only some of the unknown variables are required to be integers, then the problem
is called a Mixed Integer Programming problem. In contrast to linear program-
ming, which can be solved efficiently, integer and mixed integer programming
problems fall into the NP-hard class (not polynomially solvable), requiring ad-
ditional search algorithms such as Branch & Bound. Binary programming is
the special case of integer programming where variables are all required to be
1 or 0. This problem is also classified as NP-hard, in fact the decisional version
of this problem was one of Karp’s 21 NP-complete problems.

Concluding, Linear Programming in continuous domains is computationally
tractable, either with an Interior Point method like the Karmarkar’s algorithm
which is guaranteed to run in polynomial time, or with the Simplex algorithm
which has proved in practice to be a powerful mechanism solving highly ef-
ficiently almost every Linear Problem. However, when dealing with Integer
Linear Programming this approach is deficient since the problems turns out
to be non-polynomially solvable, needing the help of some other optimization
techniques; rigorously, some kind of search.

2.2.2 Local Optimization

For NP-Hard problems it is in some cases not possible to find optimal solutions
in a reasonable time, as optimal algorithms are only able to solve small prob-
lems exactly. For larger instances approximation algorithms must be applied.
Finding only locally optimal solutions is considerably easier than finding the
global optimum (of course depending on the degree of goodness of the desired
solution). Some of the most used methods in local optimization include the
following:

• Local Search

- Hill Climbing

- Simulated Annealing

- Tabu Search

• Genetic algorithms

• Ant colony optimization

Local search techniques have been present in Artificial Intelligence for many
decades, while Genetic algorithms and Ant Colony optimization methods are
innovative ways to solve them creatively, besides achieving surprisingly good
performance.

Local Search

Local search methods are nonsystematic, incomplete search algorithms. When
running on CSPs they may find a solution of a problem, but they may fail even
if the problem is satisfiable. With COPs they would find a “good” solution, but
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unfortunately they will never know if the solution is optimal, neither know how
far it is from the current one.

They work by iteratively improving a complete assignment over the variables.
At each step, a small number of variables change their values, with the overall
aim of increasing the goodness of this assignment. In practice, local search
appears to work well when these changes are also affected by random choices.
Interestingly, in many cases the quality of the solution can be arbitrarily good
if an arbitrarily large number of repetitions is permitted.

Hill Climbing

Hill climbing is a rather simple local search strategy. It attempts to maximize (or
minimize) a function f(x), where x is an state of the search space. Hill climbing
follows the graph from vertex to vertex, always trying to locally increase (or
decrease) the value of f, until a local maximum xm is reached.

In simple hill climbing, the first closer node is chosen, whereas in steepest
ascent hill climbing all successors are compared and the closest to the solution
is chosen.

Random-restart hill climbing is a meta-algorithm built on top of the hill
climbing algorithm. It is also known as Shotgun hill climbing. Random-restart
hill climbing simply runs an outer loop over hill climbing. Each step of the outer
loop chooses a random initial condition x0 to start hill climbing. The best xm

is kept: if a new run of hill climbing produces a better xm than the stored one,
it is replaced. Random-restart hill climbing is a surprisingly effective algorithm
in many cases. It turns out that it is often better to spend CPU time exploring
the space, rather than carefully optimizing from an initial condition.

Hill climbing together with backtracking turns into BFS, and therefore a
global optimization technique.

Simulated Annealing

Simulated Annealing is another meta-algorithm built on top of the hill climbing
algorithm. It was independently invented by S. Kirkpatrick, C. D. Gelatt and
M. P. Vecchi in 1983 [KGV83], and by V. Cerný in 1985 [Cer85]. It originated
as a generalization of a Monte Carlo method for examining the equations of
state and frozen states of n-body systems. The name and inspiration come from
annealing in metallurgy, a technique involving heating and controlled cooling of
a material to increase the size of its crystals and reduce their defects.

This method is similar to Hill Climbing in the way it finds a solution, but
to overcome the local maxima problem, the process is iterated so that at each
step of the Simulated Annealing algorithm the current solution is replaced by
a random “nearby” solution, chosen with a probability that depends on the
difference between the corresponding function values and on a global parameter
T (called the temperature), that is gradually decreased during the process.

It can be shown that, for any given finite problem, the probability that
the simulated annealing algorithm terminates with the global optimal solution
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approaches 1 as the annealing schedule is extended. This theoretical result is,
however, not particularly helpful, since the annealing time required to ensure
a significant probability of success will usually exceed the time required for a
complete search of the solution space.

Tabu Search

Tabu search is another local search algorithm, generally attributed to Fred
Glover [Cer87]. It is similar to simulated annealing, in that both traverse the
solution space by testing neighbors of the current solution. In order to prevent
cycling, the Tabu search algorithm stores all visited solutions in a so-called “tabu
list”, in order to suppress moves to those solutions, and only accept neighbor
solutions not contained in this list (i.e. not tabu solutions).

Due to memory restrictions it is not possible in general to store all visited
solutions. Therefore, the list contains only solutions which have been visited in
the last N iterations. Then only cycles with a length greater than the tabu list
length may occur and if the tabu list is large enough, the probability of cycling
becomes very small.

Different stopping criteria are possible. Usually, the whole tabu search proce-
dure stops after a certain number of iterations, after a number of non-improving
solutions, or when a given time-limit or solution fitness is reached.

Genetic Algorithms

The idea of evolutionary computing was introduced in the 1960s by Ingo Rechen-
berg in his work “Evolution strategies” [Rec60]. From then, many researchers
where interested in this field. Genetic Algorithms (GA) as such were invented
by John Holland and developed by him and his students and colleagues. This
lead to Holland’s book “Adaption in Natural and Artificial Systems” published
in 1975 [Hol75].

A Genetic algorithm is a general search technique which mimics the biologi-
cal evolution based on the principle “survival of the fittest”. Genetic algorithms
have been applied with growing success to combinatorial optimization problems.

Genetic algorithms are usually implemented as a computer simulation in
which a population of abstract representations of candidate solutions (called
individuals) to an optimization problem evolves toward better solutions. Tra-
ditionally, solutions are encoded as a sequence of symbols which is called a
chromosome. Associated with an encoding s of a feasible solution is a measure
of adaptation, the fitness value fitness(s).

The evolution usually starts from an initial population of randomly gen-
erated individuals and happens in generations. In each generation, the fit-
ness of every individual in the population is evaluated, multiple individuals are
stochastically selected as “parents” from the current population based on their
fitness, and new “child” solutions are generated by applying some modifications
(crossover operators that recombinate or mix subsequences of the parent chro-
mosomes, and mutation operators that perturbate a chromosome) to form a
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new population, which is usually reduced to its original size by removing some
solutions according to their fitness values. The new population is then used in
the next iteration of the algorithm. Commonly, the algorithm terminates when
either a maximum number of generations has been produced, or a satisfactory
fitness level has been reached for the population. If the algorithm has termi-
nated due to a maximum number of generations, a satisfactory solution may or
may not have been reached.

Ant Colony Optimization

The ant colony optimization algorithm (ACO), introduced by Marco Dorigo in
1992 in his thesis [Dor92], is a probabilistic technique for solving computational
problems which can be reduced to finding good paths through graphs. It is
inspired by the behavior of ants in finding paths from the colony to food.

Ant colony optimization algorithms have been used to produce near-optimal
solutions to the traveling salesman problem. They have an advantage over
simulated annealing and genetic algorithm approaches when the graph may
change dynamically; the ant colony algorithm can be run continuously and
adapt to changes in real time. This is of interest in network routing and urban
transportation systems.

2.3 Auctions

So far we have reviewed several techniques to solve generic optimization prob-
lems. From now on, we will focus on an specific optimization problem: auctions.

Auctions are becoming popular in optimization problems where resources
in a distributed system are shared in a competitive environment. Auctions
provide useful mechanisms for resource allocation problems with autonomous
and self-interested agents.

They were deeply studied first in economic theory as a way to establish prices
in the market. Later they where also applied to game theory, and with the wide
popularity of Internet and the emergence of electronic commerce, where auctions
serve as the most popular mechanism, efficient auction design has become a
subject of considerable importance for researchers in multi-agent systems.

Within the field of Artificial Intelligence there is a growing interest in us-
ing auction mechanisms to solve resource allocation problems in competitive
multi-agent systems. For example, auctions and other market mechanisms are
used in network bandwidth allocation, distributed configuration design, factory
scheduling, and operating system memory allocation. Auctions are currently
being used in several industrial scenarios ([BDHK06]), as the electricity market
in which different kinds of energies are auctioned in order to favour the use of
non pollutant sources of energy [PJ08].

An auction is a process where sellers offer objects, and the buyers notify their
interest on them by submitting bids. The information contained in the bid is
mainly the price that the buyer is ready to pay for the item. In the auction there
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is usually one single auctioneer and a set of buyers. The auctioneer informs the
buyers about the object/s that is/are going to be sold, then the bidders submit
their bids and finally the auctioneer determines which are the winning bids to
deliver the object to the corresponding buyers.

Now we survey and present a classification of the existing types of auctions,
focusing and extending more deeply the combinatorial branch.

2.3.1 Auctions Classification

A diagram of the classification can be seen in Figure 2.6. Based on the number
of items, auctions can be classified as single-item or multi-item auctions. The
former are the most common where bidders compete for a good. There exist a
lot of protocols for them, being the most common types English, Dutch, First
Price Sealed Bid and Vickrey auctions.

In an English auction (also called an open-outcry auction) the auctioneer
begins the auction with the reserve price (lowest acceptable price), then bidders
are free to raise their bid higher than the actual price. When no more bids are
risen the winner is the highest bidder. This is the typical auction used to sell
artistic works. In a Dutch auction the auctioneer lowers the price until a bidder
takes it. The first bidder to speak wins. This auction has been extensively used
in fish markets. With First Price Sealed Bid each bidder submits a bid without
knowing the other bidders’ bids. The highest bid wins, paying his respective
price. This differs from English auction because as bids are not open or called,
bidders must submit valuations based upon supposed market value and their
own willingness to pay, as opposed to engaging in competition through relative
prices with other bidders. Vickrey auction [Vic61] (also known as Second Price
Sealed Bid auction) is the same as first price sealed bid but here the winner
pays the second highest price submitted.

When the quantity of items being sold is larger than one, auctions are called
multi-unit. Single-item auctions with multi-unit items are differently classified
based on pricing rules. For example, in a Discriminatory Price Sealed Bid
(DPSB) auction, all the winners pay their bid price. Alternatively, in Uniform
Price Sealed Bid (UPSB) auction, all winners pay the same price which is the
highest bidding price of the losers. Finally, in Generalized Vickrey Auction,
also called VCG5, the price of a winner k is computed by deducting the sum of
payments of all other bidders in the current resource allocation from the sum of
all payments that would be obtained from those other bidders in the optimum
allocation where the bidder k is removed from the allocation.

Multi-item auctions are known as Combinatorial Auctions. Here bidders can
bid on bundles (combinations) of items. This enables the bidder to express de-
pendencies and complementarities between goods. The auctioneer selects such a
set of these combinatorial bids that results in the most revenue without assign-
ing any object to more than one bidder. The computational complexity of the

5Where “V” stands for Vickrey [Vic61], “C” for Clarke [Cla71], and “G” for Groves [Gro73],
three researchers who gave successively more general versions of the Vickrey auction.
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optimal winner selection is very high compared with single-item auctions. Fur-
thermore, we can also have multi-unit items in a combinatorial auction (known
as Multi-unit Combinatorial Auction), making it even harder to solve. Clarke
[Cla71] and Groves [Gro73] also extended the Vickrey concept to combinatorial
auctions, although it is highly computationally intractable.

2.3.2 Combinatorial Auctions

The field of combinatorial auctions has grown rapidly in the past ten years.
However, combinatorial auctions were first proposed by Rassenti, Smith, and
Bulfin in 1982 [RB82], for the allocation of airport landing slots. This pa-
per introduced many of the key ideas on combinatorial auctions, including the
mathematical programming formulation of the auctioneers problem, the connec-
tion between the winner determination problem and the set packing problem,
the issue of computational complexity, the use of techniques from experimen-
tal economics for testing combinatorial auctions, and consideration of issues of
incentive compatibility and demand revelation in combinatorial auctions. The
study of combinatorial auctions lies at the intersection of economics, operations
research, and computer science.

Combinatorial auctions are those auctions in which bidders can place bids on
combination (bundle, collection, package...) of items rather than just individual
items. This allows bidders to express different types of dependency between
goods [San02, FLBS99]:

• Substitutability: A player’s value of getting for example two goods is less
than the sum of its values for each individually (e.g., they are at least par-
tially redundant). For example, a DVD reader and a DVD reader/writer
are substitutable; a bidder may want one or another but not both.
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• Complementarity: A player’s value of getting for example two goods is
greater than the sum of its values for each individually (e.g., they are at
least partially co-dependent). For example, a bidder may value getting
two shoes, but he probably does not want only one.

This expressiveness can lead to more economical allocations of these items
because bidders do not get stuck with partial bundles of low value. The seller
(auctioneer) is faced with the set of price offers for various bundles of goods, and
his aim is to allocate the goods in a way that maximizes his revenue. However,
designing good combinatorial auctions is much more challenging than designing
good auctions for selling a single good. The computational complexity of deter-
mining the optimal winners of a combinatorial auction (maximizing auctioneers
revenue), known as the Winner Determination Problem (WDP), is very high.

For a more extensive study of combinatorial auctions and the Winner De-
termination Problem, the interested reader is referred to the book by Peter
Cramton, Yoav Shoham and Richard Steinberg [PCS06].

2.3.3 The Winner Determination Problem

The Winner Determination Problem WDP (also called the auction clearing
algorithm) can be defined as: Given a set of bids in a combinatorial auction,
find an allocation of items to bidders that maximizes the seller’s revenue, subject
to the constraint that each good can be allocated at most once.

The WDP is equivalent to weighted set-packing problem and the maximum
weighted clique problem6, and is therefore NP-hard even in its single-unit vari-
ant (see e.g., [RPH95]). Furthermore, it has been demonstrated that the WDP
cannot even be approximated to a ratio of n1−e (any constant factor) in poly-
nomial time, unless P = NP (see e.g., [San02]).

Formal Definition

Let G = {g1, g2, ..., gm} be a set of goods, and let B = {b1, b2, ..., bn} be a set of
bids. Bid bi is a pair (pricei, goodsi) where pricei ∈ R+ is the price offer of bid
bi and goodsi ⊆ G is the set of goods requested by bi. For each bid bi define an
indicator variable xi that encodes the inclusion or exclusion of bid bi from the
allocation.

The single-unit WDP is the following constraint optimization problem:

max
n∑

i=1

xi · pricei (2.3)

s.t.
∑

i|g∈goodsi

xi ≤ 1 ∀g ∈ G

6To model a combinatorial auction as a maximum weighted clique problem the problem has
to be converted as a graph where nodes are bids and edges connect compatible bids, assigning
the bids prices to the vertices weights.
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In a multi-unit combinatorial auction instead of unique items we have a
quantity q(g) for each good, and the bids can request also different quantities of
each item qi,g. The WDP for multi-unit combinatorial auctions is the following:

max
n∑

i=1

xi · pricei (2.4)

s.t.
∑

i|g∈goodsi

xi·qi,j ≤ q(g) ∀g ∈ G

The above problem formulation assumes the notion of free disposal. This
means that the optimal solution need not necessarily sell all of the items. If the
auction rules stipulate that all items must be sold, the problem becomes a Set
Partition Problem [dVV03], which is NP-Complete as well.

If bids could be accepted partially, the problem would become a linear pro-
gram which can be solved in polynomial time. This is absolutely not the case,
but we keep this idea in mind since it is an interesting feature that some algo-
rithms can smartly exploit.

2.3.4 Optimal Algorithms for Combinatorial Auctions

Since 1998 there has been a surge of research into the combinatorial auction
winner determination problem. For a more extended survey, see [dVV03] and
[PCS06]. We will brief some of the most known algorithms that provably find
an optimal solution to the general problem where bids are not restricted. Since
the problem is NP-Hard, any optimal algorithm for the problem will be slow on
some problem instances. However, in practice, modern search algorithms can
optimally solve winner determination in the large.

Now we describe some specific algorithms for solving combinatorial auctions
(CA). Then we will give details on how to model combinatorial auctions with
Integer Linear Programming to be run with a generic commercial LP solver like
CPLEX, which has nowadays become the generally accepted solving method for
CAs.

CASS

Combinatorial Auction Structured Search [FLBS99] is a branch and bound
search algorithm with a befitting heuristic. It has been developed in the Stan-
ford University by Yuzo Fujishima, Kevin Leyton-Brown and Yoav Shoham.

The crucial detail about CASS is that it structures the search space using
bins (see Figure 2.7). A bin is created for each good, and every bid is placed
into the bin corresponding to its lowest-order good. Rather than always trying
to add each bid to the allocation, at most one bid from every bin is added since
all bids in a given bin are mutually exclusive. Often entire bins can be skipped.
However, the main benefit of bins is not the ability to avoid consideration of
conflicting bids. Bins are powerful because they allow the pruning function
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to consider context without significant computational cost, and allowing the
generation of very fast and tight upper bounds.

Figure 2.7: Partition into bins.

The search method is based on the branch on bids formulation. Each path
in the search tree consists of a sequence of disjoint bids, that is, bids that do
not share items with each other. A path ends when no bid can be added to
it. As the search proceeds down a path, a tally, g, is kept of the sum of the
prices of the bids accepted on the path. At every search node, the revenue g
from the path is compared to the best g-value found so far in the search tree to
determine whether the current path is the best solution so far. If so, it is stored
as the new incumbent. Once the search completes, the incumbent is an optimal
solution.

However, care has to be taken to treat the possibility that the auctioneer’s
revenue can increase by keeping items. The auctioneer’s possibility of keeping
items can be implemented by placing dummy bids of price zero on those items
that received no 1-item bids.

A preprocessing step is performed in order to remove in polynomial-time
dominated bids to not enter into the search process. For each pair of bids
(b1,b2) where all items in b1 are contained in b2, if the price of b1 is greater or
equal to the price of b2, b2 may be removed from the bids list to explore, as b2

is never preferable to b1 (hence we say that b1 dominates b2).
CASS also caches the results of partial searches. This caching scheme is

a form of dynamic programming that allows the algorithm to use experience
from earlier in the search to tighten its upper bound function. In terms of
computational complexity, it is easy to see that even in the worst case, the size
of the explored tree is polynomial in the number of bids, but exponential in the
number of items. However, CASS may be used as an anytime algorithm, as it
tends to find good allocations quickly.

CASS is a free and open source algorithm that can be unrestrictedly down-
loaded from Kevin Leyton-Brown’s web page7.

7http://www.cs.ubc.ca/∼kevinlb/downloads.html
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BidTree

Bidtree [San02] is the other special-purpose WDP algorithm that has been most
widely studied and cited in the literature. It was presented in the same confer-
ence proceedings as CASS. The Bidtree algorithm is similar to CASS in several
ways, but important differences hold. In particular, Bidtree performs a sec-
ondary depth-first search to identify non-conflicting bids, whereas CASS’s struc-
tured approach provides context to the upper bound function as well as allowing
it to avoid considering most conflicting bids. Bidtree performs no caching or
cache pruning. On the other hand, Bidtree uses an IDA* search strategy rather
than CASS’s branch-and-bound approach, and does more preprocessing.

The Bidtree algorithm has never been publicly available, neither to re-
searchers. However the creators of CASS affirm that overall, CASS dramatically
outperforms Bidtree, being between 2 and 500 times faster than Bidtree, and
never slower.

Linear Programming

The Winner Determination Problem can be easily modeled as an Integer Pro-
gramming Problem. To make so, bids are converted to binary variables X, and
the function to be maximized f is the weighted sum of the bids multiplied by
its price. Restrictions are constructed in order to assure that bids sharing an
item cannot both win (their sum must be less or equal to 1).

maximize f =
∑

i∈Bids

pricei·X(i) (2.5)

∀j ∈ Items
∑

i∈Cj

X(i) ≤ 1 (2.6)

where Cj is the set of bids containing item j. Note that the constraint is ≤ 1
instead of = 1 because an optimal allocation may leave some items unsold. If
all the items are required to be sold then the equality condition should be set.

ILOG’s CPLEX, is the most used LP optimization software worldwide. Uni-
versities and researchers have extensively used it to solve most of the COP’s and
every new algorithm or technique that comes out is habitually compared versus
CPLEX.

When CASS and Bidtree were proposed, ILOG’s CPLEX 5 mixed inte-
ger programming package (the industry standard) was unable to solve most
WDP problems within a reasonable amount of time. Since that time, however,
CPLEX’s mixed integer programming module improved substantially with ver-
sion 6 (released 2000), and considerably again with version 7 (released 2001).
In version 8 (released 2002), with the MIP optimizer achieving an average 40%
speed increase to optimality, with a 70% increase on difficult problems, there
was a general convergence in the research community towards using CPLEX as
the default approach for solving the WDP. Once again, CPLEX with version 9
(released 2003) improved the MIP optimizer to be 50% faster on average, for
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a set of difficult customer models. Now that CPLEX is in version 10, which
has improved the time to optimality by an average of 30% and improvements
average 70% for particularly difficult models, the only drawback of this software
against others’ may be its elevated price.

Another possibility is to use the free GLPK (GNU Linear Programming Kit)
solver. ILOG claims that its CPLEX solver is 100 times faster than GLPK;
instead GLPK is free, and still a good choice for solving medium-size instances.

CABOB

When CPLEX began to release amazingly efficient LP and MIP solvers, re-
searchers gradually switch to using CPLEX as the default approach for solving
the WDP. The only ongoing effort at competition with CPLEX came from the
authors of Bidtree, who wrote an updated algorithm called CABOB which they
claim is much faster [SSGL01].

The CABOB (Combinatorial Auction Branch on Bids) algorithm is a depth
first branch and bound search that branches on bids. The main difference is that
instead of branching on items, CABOB uses the branch on bids formulation. A
graphical representation of the search space generated with both formulations
is shown in Figure 2.8. When branching on a bid, the children in the search
tree are the world where that bid is accepted, and the world where that bid
is rejected. The branching factor is 2 and the depth is at most n (number of
bids). No dummy bids are needed: the items that are not allocated in bids on
the search path are kept by the auctioneer. Given the branching factor and tree
depth, a naive analysis shows that the number of leaves is at most 2n. However,
a deeper analysis establishes a drastically lower worst-case upper bound reaching
a polynomial growth in bids, while exponential in items (the same as CASS).

The algorithm maintains a conflict graph structure called the bid graph. The
nodes of the graph correspond to bids that are still available to be appended
to the search path, that is, bids that do not include any items that have al-
ready been allocated. Two vertices in the graph share an edge whenever the
corresponding bids share items. CABOB uses a technique for pruning across
independent subproblems (components of the graph).

CABOB uses Linear programming for upper bounding. This usually leads to
faster search times than any of the other special-purpose upper bounding meth-
ods proposed for winner determination. This is likely due to better bounding,
better bid ordering, and the effect of the INTEGER special case, i.e an integer
solution provided by the Linear Programming solver, implying that no more
search is needed in the respective branch. The time taken to solve the linear
program is greater than the per-node time with the other bounding methods,
but the reduction in tree size usually amply compensates for that. However,
on a non-negligible portion of instances the special-purpose bounding heuristics
yield faster overall search time.

Like Bidtree, CABOB is neither available publicly. Its reported performance
is apparently similar to CPLEX’s, and as discussed above, CABOB is also simi-
lar to CPLEX in its construction: it makes use of CPLEX’s linear programming
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Figure 2.8: Branch on items (left) versus branch on bids (right) formulation.
Figure extracted from [PCS06].

package as a subroutine and uses a similar search strategy.

2.3.5 Summary of combinatorial auctions solvers

We have described four different methods to solve a combinatorial auction.
Table 2.1 shows a comparison of these methods, focusing on the following char-
acteristics:

• Performance. How fast the algorithm ends giving the absolute optimal
solution.

• Anytime performance. How fast the algorithm produces a valid solution.

• Input & output. This field describes whether the algorithm receives as
input the list of bids directly or it needs some conversion.

• Preprocessing. How much preprocessing the algorithm executes.

• Economical cost. Price of the software providing the method.

Regarding the overall performance, CPLEX is clearly the best product fol-
lowed by CABOB and GLPK, and at some distance CASS and finally BidTree.
Instead, concerning anytime performance, CASS is the method requiring less
amount of time to produce a first solution. This is for two reasons: firstly be-
cause it performs less preprocessing and secondly because LP-based algorithms
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need to solve first the LP problem (which does not generally produce a valid
solution) in order to begin the search of valid solutions. Therefore, although the
first (non-optimal) proposed solution of CPLEX is probably much better than
the CASS first solution, CASS obtains it earlier, so we state that CASS exhibits
a better anytime performance.

CPLEX and GLPK need a transformation from the set of bids to a linear
programming problem. This transformation requires a small amount of time
(polynomial) compared to the total time of the execution. However, for small
problems it may be faster to use a method that does not require any trans-
formation. Of course, when dealing with huge problems, MIP solvers will be
much faster since the transformation time would be insignificant compared to
the improvement in overall execution time obtained.

Method Perf. Anytime Input&Output Preproc. Econ. Cost
CASS Slow Good Direct Very Fast Free
BidTree Very Slow Good* Direct* Fast* Unavailable
CPLEX Very Fast Bad Transformation Fast Expensive
GLPK Fast Bad Transformation Fast Free
CABOB Fast Bad* Direct* Slow* Unavailable

*Unknown (just presumed values).

Table 2.1: Auction solvers comparative.

Regarding the cost of the product, CPLEX is quite expensive, and CABOB
is not available publicly, therefore unless we need to solve huge problems, GLPK
and CASS would be interesting tools.

As a conclusion, CASS should be the first option to try, as it is free and easy
to use (receiving as input directly the list of bids). If CASS is not able to solve
the problems because of its large size, then a transformation to LP should be
considered to test whether or not GLPK is able to solve it. Otherwise, CPLEX
is the last resource if its cost can be afforded.

2.4 Recurrent Auctions

The previously presented solvers are only concerned in solving a concrete com-
binatorial auction. However, in some domains the allocation of resources to
bidders are made for an specific time only [LS06], and when the time has ex-
pired the auction is repeated in what is known as a recurrent auction, where
bidders are continuously competing for the same resources. This kind of auc-
tions have received little attention [LS06, PDJS06, LS05b], but they are gaining
importance, since there are many applications where this recurrence takes place,
such as e-service oriented marketplaces.

Recurrent auctions present the Bidder Drop Problem because during such
auctions, bidders can drop out of an auction at any time. This problem occurs
when a bidder participating in many auctions is always losing, and then he
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may decide to leave the auction, and this is not good for the auctioneer, since
reducing the number of bidders gradually decreases the price competition given
that the probability of winning increases for the remaining bidders. Therefore,
one of the main concerns in recurrent auctions is to keep the agents interested
in participating in the auction.

In order to avoid, or somehow decrease, the bidder drop problem, the recur-
rent auction process should have some degree of fairness. A fair solution means
that at long term, all the participants accomplish their goals in the same degree,
independently of their wealth. The inclusion of this fairness can be somewhat
acting against optimality, since the result of an auction could differ from the
optimal solution if a suboptimal solution is fairer. However, its long-term effect
has better performance than a pure utilitarian view, since the duration of the
recurrent auction may be longer with satisfied agents and the final outcome
could be much higher.

Some approaches of recurrent auctions using fairness can be found in the
literature [LS06, LS05a, MMBL07].

2.5 Robustness

In real-world applications where there exists the possibility that unpredictable
changes occur that modify the initial conditions of the problem, the obtained so-
lution may not remain applicable [ABT00]. In such situations robustness would
be preferable to optimality, since in the case that changes occur, a robust solu-
tion would remain applicable while an optimal solution could not be applicable
and therefore it should be re-calculated from scratch.

However, optimality is not completely left out of consideration, instead, the
robust solution should be as close to the optimal as possible. Therefore a trade
off between optimality and robustness is addressed, as usually the degree of ro-
bustness would be inversely proportional to the solution revenue. Some authors
have named this drawback “the price of robustness” [BS04].

There are two general approaches for dealing with robustness. Whereas
reactive techniques address the problem of how to recover from a disruption
once it has occurred, pro-active methods constructs solutions that account for
statistical knowledge of uncertainty.

The first step in incorporating robustness (pro-active) in optimization was
taken by Soyster [Soy73], who proposed a linear optimization model to construct
a solution that is feasible for all data that belong in a convex set. Unfortunately,
the resulting model produces solutions that are too conservative giving up much
of optimality in order to ensure robustness (see [ABT00]).

A significant step forward for developing a theory for robust optimization
addressing the problem of overconservatism was taken independently by Ben-Tal
and Nemirovski [ABT98, ABT99, ABT00], and El-Ghaoui and Lebret [EG97,
EG98]. These papers proposed less conservative models by considering uncertain
linear problems with ellipsoidal uncertainties. With properly chosen ellipsoids,
such formulation can be used as a reasonable approximation to more complicated
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uncertainty sets. However, a practical drawback of this approach is that it leads
to nonlinear models, which are more demanding computationally than easier
linear models by Soyster [Soy73].

Andrew J. Davenport proposed a slack-based technique for robust pro-active
scheduling [DGB01]. The central idea behind slack-based techniques is to pro-
vide each activity with extra time to execute so that some level of uncertainty
can be absorbed without rescheduling.

On the reactive field, Kentaro Tsuchida [TOIK04] presented a robust schedul-
ing method for job-shop problem which consisted on a method to produce robust
schedules obtained by iteratively generating new schedules together with appro-
priate adjustment rules. An adjustment rule is a modification of the schedule,
and is used when an environmental change happens, by shifting or replacing
jobs. They calculate an expectation evaluation value of each robust solution
and keep the best solution based on various initial situations.

In terms of combinatorial auctions, Alan Holland and Barry O’Sullivan in-
corporated reactive robustness to them in what they call the “Bid-taker Expo-
sure Problem” defined as: “Given a bid withdrawal in a combinatorial auction,
finding an alternative repair solution of adequate revenue without causing un-
due disturbance to the remaining winning bids in the original solution”. Then
the problem is to find a robust solution which is defined as an allocation that
can withstand bid withdrawal (a break) by making changes easily to form a
repair solution of adequate revenue [HO05], instead of brittle solution in which
an unacceptable loss in revenue is unavoidable if a winning bid is withdrawn.
He proposes an approach to address the Bid-taker Exposure Problem using the
Weighted Super Solutions framework [HO04] developed by himself, from the
field of constraint programming, to find a robust solution. The weighted su-
per solution guarantees that any subset of bids likely to be withdrawn can be
repaired to form a new solution of at least a given revenue by making limited
changes. The limitations of this approach is that it only considers bid with-
drawal, but does not consider any other kind of change such as variations in
the bids, or disobedience of the bidders (for example in an auction-based re-
source allocation problem the bidders could use more resources capacities than
requested).

2.6 Conclusions

Auctions have been one of the most popular mechanisms in economics to re-
source allocation problems, and are nowadays also a popular method for AI
researchers as well. The problem of deciding the winners of an auction is known
as the Winner Determination Problem and it can be modeled as a Constraint
Optimization Problem (COP).

COPs have been studied for many years and a wide variety of powerful
techniques and methods already exist. We can distinguish between optimal
and non-optimal techniques. The former can provably find the optimal solution
although it usually takes an unfeasible amount of time given that this is a
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NP-Hard problem, while the latter are not generally able to guarantee that a
solution can be found, neither prove that it does not exist.

Most of the work found in the literature for both optimal and non-optimal
methods is focused on the utilitarian principle, and is therefore deficient in
environments where the the allocation process is repeated several times as each
problem is solved independently.

Another desired feature that is difficult to find in most of the existing meth-
ods is robustness. Robustness is gaining importance in the last years because in
real, dynamic environments there take place changes and the classical techniques
are generally not prepared to deal with such changes in the initial data. The
research in this field has already began, but the field of combinatorial auctions
is still on its infancy and much work can be done within it.

The research presented in the rest of this work deals with (i) the design of a
robustness mechanism to be used in recurrent combinatorial auctions, and (ii)
the development of an efficient and versatile combinatorial auction solver.
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Chapter 3

Exploratory work

In this chapter we present two separate works, the first is a robustness mecha-
nism for combinatorial auctions, and the second is the development of an efficient
algorithm for the Winner Determination Problem for Combinatorial Auctions.

To test the former we will use the case example introduced in the first chapter
about coordinating water discharges in a treatment plant. The latter algorithm
will be compared, using a popular combinatorial auctions benchmark, against
the best solvers existing nowadays.

3.1 Robustness in recurrent combinatorial auc-
tions

In some domains an interesting feature on auctions is to incorporate robustness.
Robustness, as it has been introduced in Chapter 2, represents the ability of a
solution to overcome unexpected changes in the environment. Under this ap-
proach, we are willing to accept a suboptimal solution in order to ensure that the
solution remains feasible and near optimal even when the data changes. There
are two general approaches for dealing with uncertainty: proactive and reac-
tive. Roughly speaking, proactive robustness means that the obtained solution
is robust by itself, being able to absorb some level of unexpected events, while
reactive robustness addresses the problem of how to recover from a disruption
once it has occurred, providing an alternative solution in case that the primary
solution becomes unapplicable.

We will focus only on proactive robustness (for the interested reader on
reactive robustness an extended work on that subject can be found in [HO05]),
mainly related to scheduling problems that use recurrent combinatorial auctions
to distribute the available resources among all the agents in order to not exceed
the resources capacities at any time and minimize the makespan (i.e. the time
at which all tasks are completed). In the following section a generic recurrent
auction procedure to solve scheduling problems is described, and the subsequent
section will explain how to add the robustness capability to this framework.
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After that, a concrete real-world problem, the waste water treatment system,
will be used to evaluate this mechanism.

3.1.1 Coordinating Schedules

Scheduling problems could be solved using a centralized approach, where given
all the tasks, it generates a new schedule for each agent, without any conflicts be-
tween them. Such centralized approach implies that the central scheduler would
made all the decisions. However, such decisions should be made distributedly
by each of the agents, since they may not be willing to disclose private in-
formation related with the production process upon which their decisions are
based. Thus, in order to preserve privacy, a distributed approach is preferable
[CDE+06]. Therefore we have designed a multi-agent system. In this scenario
there is a single agent representing the shared resources of certain capacities,
and a set of agents competing for some resources needed to execute a set of
tasks, where each task is defined by a given duration, release time, deadline
and resources capacity requirements. From the point of view of an auction, the
agent that controls the resources is the auctioneer (seller) which we will call the
coordinator, the agents performing tasks are the bidders (buyers), and the items
being sold are the capacities of the resources.

Figure 3.1: Coordination system

The process for coordinating the different schedules is depicted in Figure 3.1.
Firstly, the agents inform the coordinator about their scheduled tasks. These
schedules contain the set of tasks that they plan to perform in a given period
of time, and for each task the information about its starting time, duration, re-
sources capacities (and any other information) is also included. Then a schedule
from an agent k is described as Sk = {t1, ..., tn} where n is the number of tasks
contained in this schedule and each task ti is defined as ti = {si, di, qi}, where
si stands for the start time, di is the duration and qi is the set of resources
capacity requirements for this task.
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The coordinator, upon reception of these schedules, starts checking for con-
flicts (that is, whether the resources capacities are exceeded at any time). A
conflict arises if the tasks being performed at time t, T (t) = {ti|t ∈ [si, si +di]},
violate the following restriction:

|T (t)|∑

i=1

qi,j ≤ Qj ∀j ∈ C (3.1)

where qi,j is the capacity requirement of the resource j by the task i, Qj is
the maximum capacity of the resource j, and C is the set of resources. Whenever
a conflict is detected, the involved agents (the agents whose tasks are scheduled
at the time of the conflict) are informed about it, and an auction is started in
order to select which of them will be authorized to use the resources and which
will not. Once the auction is completed, the agents are informed about the
resolution, in a way that the losers of the auction should modify their schedules.
This process is repeated until all the tasks have been authorized, and the result
is that each agent has a new schedule, and the resulting schedules do not produce
any conflicts.

Next we describe in more detail the conflict resolution method using combi-
natorial auctions.

3.1.2 Conflict Resolution with Recurrent Combinatorial
Auctions

As discussed earlier, we use an auction mechanism to mediate the conflicts
between the scheduled tasks (of the respective agents). Once the involved tasks
in a conflict have been detected, their corresponding agents are informed about
the conflict and the auction process begins. The goal of this process is to select
a subset of them, which will be authorized to perform their tasks, while the
remaining tasks should be delayed.

The selection criteria is based in the bids submitted by the agents. These
bids represent the urgency that each of them has to perform the task. A high
bid indicates that the agent really needs (or wants) to perform the task, while
a low bid indicates that the agent could delay its task and therefore it can miss
the opportunity to perform it at the auctioned time.

Formally, the problem to solve by the coordination agent is the Winner
Determination Problem (WDP) for multi-unit combinatorial auctions [KP05]
(similar to the multi-dimensional knapsack problem [Kel05]):

max
NC∑

i=1

xi · vi

s.t.
NC∑

i=1

xi · qi,j ≤ Qj ∀j ∈ C

(3.2)
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where:

• NC is the number of conflicting tasks,

• xi ∈ {0, 1} represents whether task i is denied or authorized,

• vi ∈ IR+ is the bid value for task i,

• qi,j is the capacity requirement of the resource j for the task i,

• Qj is the resource j capacity,

• and C is the set of resources.

The auction process is repeated every time a new conflict is detected. This
leads to a recurrent auction, where the same bidders are continuously competing
for the same resources. As explained in the previous chapter, in this kind of
auctions the Bidder Drop Problem comes out: in this coordination scenario,
it can cause the agents to stop obeying the outcome of the coordination and
start behaving on its own, which could conflict with the behavior of the agents
agreeing with the coordination.

The bidder drop problem has been typically addressed in the literature using
fairness mechanisms [LS05a, MMBL07]. However, although fairness incentivizes
agents to participate in the auctions, it does not produce robust solutions by
itself. Robustness is a desired feature in these situations, as it would produce
solutions taking into account those agents which are most likely to disobey
the decisions of the auctioneer if unauthorized, thus preventing overuse of the
resources.

3.1.3 Adding Robustness

Now we will describe how to add a robustness model to this coordinating mech-
anism with recurrent combinatorial auctions. The robustness model consists in
three separated components:

• Trust model of the agents performing tasks

• Risk function of the auctioneer selling the resources (i.e. the coordina-
tor)

• Robust solution generation

The first component is concerned with the agents performing tasks. It mod-
els their behavior by learning from their actions the circumstances in which an
agent does not obey the decisions of the coordinator. Then the coordinator uses
these models in order to know in advance which agents are going to disobey if
they are unauthorized to perform the task, and act correspondingly. The second
component is related to the coordinator and its risk function, as the robustness
mechanism varies depending on the risk attitude of this agent. Finally, with the
inputs coming from all the agents, the robustness is achieved by combining the
risk of the coordinator with the trust on the agents involved in each conflict.
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Trust model

An agent performing tasks can disobey the decisions of the auctioneer for several
reasons. It is not usually the case that an agent disobeys every decision of the
auctioneer independently of the characteristics of the task to perform. Normally,
an agent would disobey only the decisions that deny some tasks that it really
needs to perform for some reason. Therefore the trust model should not not
contain only a unique global value for the degree of trust of an agent, but the
trust value should be related to a given task features, as an agent probably
disobeys differently as a function of the characteristics of a task. Therefore, the
trust model maintains concrete information about the distinct kinds of tasks,
in order to learn which tasks are most likely for the respective agent to be
disobeyed in case they were denied. Possible task features to build the trust
model with include the resources capacity requirements, the task duration, etc.

The information stored about the trust itself is not only the probability of
disobeying, but it is generalized with a lie magnitude, as an agent may request
to perform some tasks using a given capacity of resources and later use a higher
capacity than requested. Consequently, the trust model also stores for each of
the considered characteristics these two trust measures:

• Probability of disobeying. This value ∈ [0..1] can be measured in
different ways, being the most intuitive the average of disobediences in
relation to the total number of auctions the agent has been involved in.
However, it could be measured not only counting the number of times that
the agent has performed the task when unauthorized, but counting also
the times where the agent has performed the authorized task but using a
higher amount of capacity than requested.

• Lie magnitude. This value ∈ [0..∞] represents the degree of the dis-
obedience. For example a value of 1 would represent that when the agent
disobeys, it uses the quantity of resources requested for the task, while
a value of 1.5 would represent that it uses the 150% of the requested
capacity.

A graphical representation of this trust model using only one characteristic
of the task is shown in Figure 3.2 (to use more task characteristics, additional
dimensions would be added). Note that this model is general enough to allow
including even the case where an industry does never disobey the auctioneer (it
only performs the task when it is authorized to, so it has a disobey probability
of 0 for all task characteristics), but it uses a higher amount of capacity than
requested (having a lie magnitude greater than 1 at disobey probability of 0).
This is particularly useful in problems where the resource capacity requirements
of the agents are quite dynamic.

The trust model is learned by the auctioneer agent at execution time. Every
time a task is performed the trust model of the respective agent is updated with
the new trust values obtained and related to the characteristics of the current
task, i.e. if the task has been performed after the authorization of the auctioneer
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Disobey probability

Lie magnitude

Task characteristic

Figure 3.2: Trust model.

or not (the agent has disobeyed), and checking if the resource capacity used is
the same as what was requested. The trust model is also consulted each time
an agent requests to perform a task; the auctioneer looks for the trust model of
the agents willing to perform a task at a given time and gets their trust values
in order to solve the current conflict taking them into account.

Risk function

The auctioneer’s risk attitude characterizes its willingness to face dangerous
situations. Risk attitudes are generally categorized in three distinct classes:
risk aversion, neutrality and proclivity. Risk aversion is a conservative attitude
for individuals who do not want to be at stake. Risk neutral agents display an
objective predilection for risk, whilst agents with a proclivity for risk are willing
to engage in gambles where the utility of the expected return is less than the
expected utility.

To produce a robust solution the risk attitude of the auctioneer is considered
together with the trust models of the agents. For example, a risk-averse auction-
eer would consider that every task with a probability of disobeying greater than
0 is going to be performed even if unauthorized, and thus it would auction only
the remaining resources capacities over the rest of the tasks. On the other hand
a risk-proclive auctioneer would consider that if a task has a low probability of
being disobeyed, it would not be the case at this time and hence the auctioneer
would auction a bigger amount of resources capacities, although with a higher
risk of being overused.

The risk function frisk gives the risk attitude of the coordinator (between
0 and 1) as a function of the probability of disobeying of a given agent and a
given task. An example of a risk function is shown in Figure 3.3(a). In this case
it represents a risk-averse auctioneer, since the resulting risk value is almost
always 1 (it considers risky tasks as if they are going to be surely performed
even if unauthorized), regardless of the probability of disobeying. On the other
hand, a risk-proclive auctioneer would have the final value almost always set to
0 (as seen in Figure 3.3(b)), and a risk-neutral one would have it set accordingly
to the probability of disobeying.

We can guess that a risk-averse coordinator will face fewer overuses of the
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Figure 3.3: Risk attitude function: (a) averse, (b) proclive.

resources. However, as the agents will have less access to the resources, there
will be more tasks delayed and thus the makespan will be longer. Instead, with
a risk-proclive coordinator the makespan will be shorter, although the resource
may be overused. However, in the results section we will observe that this fact
is not always happening.

Robustness resolution

Once the auctioneer has defined its risk function and the trust model about the
agents performing tasks with different resources requirements has been learned,
all of this information can be used to solve any forthcoming conflict in the
resources. When a conflict is detected, the auctioneer is faced with a set of
tasks, each associated with a set of trust features, obtained from the trust model.
Figure 3.4 shows an example, where boxes represent tasks and the number inside
them is its capacity requirement, P stands for the probability of disobeying of
the respective agent, and M stands for the lie magnitude.

100

100

100

P=0, M=0

P=0.25, M=1

P=0.9, M=1

Figure 3.4: Example of tasks with associated trust values.

Then the auctioneer, taking into account the trust levels associated to each
task decides which to authorize and which not in function of its risk. To solve
this situation a new constraint, the robustness constraint, is added to the con-
straint optimization problem previously formulated in Equation 3.2, where we
have n variables X = {x1...xn} (one for each task involved in the conflict), each
one representing whether the task is authorized or denied.

The robustness constraint is formulated in a way that the solution finds
a balance between the amount of resources required by the authorized tasks
and the assumed risk from the unauthorized tasks (appropriately weighted by
its probability of disobeying, lie magnitude and the risk function frisk of the
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auctioneer). The objective is to not exceed the capacities of the resources (Qj).
This constraint is defined as follows:

∑

i∈[1,n]

xi·ci +
∑

i∈[1,n]

(1− xi)·ci·frisk(Pi)·Mi ≤ Qj ∀j ∈ C (3.3)

The first summatory represents the resources used by the authorized tasks,
and the second characterizes the resources potentially used by the unauthorized
tasks. Then the unauthorized tasks are considered as if they where performed
in the cases where the probability of disobeying of the associated agent (Pi) is
high. However this value (appropriately weighted with the lie magnitude Mi)
is considered as a function of the risk attitude of the coordinator frisk. In this
case we have considered that the lie magnitude is directly multiplied by the risk
value, but another function could be used as well.

Another way of understanding this equation is by moving the second sum-
matory to the right side. Then it can be read as if the total capacities of the
resources get diminished in some degree by the unauthorized tasks that are
likely to be performed anyway. Then the tasks are auctioned normally although
witl less resources capacities available.

In the next section we will apply the presented mechanism to a real world
problem and we will evaluate it in adverse environments to assess how useful
this robustness mechanism is.

3.2 The Waste Water Treatment Problem

The Waste Water Treatment Problem, described in Section 1.2.1, can be mod-
eled as a recurrent combinatorial auction, where the auctioneer is the treatment
plant, the resource being sold is its capacity, and the agents performing tasks are
the industries whose tasks are to perform discharges. Every discharge is defined
as Di = {industry idi, si, di, qi, ci}, where si and di are the start time and the
duration of the discharge, and qi and ci are the flow and contaminant levels of
the discharge. In this case the resource consumption (as well as the individual
discharges) does not have only a global capacity limit (hydraulic capacity), but
it is extended with many thresholds, one for each contaminant type. Then the
goal of the auctioneer is not only to not exceed the hydraulic capacity of the
plant but also to have each of the contaminant levels under its thresholds. To
this end the discharge flow as well as each of the contaminants are considered
as separated resources.

The unauthorized discharges should not cause problems in the production
processes of the industries, however if the discharges can not be delayed, there
is no coordination possible. Therefore we assume that each industry has a
retention tank (of a given capacity) where it can store a discharge whenever it
is not authorized, and empty it later on.

With these adjustments, the coordinating scenario described in the previous
section can be easily adapted to be applied to this problem, so the robustness
mechanism can also be used.
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Regarding the proposed robustness mechanism, it is easier to understand
more clearly in this concrete problem why is it useful. In this scenario it is
conceivable that industries may sometimes disobey the decisions of the plant.
The most obvious reason is when an industry has its retention tank completely
full; in this case if the forthcoming discharge is not authorized, the industry
will be forced to discharge it anyway, thus disobeying the plant. However, an
industry could disobey the decisions of the plant for other uncontrolled and
unpredictable reasons, for example when the industry needs for some reason
to have the retention tank empty (for maintenance purposes, for instance), or
when a concrete discharge cannot be stored in the tank because of its high level
of contamination, etc. That is the reason why the robustness mechanism has
been designed to take into account the characteristics of the task in the trust
model.

Here the disobeying probability can be defined as a function of the charac-
teristics of the discharge (or the industry), for example:

• The flow of the discharge.

• Duration.

• Volume (amount of liters of the discharge).

• Contaminant levels.

• Retention tank occupation.

3.2.1 Implementation

To evaluate the coordination mechanism we have implemented a prototype of
the system, using Repast1, a free open source software framework for creating
agent based simulations using Java language. The simulation reproduces the
coordination process and the communication between the plant and the indus-
tries performing discharges. We have created an agent to represent the plant
and another one for each one of the industries. So far we have only considered
the hydraulic capacity.

To calculate the bid, each industry agent takes into account the urgency for
performing the discharge, based on the retention tank occupation. Thus, the
bid value of agent i, vi, is computed as:

vi =
tank occupationi

total tank capacityi

(3.4)

In case an industry agent has to reschedule its discharges, its behavior is
the following: it first tries to store the rejected discharge into the tank; the
discharge of the tank is then scheduled as the first activity of the agent after

1REPAST Agent Simulation Toolkit, http://repast.sourceforge.net
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the current conflict finishes. Otherwise, if the industry has its tank already full,
the discharge will be performed anyway.

The objective function to maximize in the auction clearing is the sum of the
winning bids values. The free linear programming kit GLPK [GLP] has been
used to solve the winner determination problem appropriately modeled as a
mixed integer programming problem (MIP). The robustness constraint is added
to the constraint optimization problem as an additional constraint.

The trust models of the industries have been implemented using only one
characteristic of the discharges: the flow. The models of the industries are
learned during the execution by storing, for each different value of flow of a
discharge from an industry, two counters for the total number of lies and truths
(that is, disobedient and obedient actions), and another value to compute the
lie magnitude. These values are updated after each performed discharge in the
following way: if the respective industry was authorized by the plant, then the
number of truths of the corresponding flow is incremented; alternatively if the
performed discharge was not authorized, then the number of lies is incremented.
Independently, the value regarding the average lie magnitude (of this concrete
flow) is updated with the lie magnitude of the current discharge computed as
the division between the used capacity in relation with the requested capacity.

3.2.2 Experimentation results

In order to evaluate the results we have considered some quality measures based
on different characteristics of the solution:

• number of overflows (NO) occurred during the execution of the sched-
ules

• maximum flow overflowed (MFO), measured in m3/day

• total volume overflowed (VO), in liters

• percentage of discharge denials being obeyed by the industries (%IO)

The experiments consisted of simulations using a set of real data provided by
the Laboratory of Chemical and Environmental Engineering (LEQUIA). This
data is composed of the discharges of 5 industries in two weeks. The first one
is a pharmaceutical industry; it is increasing its discharge flow during the week
and does not discharge during the weekend. The second one is a slaughterhouse
that discharges a constant flow, except at the end of the day when it increases.
The third one is a paper industry that discharges a constant flow during the
seven days of the week. The fourth one is a textile industry, whose discharges
flow oscillates during the day. The fifth one is the waste water coming from the
city, whose flow is fixed. The hydraulic capacity of the plant is 32000 m3/day.

We have tested the mechanism in different scenarios. In the first scenario
there is no coordination among the industries (without coordination the treat-
ment plant does never unauthorise a discharge). The second scenario uses the
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coordination mechanism and assumes that the industries always obey the deci-
sions of the plant, as long as they have enough tank capacity. The third scenario
also uses coordination and we introduce a probability of disobeying the outcome
of the coordination mechanism. This probability depends on the occupation of
the tank (the higher the occupation, the higher the chances of disobeying); a
graphical representation of this function is shown in Figure 3.5. The scenarios
with coordination have been tested with and without robustness.
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Figure 3.5: Disobey probability function.

Additionally, we have tested the system in two different environments. In
the first environment all the industries behave in the same way as explained
before, whereas in the second environment there is an industry (the textile,
chosen randomly), that will always disobey the decisions of the plant if any
of its discharges is unauthorized. We expect that, although the robustness
mechanism should improve the outcome in both environments, it would improve
more significantly the results of the second environment, as it fits better into its
playing field.

NO MFO VO IO
No coordination 80 9826 15.21·106 -
Obey 28 4996 3.74·106 98.95

Disobey (0)
77.60
(4.12)

14432
(865.93)

11.5·106

(216866)
98.55
(0.12)

Disobey (0.1)
113.40
(7.55)

14357
(1077.02)

13.4·106

(319429)
97.23
(0.21)

Table 3.1: First environment (all industries behaving similarly), with coordina-
tion but without robustness.

Table 3.1 shows the results of the first environment where there is no always-
disobeying industries. The first row of the table shows the results obtained
without any coordination, i.e. all the discharges proposed by the industries
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are authorized. The second row shows the results with coordination where all
the industries obey the decisions of the plant (unless its tank is full). The two
following rows show the results where the industries disobey using the function
shown in Figure 3.5, and setting a minimum probability of disobeying of 0 in
the third row and 0.1 in the last.

Comparing these values we can see that with coordination the results have
been highly improved, as the volume overflowed is drastically reduced from
15 · 106 to 3.74 · 106 in the case in which all the industries obey. Furthermore
the number of overflows and the maximum flow overflowed is also considerably
reduced in the case where all the industries obey. In the two cases where the
industries disobey we observe that the maximum flow overflowed and the total
number of overflows is notably incremented. Instead, the volume overflowed,
which is the most important indicator for the goodness of the results, is reduced
(yet getting slightly incremented as the probability of disobeying augments).

Disobey Risk NO MFO VO IO

0
0

78.70
(7.15)

14360
(1522)

11.3·106

(261362)
98.27
(1.57)

0.5
79

(7.83)
13531
(1396)

11.4·106

(260669)
98.19
(0.24)

1
84.8

(5.16)
14052
(1006)

11.3·106

(251712)
98.15
(0.17)

0.1
0

126.60
(6.13)

14398
(1604)

13.3·106

(363484)
96.48
(0.31)

0.5
122.9
(6.84)

13966
(803)

13.2·106

(403934)
96.61
(0.32)

1
121.3
(7.94)

14233
(1358)

13.2·106

(374673)
96.58
(0.41)

Table 3.2: First environment (all industries behaving similarly), with both co-
ordination and robustness.

Table 3.2 shows the results of adding the robustness mechanism to the co-
ordination system, also experimenting with different disobedience levels of the
industries. The robustness has been analyzed with three different risk attitudes
of the plant, namely, a completely risk-averse plant (risk=0), a risk-neutral plant
(risk=0.5) and a completely risk-proclive plant (risk=1).

We can observe that all the results with disobeying industries are improved
using robustness since both the volume overflowed and the maximum flow over-
flowed is reduced compared without robustness. However the difference is not
much relevant, and the number of overflows is generally higher within the robust
approach. Regarding the different risk attitudes of the plant, we see that there
are not much changes between them. This is not surprising as the industries in
this environment do not disobey in the way at which the robustness mechanism
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has been designed to work on. Finally considering the percentage of won auc-
tions, the minimum percentage of won auctions and the percentage of industry
obeyings, we see that there are neither many changes between all the cases.

NO MFO VO IO
No coordination 80 9826 15.21·106 -
Obey 112 6523 6.89·106 90.84

Disobey (0)
112

(6.09)
14955

(1201.58)
12.6·106

(233076)
90.98
(0.2)

Disobey (0.1)
119.70
(4.72)

14819
(1373.74)

14.3·106

(263955)
89.96
(0.28)

Table 3.3: Second environment (one industry always disobeying), with coordi-
nation but without robustness.

Now we are going to consider the second environment, where there is one
industry always disobeying the decisions of the plant. We can see the results
without using robustness in Table 3.3 (results without coordination are the
same as in the first environment, as there are no unauthorized discharges).
Of course in this environment all the values are worse than in the first one.
However, as it can be seen in Table 3.4, the robustness mechanism improves the
results more significantly than in the first scenario. All the indicators, volume
overflowed, number of overflows and maximum flow overflowed are reduced.
Regarding the percentage of discharge denials obeyed (%IO), we can note that in
Table 3.2, that is, without robustness, the values are lower than in the previous
scenario; instead, in the robust approach the values remain almost as high as
then. Nevertheless, here again it is not clear the differences produced by different
risk attitudes in the plant.

Penalty policy

It should be noted that the robustness mechanism may induce the agents to
disobey, as doing so they are going to be always authorized by a risk-averse auc-
tioneer. To avoid such a situation another mechanism should be incorporated
to the system. Different mechanisms to achieve that have already been studied,
as for example the addition of fines (or penalties) [SL02] to be paid whenever an
agent does not obey the decision of the coordinator; another method would be
to stipulate a deposit to be paid for the participants before beginning the coor-
dination, and returned later only to the ones that have obeyed the coordinator.
However, the price of these fines or deposits should be studied in more detail
in order to make it not too cheap so an agent would prefer to pay it instead of
obeying the coordinator, neither too expensive so that a poor agent would have
more problems than a rich one to pay it.
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Disobey Risk NO MFO VO IO
No * 58 6590 5.47·106 96.77

0
0

77.70
(3.68)

14225
(1212)

11.8·106

(205150)
96.69
(1.57)

0.5
82.5

(7.66)
15110
(997)

11.9·106

(199074)
96.66
(0.16)

1
81.2

(4.44)
14018
(1596)

11.8·106

(133988)
96.68
(0.18)

0.1
0

109.50
(3.95)

14150
(1310)

13.6·106

(242619)
95.19
(0.17)

0.5
113.5
(5.5)

13708
(1040)

13.6·106

(445501)
95.16
(0.37)

1
110.9
(8.16)

14522
(1571)

13.6·106

(338985)
95.31
(0.29)

Table 3.4: Second environment (one industry always disobeying), with both
coordination and robustness.

3.3 Design of an efficient algorithm for the WDP
of combinatorial auctions

We have seen in chapter 2 three ways to solve a combinatorial auction. For ex-
ample we can use general purpose optimization algorithms such as backtracking,
branch and bound, etc. We also have specific algorithms to solve combinatorial
auctions like CASS and CABOB. We finally showed that Integer Programming
(IP) could be used as well to solve this kind of problems and concluded that
although in some (few) concrete cases those specific algorithms perform better,
IP is nowadays the most used method. An important drawback of IP Solvers
is that they are usually commercial packages with an expensive economic cost.
However there also exist free open source IP solvers available publicly, being the
most used GLPK (Gnu Linear Programming Kit).

In this section we present CABRO, an efficient algorithm for solving the win-
ner determination problem related to combinatorial auctions. It uses a new large
variety of simplification techniques, together with upper and lower bounding
methods combined with dynamic bid ordering heuristics. Experiments against
current methods show that CABRO is in average the fastest free solver (i.e. not
including CPLEX), and in some hard instances drastically faster than any other
solver.

The idea is to extend in the future this fast solver to solve also multi-unit
combinatorial auctions, and to make it suitable for dealing with robustness.
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3.3.1 Notation

Here we introduce a few notation that is going to be used through this paper.
In a combinatorial auction the auctioneer receives a set of bids B = {b1, ..., bn},
each of them composed by a price p(bi) and a subset of items g(bi) of size n(bi)
(such that n(bi) = |g(bi)|). The complete set of items is I = {it1, ..., itm}.

Useful relations between bids include b(iti) as the set of bids that contain the
item iti, and C(bi) as the set of bids compatible with bid bi (i.e. the set of bids
that do not contain any item in g(bi)). Additionally, C(bi, bj) and ¬C(bi, bj)
represent whether bids bi and bj are compatible or incompatible.

3.3.2 The Algorithm

CABRO (Combinatorial Auction BRanch and Bound Optimizer) is mainly a
branch and bound depth-first search algorithm with a specially significative
procedure to reduce the size of the input problem. The algorithm is basically
divided in three main phases:

• The first phase performs a fast preprocessing step with the aim of re-
moving as many bids as possible. Bids removed in this phase may be
either bids that are surely not in the optimal solution, or bids that surely
are. To decide which bids to remove, the algorithm uses different criteria,
explained below.

• The second phase consists in calculating upper and lower bounds for each
bid. In order to compute the upper bound for a given bid, a relaxed
linear programming problem (LP) is formulated and solved using linear
programming techniques. Then the upper bound of the bid is computed
generating a solution quickly containing it. This phase may also remove
a notable amount of bids.

• The third phase completes the problem by means of search, concretely a
branch and bound depth first search. This phase uses also linear program-
ming techniques as heuristic and for pruning the search space.

In some instances it is not necessary to execute all the three phases of the
algorithm, for example when the optimal solution is already found before the
search phase (it happens more usually than expected). The algorithm is able to
end prematurely either when all of the bids have been removed or when at some
point of the execution the global lower bound reaches the global upper bound.

This algorithm also provides anytime performance, giving the possibility to
be stopped at any time during the execution and providing the best solution
found so far.

In the following sections each of the three phases of the algorithm are ex-
plained in detail.
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3.3.3 First phase: Preprocessing

This phase uses fast algorithms (with polynomial-time complexity) to reduce
the size of the problem by deleting bids and items that either cannot be present
at the optimal solution or that surely belong to it. This phase consists of 8
separate strategies (steps), each of them using a different criteria to remove
either bids or items.

• Step 1: Bids with null compatibility. In this step all the bids that
do not have any compatible bid are deleted, except for the bid with the
highest price bh. These bids are surely not in the optimal solution since
the maximum benefit of a solution containing any of them would be its
own price, yet it still does not surpass the price of the bid bh.

• Step 2: Dominated items. Items give information about incompatible
bids. Still in some cases the information given by an item is already
included into another’s: the item is dominated. Then, the former can be
removed without any loss of information. Hence, this step deletes (leaves
out of consideration) dominated items.

More formally, for each pair of items (it1, it2) such that b(it1) ⊆ b(it2),
it1 may be deleted from the problem since the information given by it1
is redundant. Figure 3.6 (a) shows an example of this situation; here
item it1 can be deleted since the information given by it1 (¬C(b2, b3)) is
already included in the information given by it2 (¬C(b1, b2), ¬C(b2, b3)
and ¬C(b1, b3)).

• Step 3: Bids of the solution. In some instances there may exist bids
such that all of its items are unique (the bid is the only one containing
them), and therefore the bid does not have any incompatible bid. In such
situations the bid is surely part of the optimal solution.

This step finds all the bids complying with this condition, adding them to
the optimal solution and being removed from the remaining set of bids.
Figure 3.6 (b) shows an example of this situation, where bid b1 is added
to the optimal solution given that its item i1 is unique.

It 2

It 1 It 2

b1

b2

It 1 It 2b3

It 1

It 2 It 3

b1

b2

It 2 It 4b3

(a) (b)

Figure 3.6: Examples of (a) dominated item (it1) and (b) solution bid (b1).
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It 1 It 2

It 1 It 2 It 3

b1

b2

30

20

It 1

It 1 It 2 It 3

b1

b3

15

20

It 215

b2

(a) (b)

Figure 3.7: Example of (a) dominated and (b) 2-dominated bids. In (a) b1

dominates b2, and in (b) b3 is dominated by the union of b1 and b2.

It 3

It 1 It 2

b3

b2

It 1 It 2b1

It 3

It 430

50

10

Figure 3.8: Example of pseudo-dominated bid (b1 is pseudo-dominated).

• Step 4: Dominated bids. This is the same pre-processing step that
CASS [FLBS99] and CABOB [SSGL01] perform: the elimination of dom-
inated bids. A bid is dominated by another when its set of items includes
another bid’s items and its price is lower. More formally, for each pair of
bids (bi, bj) where g(bi) ⊆ g(bj) and p(bi) ≥ p(bj), bj may be removed as it
is never preferable to bi. Figure 3.7 (a) shows an example of a dominated
bid (b1 dominates b2).

• Step 5: 2-Dominated bids. This is an extension of the previous tech-
nique, checking whether a bid is dominated by a pair of bids. In some
cases a bid is not dominated by any single bid separately, but the union
of two bids together (joining items and adding prices) may dominate it.
Figure 3.7 (b) shows an example of a 2-dominated bid (the union of b1

and b2 dominates b3).

This step can be easily generalized to check n-dominated bids. However,
the probability of a bid being dominated by n bids is very low for higher
values of n, still requiring much more processing (finding all subsets of
size n), so this generalization is not useful at all for n > 2.

• Step 6: Pseudo-dominated bids. This step is a quite more complex
generalization of the dominating techniques. Here we deal again with pairs
of bids (bi, bj) such that not all of the items in bi are contained in bj , but
there is one single item itk not included. In this situation the bid bi can
be removed only if adding to its price the price of its best (highest price)
compatible bid containing item itk is not higher than the price of the bid
bj .

In such a situation bj is always preferable to bi even when taking bj to-
gether with its best compatible bid; therefore bi does definitely not belong
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{1} function lowerBound(b)
{2} C ← compatible(b)
{3} s ← p(b)
{4} sort(C)
{5} while C is not empty do
{6} x ← first(C)
{7} s ← s + p(x)
{8} C ← C

⋂
compatible(x)

{9} end-while
{10} return s

Figure 3.9: Pseudo-code algorithm of lower bound function

to the optimal solution and might be removed.

Figure 3.8 illustrates this situation: here b2 pseudo-dominates b1 since its
price (50) is higher than the sum of bid b1’s price (30) plus the price of its
best compatible bid containing the item it3, in this case b3 (10), therefore
b1 can be removed.

Again, this step can be generalized to check for bids with more than one
item not included. Unfortunately, like in the previous case, the compu-
tational cost required together with the reduced rate of success dissuades
this extension.

• Step 7: Upper and lower bound values. In this step, fast upper
and a lower bounds are assigned to each bid with the aim of deleting bids
with its upper bound lower than a global lower bound (GLB)2, since they
cannot improve the best solution already found.

The upper bound u of a bid bx is calculated according to Equation 3.5
where C ′(bx, itk) is the set of compatible bids of bx including item itk.

u(bx) = p(bx) +
∑

∀i/∈g(bx)

max
∀j∈C′(bx,itk)

p(bj)
n(bj)

(3.5)

Roughly, it computes the upper bound of a bid bi by adding to its price
the best possible prices of the bids containing the items not included in
g(bi).

After that, the lower bound of the bids is then calculated with the algo-
rithm shown in figure 3.9, which roughly constructs a solution of a bid by
iteratively attempting to add all of its compatible bids to the solution. Its
compatible bids are ordered in descending order according to the upper
bound previously calculated (line 4 of the algorithm).

2The global lower bound (GLB) is the best (maximum) lower bound found, associated to
a valid solution.
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b1

b2

b3
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Figure 3.10: Example of compatibility-dominated bid (b2 is compatibility-
dominated by b1).

All the solutions obtained with this algorithm are valid solutions and up-
date the GLB accordingly. Note that GLB actually stores the best so-
lution to the problem found so far (although it may not be the optimal
one), therefore it can be returned immediately if the user decides to stop
de execution, thus providing anytime performance.

• Step 8: Compatibility-Dominated bids. This step is another general-
ization of dominated bids. A bid bi is compatibility-dominated by another
bid bj if the set of compatible bids of bi is a subset of the set of compatible
bids of bj and its price is lower.

More formally, for each pair of bids (bi, bj) where C(bi) ⊆ C(bj) and
p(bi) ≥ p(bj), bj may be removed as it is never preferable to bi. Figure 3.10
shows an example where b2 is not dominated by b1 but it is compatibility-
dominated.

Once all of these steps have been executed, since the problem has changed,
it may be the case that some bids and items previously undeleted can now
be removed. For example the deletion of a bid may cause the appearance of
dominated items and vice-versa. Therefore phase 1 is repeated until it does not
remove any more bid or item.

3.3.4 Second phase: Upper and Lower Bounding

In the second phase, the algorithm calculates improved upper and lower bounds
for each bid. In order to compute the upper bound for a given bid bi, a relaxed
linear programming (LP) problem is formulated. This relaxed formulation de-
fines the bids in such a way that they can be accepted partially (a real number
in the interval [0, 1]), therefore it can be solved using the well-known simplex
algorithm [Dan56], which solves almost every instance in polynomial-time. The
relaxed version does not contain the current bid bi neither none of the bids with
items included in bi (i.e. its incompatible bids). Adding the price of the bid
bi to the solution of the relaxed LP problem gives a new upper bound that is
usually much more precise than the one obtained in step 7 of phase 1.
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This step firstly performs an ordering of the bids according to the upper
bound value calculated in step 7 of phase 1 in ascending order. Then the process
of calculating new upper bounds using the simplex method starts with the bid
with the lower upper bound, and each time a bid’s upper bound is lower that
the GLB, it is deleted, thus decreasing the size of the subsequent bids’ simplex.
Note that the chosen ordering, beginning with the “worst” bids, may seem
inappropriate, but this is in fact a good strategy since the worst bids’ upper
bounds are usually much faster to compute than the “best”, hence we quickly
obtain accurate upper and lower bounds that may allow to remove lots of bids
rapidly, thus decreasing the size of the problem and making “best” bids also
faster to be computed. This fact has been verified experimentally.

Regarding the lower bound for each bid bi, it is computed using the values
returned by the LP solver, and updates the GLB accordingly. The solution is
constructed by firstly considering any value greater than 0.5 to be actually 1;
that is, part of the solution. This assumption is not inconsistent (it does not
produce solutions containing incompatible bids) because compatible bids are
restricted to sum at most 1, therefore two incompatible bids cannot have both
values larger than 0.5. After that, the remaining bids (with values smaller or
equal to 0.5) are attempted to be put into the solution in descending order. Of
course if the solution of the LP was integer this process is not required, as it is
the optimal solution for that bid.

3.3.5 Third phase: Search

The third phase (iCabro) performs a branch-and-bound depth-first search with
the remaining bids of the previous phases (L). The full algorithm can be seen
in Figure 3.11. The value of the best solution found so far (GLB) is stored in
the global variable bSolution. Initially bSolution=0, and the search starts by
calling iCabro(L,0).

The iCabro procedure processes the incoming list of bids L performing the
following steps:

• The algorithm begins getting the first bid b of the list L (recall that L is
sorted according to the upper bound computed in phase 2). A new list L2
is created as the intersection between L and C(b) (compatible bids of b).
In deeper nodes (as it is a recursive function) the set L2 represents the
compatible bids with the current solution.

• After that, the algorithm formulates and solves the Linear Programming
(LP) problem related to the current solution. If the result of the LP
problem is integer then the algorithm finishes (prunes) the current branch,
as the optimal solution of the branch has been found.

• At line 10 the algorithm verifies if the upper bound of the current solution
is greater than the GLB (the best solution found so far). If this is the
case the search continues through this branch updating the best current
solution if necessary. Otherwise, the branch is pruned.
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{1} procedure iCabro(L,cSolution)
{2} for each element b of L
{3} L2 ← L

⋂
compatible(b)

{4} cSolution2 ← cSolution
⋃

b
{5} LPSol ← simplex(cSolution2)
{6} if LPSol is integer then
{7} cSolution2 ← cSolution2

⋃
LPSol

{8} L2 ← ∅
{9} end-if
{10} if v(LPSol) > v(bSolution) then
{11} if v(cSolution2) > v(bSolution) then
{12} bSolution ← cSolution2
{13} end-if
{14} if L2 is not empty then
{15} sort(L2)
{16} iCabro(L2, cSolution2)
{17} end-if
{18} end-if
{19} end-for
{20} end-procedure

Figure 3.11: Pseudo-code algorithm of iCabro procedure

• At line 14 the algorithm verifies that the L2 set is not empty, given that
if it is empty then it means that the current solution does not have any
more compatible bids and consequently the branch can be pruned. Al-
ternatively, if this condition does not happen, then the following action is
to sort the list L2 according to the upper bound of each bid, in order to
perform a recursive call to iCabro with the list L2.

3.3.6 Experiments

To evaluate the CABRO algorithm we have compared it against both specific
algorithms and MIP solvers. We have chosen CASS for the specific solver instead
of CABOB because although their authors claim that it outperforms CASS, it
is not available publicly, neither for academic research purposes. For the MIP
solver, both GLPK (free) and CPLEX 10.1 (commercial) have been tested.

Test examples have been generated using the popular benchmark for combi-
natorial auctions CATS (Combinatorial Auctions Test Suite) [LBPS00]. Since
its first release in 2000, the CATS suite has become the standard tool to eval-
uate and compare WDP algorithms [SSGL01, PCS06]. It generates realistic
combinatorial auction instances, following a set of real-world situations as well
as many previously published distributions (called legacy) [LBPS00, LBNS02].
Given a required number of goods and bids, all the distributions select which
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goods to include in each bid uniformly at random without replacement.
For most of the real-world distributions a graph is generated representing

adjacency relationships between goods, and it is used to derive complementar-
ity properties between goods and substitutability properties for bids. Two of
them concern complementarity based on adjacency in (physical or conceptual)
space, while the others concern complementarity based on correlation time. The
characteristics of each distribution are the following [LBPS00]:

• Paths (PATHS). This distribution models shipping, rail and bandwidth
auctions. Goods are represented as edges in a nearly planar graph, with
agents submitting a set of bids for paths connecting two nodes.

• Arbitrary (ARB). In this distribution the planarity assumption is relaxed
from the previous one in order to model arbitrary complementarities be-
tween discrete goods such as electronics parts or colectables.

• Matching (MAT). This distribution concerns the matching of time-slots
for a fixed number of different goods; this case applies to airline take-off
and landing rights auctions.

• Scheduling (SCH). This distribution generates bids for a distributed job-
shop scheduling domain, and also its application to power generation auc-
tions.

The legacy distributions are the following [LBPS00]:

• L1, the Random distribution from [San02], chooses a number of items uni-
formly at random from [1,m], and assigns the bid a price drawn uniformly
from [0, 1].

• L2, the Weighted Random distribution from [San02], chooses a number
of items g uniformly at random from [1, m] and assigns a price drawn
uniformly from [0, g].

• L3, the Uniform distribution from [San02], sets the number of items to
some constant c and draws the price offer from [0, 1].

• L4, the Decay distribution from [San02] starts with a bundle size of 1,
and increments the bundle size until a uniform random drawn from [0, 1]
exceeds a parameter α.

• L5, the Normal distribution from [HB00], draws both the number of items
and the price offer from normal distributions.

• L6, the Exponential distribution from [FLBS99], requests g items with
probability C·e−g/q, and assigns a price offer drawn uniformly at random
from [0.5g, 1.5g].
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• L7, the Binomial distribution from [FLBS99], gives each item an indepen-
dent probability of p of being included in a bundle, and assigns a price
offer drawn uniformly at random from [0.5g, 1.5g] where g is the number
of items selected.

We have also created a new distribution called TRANSPORTS (TRANS)
based on the second example application domain introduced in chapter 1.1,
the road transportation optimization. The problem roughly consists of finding
the best assignment of available drivers to a set of requested services given a
cost function and subject to a set of constraints (see [?] for more details). To
model this problem as an auction the bids represent journeys (a set of services)
associated with a driver, therefore its items represent the services performed as
well as the driver used. Note that the original problem consists in minimizing the
final cost of doing all the services, while an auction is concerned on maximizing.
Therefore, the costs associated to the bids are appropriately transformed so that
the maximized solution corresponds to the real (minimizing) solution.

3.3.7 Results

We have generated 100 instances of each distribution with different amounts of
bids and items. Each instance has been solved using CABRO, CASS, GLPK 4.9
and CPLEX 10.1 with a timeout of 300 seconds. The first three methods have
been run in a 2.4GHz Pentium IV with 2Gb of RAM running under Windows
XP SP2, whilst CPLEX has been run on a 3.2GHz Dual-Core Intel Xeon 5060
machine with 2 Gb of RAM running under GNU/Linux 2.6.

Results for each distribution

Figure 3.12 shows the results of each method on distribution L1 (the random
distribution). In this distribution CPLEX gets the best results since it solves
all the instances, while CABRO fails as the number of items increases. On the
other hand GLPK is surprisingly getting the worst results although it uses MIP
like CPLEX; even CASS is performing better, yet not as good as CABRO, both
far from CPLEX.

In distribution L2, CABRO is clearly the best method as it can be seen in
Figure 3.13. In this distribution CASS is the second best method, performing
even better than CPLEX, and leaving GLPK at the last position. It is over-
whelming the efficiency of CABRO, given that the increase of execution time as
the number of items and bids augments is imperceptible.

The results of distribution L3 can be seen in Figure 3.14. Here, CPLEX is
the best method, followed closely by GLPK, at some distance CABRO and lastly
CASS obtaining the worst results as it only solves 3 instances. Note that in this
distribution, opposedly to L2, the complexity augments as the number of items
increases but the number of bids decreases, while in L2 (and the majority of
distributions) the complexity augments when both items and bids are increased.

In L4, CPLEX and GLPK are clearly the best solvers, as it can be observed
in Figure 3.15. Their execution times are always very low, while CABRO finds
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Figure 3.12: L1 Distribution.
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Figure 3.13: L2 Distribution.
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Figure 3.14: L3 Distribution.
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Figure 3.15: L4 Distribution.
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Figure 3.16: L5 Distribution.
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Figure 3.17: L6 Distribution.
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Figure 3.18: L7 Distribution.
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Figure 3.19: Arbitrary Distribution.
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Figure 3.20: Matching Distribution.
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Figure 3.21: Paths Distribution.
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Figure 3.22: Scheduling Distribution.

 5  10  15  20  25  30  35  40  45  50 5
 10

 15
 20

 25
 30

 35
 40

 45
 50

 0

 50000

 100000

 150000

 200000

 250000

 300000

Cabro
Cplex

Bids

Items
 5  10  15  20  25  30  35  40  45  50 5

 10
 15

 20
 25

 30
 35

 40
 45

 50

 0

 50000

 100000

 150000

 200000

 250000

 300000

Cass
Glpk

Bids

Items

Figure 3.23: Transports Distribution.
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difficulties to solve the instances with a large number of items. Here, CASS only
solves the instances with a very few number of items.

Regarding distribution L5, shown in Figure 3.16, again CPLEX is the best
method, followed by GLPK and CABRO, whilst CASS is the last once more.
A similar situation occurs in the next distribution L6, shown in Figure 3.17.
However, in that distribution CASS and CABRO obtain practically the same
results.

A completely different situation happens in distribution L7, shown in Figure
3.18. Here, CABRO is far more efficient than any other method, being able to
solve all the instances in very little time, whereas CPLEX and GLPK fail to
solve the majority of the cases. In this distribution CASS obtains the second
position, still far from CABRO.

With regard to the other set of distributions, we can observe in Figure 3.19
that in the arbitrary (ARB) distribution, there is not a clear winner, given that
the differences are not as big as in the other distributions. However, in absolute
results, CPLEX obtains the first position followed by CASS, GLPK and finally,
CABRO. This is the one and only distribution in which CABRO gets the last
position.

Instead, in the matching (MAT) distribution, shown in Figure 3.20, the
LP-based solvers CLPEX and GLPK are clearly superior to CABRO and still
more than CASS. In this distribution, like in L3, the most difficult instances are
curiously the ones having lots of items but few bids.

In the paths (PAT) distribution shown in Figure 3.21, CPLEX is obtaining
the best results, followed closely by GLPK, at some distance CABRO and CASS
far away.

Conversely, in the scheduling (SCH) distribution shown in Figure 3.22, both
CPLEX and CABRO are getting the best results, still CPLEX seems slightly
faster than CABRO. GLPK is the third best and CASS the worst.

Finally, Figure 3.23 shows the results in the transports (TRANS) distribu-
tion. In this distribution, CLPEX and GLPK obtain the best results, followed
by CABRO, and ultimately CASS which requires much more processing than
the other methods.

Overall results

Figure 3.24 shows the total time (in seconds) required for each method to solve
all the instances of all the distributions. Here we can observe that CPLEX is
in average the fastest solver since it solves all the instances (1167 auctions) in
considerably less time than CABRO. Recall that the machine used for CPLEX
is considerably faster than the one used for the others; however, we believe
that the results in equal machines would not change significantly. Yet CABRO
spends less time than the free solvers GLPK and CASS.

Figure 3.25 shows the results in each of the distributions comparing the total
time required (in seconds) to solve all the instances of each distribution with
the four methods. Note that in the cases in which the execution time is very
little the bar is not visible. Here we can observe that in two distributions (L2
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Figure 3.24: Overall comparative.
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CABRO CASS GLPK CPLEX
S ¬S S ¬S S ¬S S ¬S

L1 74 21 67 28 39 56 95 0
L2 100 0 90 10 7 93 50 50
L3 54 46 3 97 84 16 98 2
L4 91 9 22 78 100 0 100 0
L5 41 59 23 77 61 39 90 10
L6 46 55 46 54 70 30 100 0
L7 100 0 68 32 0 100 15 85

ARB 71 29 86 14 81 19 99 1
MAT 83 17 0 100 100 0 100 0

PATHS 45 27 1 71 72 0 72 0
SCH 98 2 9 91 84 16 100 0

TRANS 97 3 24 76 100 0 100 0
TOTAL 899 268 439 728 798 369 1019 148

Table 3.5: Solved (S) and unsolved (¬S) problems before the timeout.

and L7) CABRO is clearly the best algorithm, while CPLEX is the best in the
remaining distributions.

Regarding the free solvers, GLPK is the best solver in the majority of distri-
butions, still CABRO outperforms GLPK in L1, L2, L7 and SCH. CASS is only
rather competitive in L1, L2, L7 and ARB distributions, although achieving the
best performance in the latter.

Table 3.5 shows the number of problems solved (S) and not solved (¬S) be-
fore the timeout, for each method and each distribution. The results are similar
to the execution time results, with CPLEX being the best method in abso-
lute results, as it solves up to 1019 instances (87%). However, CABRO solves
899 instances (77%) and in two distributions it performs better than CPLEX.
Therefore, there is not any method that can be claimed to be the best, since
it depends on the kind of data that the auction is processing. Particularly,
CABRO is performing better for the weighted random and binomial distribu-
tions, solving 100% of the instances, while CPLEX only solves 15% in L7 and
50% in L2.

3.4 Conclusions

In the state of the art chapter we realized that there was not so much work
concerned with adding proactive robustness to combinatorial auctions. To fill
the gap, we have designed a robustness mechanism to be used in this kind of
auctions. Moreover, it is general enough to be used on any kind of auctions and
furthermore any problem related to resource allocation. The proposed mech-
anism is concerned mainly with preventing possible overuses in the resources
caused by disobeying users. This approach has been applied in a real-world
problem obtaining the expected results.

Additionally, a new efficient algorithm for solving combinatorial auctions
has been implemented with the idea of being used in the robustness auction
resolution. This algorithm uses many simplification techniques, together with a
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smart heuristic function that provides more pruning. From the tests performed
we observe that this algorithm outperforms in average the best current free
solvers and in some instances even the best comercial solvers.
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Chapter 4

Thesis planning

4.1 Summary

In the previous chapter we have presented a robustness mechanism for recur-
rent combinatorial auctions together with a new efficient winner determina-
tion algorithm. In this initial proposal the robustness mechanism is focused
in creating a robust solution according to the risk attitude of the auctioneer
and it works in a real-world scenario as we have seen in the results. However a
deeper study and analysis is needed in order to improve this mechanism so it
can be more extensively used.

Regarding the winner determination algorithm, its results are encouraging
since it outperforms in average the best actual free solvers. However there are
some concrete distributions where the algorithm is inefficient and more work
can be done to improve this. Furthermore the algorithm only deals with combi-
natorial auctions of single items, and an extension to multi-unit auctions would
be useful since as we have seen in the state of the art chapter, there are not so
many specific algorithms for this kind of auctions.

The following sections describe in more detail the work that should be done
during the thesis period:

4.1.1 Robustness mechanism

The robustness mechanism has been designed in such a way that different risk
attitudes should produce different outcome. However, we have not noticed sig-
nificant changes in the results of the case study when varying the risk attitude of
the treatment plant from risk-averse to risk-proclive. Maybe this case study is
not appropriate to deal with different risk attitudes or maybe the risk function
should be fixed. Therefore, further work needs to be done on this matter.

The presented trust model considers tasks with different characteristics in-
dependently. This feature needs to be improved as in problems where the tasks
characteristics were too dynamic it would be useless as there would never be
two identical tasks. One option to overcome this problem could be to consider
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fuzzy tasks characteristics, so that two tasks with slight different characteristics
would share the trust values.

Another important aspect to take into account is that the robustness mech-
anism may induce the agents to disobey, as doing so they are going to be always
authorized by a risk-averse coordinator. To avoid such a situation another mech-
anism should be incorporated to the system. Different mechanisms to achieve
that have already been studied, as for example the addition of fines (or penal-
ties) to be paid whenever an agent does not obey the decision of the coordinator
[SL02]; another method would be to stipulate a deposit to be paid for the par-
ticipants before beginning the coordination, and returned later only to the ones
that have obeyed the coordinator. However, the price of these fines or deposits
should be studied in detail in order to make it not too cheap so an agent could
still be willing to pay if the benefit of unlawfully using a resource is higher than
the penalty for doing so, neither too expensive so that a poor agent would have
more problems than a rich one to pay it.

4.1.2 Winner determination algorithm

The presented winner determination algorithm is very efficient in some distri-
butions. Nevertheless, it is not so efficient in others as there are distributions
in which other solvers are drastically faster than ours. In such cases we believe
that it is possible to create new techniques to improve the performance of our
algorithm on those distributions.

In fact, we have already devised new reduction strategies roughly based on
finding an upper bound drawn from a concrete lower bound (a valid solution),
obtaining much better estimations than those obtained in the first phase of the
algorithm that estimates using only a single bid. Additionally, other sorting
criteria to obtain better lower bounds could be examined.

We also plan to integrate the pre-processing phases into the search phase,
so that at each node of the tree the reduction phases would be done on each
sub-problem. We expect that these concrete changes may significantly improve
the overall algorithm performance.

Another interesting point would be to extend this algorithm to deal also with
multi-unit combinatorial auctions, since as we have seen in Chapter 2 there are
not many specific algorithms for this kind of auctions.

Finally, we also would want to study other criteria to evaluate the algo-
rithm as we have dealt only with the execution time. Other indicators, such
as the anytime behavior and the memory consumption could be studied, since
concretely the latter is a known drawback of MIP solvers.

4.1.3 Case studies

So far we have only tested the robustness mechanism within the waste water
treatment system domain. Furthermore, we have used only one restriction: the
hydraulic capacity constraint. Therefore, two different areas should be explored:
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• Firstly, extend the waste water treatment problem to deal with the con-
taminants levels restrictions. This will turn the internal auction to a
multi-unit combinatorial auction, which should be solved with the previ-
ously explained planned multi-unit version of the CABRO algorithm.

• The research should also be done in other domains, as for example the
road transportation domain presented in Section 1.1.

The evaluation of the algorithms for the waste water treatment problem has
been done comparing the results in different pre-defined scenarios with and with-
out coordination, with and without robustness, and varying the risk attitude
of the auctioneer. However, a comparison against the best possible solution to
the problem (obtained for example using a centralized approach) has not been
considered and it would be interesting as it would help to extract more objective
conclusions about our methods.

4.2 Schedule

Figure 4.1 shows an approximate schedule to elaborate the thesis within two
years.

time

Robustness

Cabro

General

R1 R2 R3 R4

C1 C2 C3

I I W

2 years1 year

Figure 4.1: Thesis time schedule.

Our work will include alternatively enhancements on the robustness mech-
anism and improvements on the winner determination algorithm. Next we ex-
plain each of the tasks in the two areas.

Work on the robustness mechanism:

• R1. Duration: 5 months. Study and test with new case studies.

• R2. Duration: 4 months. Address the risk attitudes issue.

• R3. Duration: 4 months. Development of a fuzzy algorithm to deal with
task characteristics.

• R4. Duration: 5 months. Study penalties policies.
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Work on the winner determination algorithm:

• C1. Duration: 6 months. Study new reduction strategies and heuristics
to improve overall efficiency.

• C2. Duration: 6 months. Integration of the two pre-processing phases
into the search phase.

• C3. Duration: 6 months. Extension to multi-unit combinatorial auctions.

General work:

• I. Duration: 2 months. Integration of the robustness mechanism with the
winner determination algorithm.

• W. Duration: 4 months. Write the thesis.

In the course of time, various papers will be written and published with the
obtained results in national and international conferences and journals.
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Chapter 5

Contributions

The work developed in the last two years within the eXiT group1 at the Univer-
sity of Girona has led to several publications in the field of Artificial Intelligence.
Although some of them have not specifically focused on robustness, they consti-
tute an indicator of the acquired knowledge concerning optimization problems,
mainly combinatorial auctions.

5.1 Articles in conferences

• Vı́ctor Muñoz, Javier Murillo, Dı́dac Busquets and Beatriz López. Im-
proving Water Quality by Coordinating Industries Schedules and Treat-
ment Plants. AAMAS Workshop on Coordinating Agent Plans and Sched-
ules (CAPS). Honolulu, Hawaii, USA. May 16-18, 2007.

• Javier Murillo, Vı́ctor Muñoz, Beatriz López and Dı́dac Busquets. Dy-
namic configurable auctions for coordinating industrial waste discharges.
Fifth German conference on Multi-Agent System Technologies MATES.
Leipzig, Germany. September 24-26, 2007.

• Javier Murillo, Vı́ctor Muñoz, Dı́dac Busquets and Beatriz López. Co-
ordinating Agents’ Schedules through Auction Mechanisms. Planning,
Scheduling and Constraint Satisfaction, The Conference of the Spanish As-
sociation for Artificial Intelligence (CAEPIA). Salamanca, Spain. Novem-
ber 12-16, 2007.

• Javier Murillo and Victor Muñoz. Agent UNO: Winner in the 2007
Spanish ART Testbed competition. Workshop on Competitive agents in
Agent Reputation and Trust Testbed, The Conference of the Spanish Asso-
ciation for Artificial Intelligence (CAEPIA). Salamanca, Spain. Novem-
ber 12-16, 2007.

1Control Engineering and Intelligent Systems Group
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• Josep Llúıs de la Rosa, Ricardo Mollet, Miquel Montaner, Daniel Ruiz and
Vı́ctor Muñoz. Kalman Filters to Generate Customer Behavior Alarms.
Artificial Intelligence Research and Development, 10th Catalan Congress
on Artificial Intelligence CCIA 07. Sant Julià de Lòria, Andorra. October
25-26, 2007.

• Vı́ctor Muñoz, Miquel Montaner and Josep Llúıs de la Rosa. Seat Allo-
cation for Massive Events Based on Region Growing Techniques. Artificial
Intelligence Research and Development, 9th Catalan Congress on Artificial
Intelligence CCIA 06. Perpignan, France. October 26-27, 2006.

5.2 Articles in conferences (submitted)

• Vı́ctor Muñoz, and Dı́dac Busquets. Managing Risk in Recurrent Auc-
tions for Robust Resource Allocation. Submitted to ECAI 2008.

• Vı́ctor Muñoz, and Javier Murillo. CABRO: Winner Determination
Algorithm for Combinatorial Auctions. Submitted to ECAI 2008.

• Vı́ctor Muñoz, and Javier Murillo. Improving Waste Water Treatment
Quality through an auction-based management of discharges. Submitted
to IEMSS 2008.

• Miquelo Bofill, Vı́ctor Muñoz, and Javier Murillo. A Comparison of
Techniques for solving the Waste Water Treatment Problem. Submitted
to AAAI 2008.

5.3 Journals

• Vı́ctor Muñoz, Javier Murillo, Dı́dac Busquets and Beatriz López. Sched-
ule Coordination through Recurrent Multi-Unit Combinatorial Auctions
(Extended version of the CAPS workshop paper). Multiagent and Grid
Systems. An International Journal. Under review.

• Beatriz López, Vı́ctor Muñoz, Javier Murillo, Federico Barber, Miguel
A. Salido, Montserrat Abril, Mariamar Cervantes, Luis Fernando Caro
and Mateu Villaret. Experimental Analysis of optimization techniques on
the road passenger transportation problem. Engineering Applications of
Artificial Intelligence (EAAI) Journal. Under review.

• Javier Murillo and Vı́ctor Muñoz. Agent UNO: Winner in the 2007
Spanish ART Testbed competition. Ibero-American Journal of Artificial
Intelligence. To appear in 2008.
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5.4 Awards

• Winner in the Second Spanish ART (Agent Reputation and Trust) Testbed
Competition. Valencia, Spain. March 26-27, 2007.

• 7th classified in the 2007 International ART (Agent Reputation and Trust)
Testbed Competition. Honolulu, Hawaii, USA. May 14-18, 2007.

• 2006 Catalan Association for Artificial Intelligence (ACIA) Award to the
best final career project 2006. Project title: Allocation algorithm for
distributing attendants at F1 Grands Prix.
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P. Sousa. Issues in multiagent resource allocation. Informatica,
30:3–31, 2006.

[Cer85] V. Cerny. A thermodynamical approach to the travelling salesman
problem: an efficient simulation algorithm. Journal of Optimization
Theory and Applications, 45:41–51, 1985.

[Cer87] V. Cerny. Tabu search methods in artificial intelligence and opera-
tions research. ORSA Artificial Intelligence, 1, No. 2, 6, 1987.

[CK95] P. Crescenzi and V. Kann. A compendium of np optimization
problems. Technical report SI/RR-95/02, Dipartimento di Scienze
dell’Informazione, Università di Roma ”La Sapienza”, 1995.
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