
Managing Risk in Recurrent Auctions
for Robust Resource Allocation

Victor MUÑOZ and Dídac BUSQUETS
{vmunozs,busquets}@eia.udg.es

University of Girona

Abstract. Auctions can be used to solve resource allocation problems where tasks
have to be assigned to resources in such a way that no resource gets overused and
an objective function is optimized. In some cases a robust solution is preferable to
the optimal solution as it may still be applicable even if unexpected changes in the
environment occur. In this paper we present a robustness mechanism for auctions,
producing feasible and near optimal solutions even if non-planned events occur.
The proposed mechanism has been used in a real problem obtaining successful
results.

Keywords. Robustness, auctions, resource allocation

1. Introduction

The problem of resource allocation is present in many real-world applications, ranging
from assigning memory and computing power to processes, to distributing tasks to ma-
chines in a factory, or selecting the personnel to carry out a set of tasks, among many
others. This problem is a particular case of Constraint Optimization Problems, in which
a set of resources has to be assigned to a set of agents (which represent the entities that
need to use the resources). As an optimization problem, the goal of the solvers is to find
the optimal solution. That is, the solution has to fulfill a set of constraints (usually regard-
ing the resources), while maximizing or minimizing a given objective function (such as
cost, revenue, makespan, etc.). However, sometimes obtaining the optimal solution is not
the best choice, since it could fail in case the environment changed (a machine breaking
down, a process taking longer than expected, etc.). In such cases, it would be much better
to have a robust solution that could still be applicable even if unexpected events occurred.
Obviously, the price of robustness is optimality [2], since usually a robust solution will
be suboptimal. Therefore, there is a need of balancing the optimality and the robustness
of the solutions.

In some scenarios the resources are shared and the assignments are only valid for
a given period of time, after which the resources must be reallocated. Therefore, the
allocation process is continuously repeated over time with the same set of agents. In
real environments, for instance an industrial one, the access to the resources is vital for
carrying out the production activity of the agents. Thus, it could happen that some agent
tries to use more resources than those it was assigned, or even use some that were not



actually assigned to it. This would cause an overuse of the resources, and the rest of the
agents would be negatively affected.

One approach to solve this disobedience problem is to impose penalties or fines
for not abiding by the allocation outcome [12]. However, even with such a mechanism,
an agent could still be willing to pay if the benefit of unlawfully using a resource is
higher than the penalty for doing so. Thus, in order to prevent conflicting situations where
resources are overused, the allocation should be prepared to deal with such unexpected
situations. That is, the allocation should be robust to potential disobedience behavior of
the agents. However, penalties may be present as well, as otherwise the agents would be
always disobeying.

In this paper we focus on market-based mechanisms, namely auctions, for assigning
resources to agents. Auction mechanisms, borrowed from the field of Economics, have
become a popular approach for dealing with the problem of resource allocation. The ad-
vantage of using auctions is that they provide a greater degree of privacy to the agents,
since they do not have to reveal too much information, and provide also more auton-
omy in the decision-making, in comparison with purely centralized solvers. However, the
problem of deciding which agents are the winners of the auction, known as the Winner
Determination Problem (WDP), is also an optimization problem, and therefore, most of
the developed algorithms for solving it are again focused on finding optimal solutions
instead of robust ones.

Although robustness has already been addressed in the field of planning and schedul-
ing [1,5,3], as far as we know, the only approach that deals with robustness in auctions
has been presented in [8]. This work uses the concept of super-soultions [7] to address
the problem of bid withdrawal and generate solutions with a repair cost below a given
threshold. However, the problem of bid withdrawal is not the only one requiring robust
solutions. In particular, the disobedience problem presented above also needs to be dealt
with, and the current algorithms for solving auctions do not take it into account. Thus,
we have focused our efforts in developing a mechanism for adding robustness to auctions
based on learning the obeying behavior of the agents.

2. Market-based Resource Allocation

Resource allocation problems have been usually solved using a centralized approach,
where given all the requests, the resources are distributed in a way that there are no
conflicts between them. Such centralized approach implies that the central element would
made all the decisions. However, such decisions should be made distributedly, since the
requesters may not be willing to disclose private information related to their internal
functioning upon which their decisions are based. Thus, in order to preserve privacy, a
distributed approach is preferable [4]. In a distributed scenario there is a central element
representing the shared resources of certain capacities, and a set of individuals competing
for the resources.

Auctions provide an efficient mechanism to assign the resources to the requesters.
The goal of an auction is to select a subset of the requests, which will gain the right to
use some resources for a given time period, while the remaining should wait for another
opportunity. The selection criteria is based on the bids submitted by the participants.
These bids represent the urgency that each of them has to use the resource. A high bid



indicates that it really needs (or wants) the resource, while a low bid indicates that it
could delay the task that requires the resource and therefore it can miss the opportunity
to perform it at the auctioned time.

Formally, the problem to solve in an auction where there are multiple resources of
different capacities is the Winner Determination Problem (WDP) for multi-unit combi-
natorial auctions [9] (similar to the multi-dimensional knapsack problem):

max
NR∑

i=1

xi · vi

s.t.
NC∑

i=1

xi · qi,j ≤ Qj ∀j ∈ C (1)

where NR is the number of requests, xi ∈ {0, 1} represents whether request i is denied
or authorized, vi ∈ IR+ is the bid value for request i, qi,j is the capacity requirement
of the resource j for the request i, Qj is the resource j capacity, and C is the set of
resources.

The auction process is repeated every time a new allocation of resources is needed.
This leads to a recurrent auction, where the same bidders are continuously competing
for the same resources. In this kind of auctions the Bidder Drop Problem comes out: it
can cause the participants to stop obeying the outcome of the auction and start behaving
on its own, which could conflict with the behavior of the ones agreeing with it.

The bidder drop problem has been typically addressed in the literature using fairness
mechanisms [10,11]. However, although fairness incentivizes agents to participate in the
auctions, it does not produce robust solutions by itself. Robustness is a desired feature in
these situations, as it would produce solutions taking into account those agents which are
most likely to disobey the decisions of the auctioneer if unauthorized, thus preventing
overuse of the resources.

3. Robustness in Auctions

As mentioned before, in some domains an interesting feature on auctions is to incorpo-
rate robustness. It represents the ability of a solution to overcome unexpected changes in
the environment. Thus, we are willing to accept a suboptimal solution in order to ensure
that the solution remains feasible and near optimal even when the data changes. There
are two general approaches for dealing with uncertainty: proactive and reactive. Roughly
speaking, proactive robustness means that the obtained solution is robust by itself, being
able to absorb some level of unexpected events, while reactive robustness addresses the
problem of how to recover from a disruption once it has occurred, providing an alterna-
tive solution in case that the primary solution becomes unapplicable.

We will focus only on proactive robustness, describing how to add a robustness
model to recurrent auctions. The robustness model consists in three main components:

• Trust model of the agents requesting the resources
• Risk function of the agent selling the resources (i.e. the coordinator)
• Robust solution generation



The first component is concerned with the agents requesting resources. It models
their behavior by learning from their actions the circumstances in which an agent does
not obey the decisions of the coordinator. Then the coordinator uses these models in order
to know in advance which agents are going to disobey if they are unauthorized to perform
a task, and act correspondingly. The second component is related to the coordinator and
its risk function, as the robustness mechanism varies depending on the risk attitude of
this agent. Finally, with the inputs coming from all the agents, the robustness is achieved
by combining the risk of the coordinator with the trust on the agents requesting the
resources.

3.1. Trust model

An agent requesting resources to perform tasks can disobey the decisions of the auction-
eer for several reasons. It is not usually the case that an agent disobeys every decision
of the auctioneer independently of the characteristics of the task to perform. Normally,
an agent would disobey only the decisions that deny some tasks that it needs to perform
for some reason. Therefore the trust model should not contain only a unique global value
for the degree of trust of an agent, but the trust value should be related to a given task
features, as an agent probably disobeys differently as a function of the characteristics
of a task. Therefore, the trust model maintains concrete information about the distinct
kinds of tasks, in order to learn which tasks are most likely for the respective agent to be
disobeyed in case they were denied. Possible task features to build the trust model with
include the resources capacity requirements, the task duration, etc.

The information stored about the trust itself is not only the probability of disobeying,
but it is generalized with a lie magnitude, as an agent may request to perform some
tasks using a given capacity of resources and later use a higher capacity than requested.
Consequently, the trust model also stores for each of the considered characteristics these
two trust measures:

• Probability of disobeying. This value ∈ [0..1] can be measured in different ways,
being the most intuitive the average of disobediences in relation to the total num-
ber of auctions the agent has been involved in. However, it could be measured not
only counting the number of times that the agent has performed the task when
unauthorized, but counting also the times where the agent has performed the au-
thorized task but using a higher amount of capacity than requested.

• Lie magnitude. This value ∈ [0..∞] represents the degree of the disobedience.
For example a value of 1 would represent that when the agent disobeys, it uses the
quantity of resources requested for the task, while a value of 1.5 would represent
that it uses the 150% of the requested capacity.

A graphical representation of this trust model using only one characteristic of the
task is shown in Figure 1 (to use more task characteristics, additional dimensions would
be added). Note that this model is general enough to allow including even the case where
an industry does never disobey the auctioneer (it only performs the task when it is au-
thorized to, so it has a disobey probability of 0 for all task characteristics), but it uses a
higher amount of capacity than requested (having a lie magnitude greater than 1 at dis-
obey probability of 0). This is particularly useful in problems where the resource capacity
requirements of the agents are quite dynamic.



Disobey probability

Lie magnitude

Task characteristic

Figure 1. Trust model.

The trust model is learned by the auctioneer agent at execution time. Every time a
task is performed the trust model of the respective agent is updated with the new trust
values obtained and related to the characteristics of the current task, i.e. if the task has
been performed after the authorization of the auctioneer or not (the agent has disobeyed),
and checking if the resource capacity used is the same as what was requested. The trust
model is also consulted each time an agent requests to perform a task; the auctioneer
looks for the trust model of the agents willing to perform a task at a given time and gets
their trust values in order to solve the current conflict taking them into account.

3.2. Risk function

The auctioneer’s risk attitude characterizes its willingness to face dangerous situations.
Risk attitudes are generally categorized in three distinct classes: risk aversion, neutral-
ity and proclivity. Risk aversion is a conservative attitude for individuals who do not
want to be at stake. Risk neutral agents display an objective predilection for risk, whilst
agents with a proclivity for risk are willing to engage in gambles where the utility of the
expected return is less than the expected utility.

To produce a robust solution the risk attitude of the auctioneer is considered together
with the trust models of the agents. For example, a risk-averse auctioneer would consider
that every request with a probability of disobeying greater than 0 is going to use the
resources even if unauthorized, and thus it would auction only the remaining resources
capacities over the rest of the requests. On the other hand a risk-proclive auctioneer
would consider that if a request has a low probability of being disobeyed, it would not be
the case at this time and hence the auctioneer would auction a bigger amount of resources
capacities, although with a higher risk of being overused.

The risk function frisk gives the risk attitude of the auctioneer (between 0 and 1)
as a function of the probability of disobeying of a given agent and a given request. An
example of a risk function is shown in Figure 2(a). In this case it represents a risk-averse
auctioneer, since the resulting risk value is almost always 1 (it considers risky requests
as if they are going to surely use the resources even if unauthorized), regardless of the
probability of disobeying. On the other hand, a risk-proclive auctioneer would have the
final value almost always set to 0, as seen in Figure 2(b), and a risk-neutral one would
have it set accordingly to the probability of disobeying.

We can guess that a risk-averse auctioneer will face fewer overuses of the resources.
However, as the agents will have less access to the resources, there will be more requests



delayed and thus the makespan will be longer. Instead, with a risk-proclive auctioneer
the makespan will be shorter, although the resource may be overused. However, in the
results section we will observe that this fact is not always happening.

3.3. Robust solution generation

Once the auctioneer has defined its risk function and the trust model about the agents
performing tasks with different resources requirements has been learned, all of this infor-
mation can be used to solve any forthcoming conflict in the resources. When a conflict is
detected, the auctioneer is faced with a set of requests, each associated with a set of trust
features, obtained from the trust model.

Then the auctioneer, taking into account the trust levels associated to each task de-
cides which to authorize and which not in function of its risk. To solve this situation a
new constraint, the robustness constraint, is added to the constraint optimization problem
previously formulated in Equation 1, where we have n variables X = {x1...xn} (one
for each request involved in the conflict), each one representing whether the request is
authorized or denied.

The robustness constraint is formulated in a way that the solution finds a balance
between the amount of resources required by the authorized requests and the assumed
risk from the unauthorized requests (appropriately weighted by its probability of dis-
obeying, lie magnitude and the risk function frisk of the auctioneer). The objective is to
not exceed the capacities of the resources (Qj). This constraint is defined as follows:

∑

i∈[1,n]

xi·ci +
∑

i∈[1,n]

(1− xi)·ci·frisk(Pi)·Mi ≤ Qj ∀j ∈ C (2)

The first summatory represents the resources used by the authorized requests, and
the second characterizes the resources potentially used by the unauthorized requests.
Then the unauthorized requests are considered as if they were performed in the cases
where the probability of disobeying of the associated agent (Pi) is high. However this
value (appropriately weighted with the lie magnitude Mi) is considered as a function
of the risk attitude of the auctioneer frisk. In this case we have considered that the lie
magnitude is directly multiplied by the risk value, but another function could be used as
well.

Another way of understanding this equation is by moving the second summatory to
the right side. Then it can be read as if the total capacities of the resources get diminished
in some degree by the unauthorized requests that are likely to be performed anyway. Then
the requests are auctioned normally although with less resources capacities available.

Risk

Probability
of disobedience1

1

Risk

Probability
of disobedience1

1

(a) (b)

Figure 2. Risk attitude function: (a) averse, (b) proclive.



4. Experimentation

To test the robustness mechanism previously described, we have used a real-world prob-
lem: The Waste Water Treatment Plant Problem (WWTPP). The main components in
this problem are the Waste Water Treatment Plant and the set of industries performing
waste discharges to the sewage. The job of the treatment plant is to process the sewage
coming from the industries, removing its contaminants in order to return a clean water-
stream back to the river. The problem faced in this domain is to coordinate the industrial
discharges so that all the polluted water entering the plant can be fully treated. If the dis-
charges are done without any coordination, the amount of water arriving at the plant may
exceed its capacity, which causes the overflow to go directly to the river without being
treated and increasing its contamination. Thus, in order to prevent such dangerous envi-
ronmental situation, the industrial discharges should be temporally distributed so that all
of them can be fully treated.

Obviously, this coordination should not cause problems in the production processes
of the industries, since this could have dangerous effects (drastic changes would cause
production delays, missed delivery commitments and so on). However if the discharges
can not be delayed, there is no coordination possible. Therefore, we assume that each in-
dustry has a retention tank (of a given capacity) where it can store a discharge whenever
it is not authorized, and empty it later on. In this scenario the recurrent auction mecha-
nism will determine which discharges to authorize and which to be temporarily stored in
the tank in order to not exceed the plant’s capacity.

Regarding the robustness mechanism proposed in this paper, it is easier to under-
stand more clearly with this concrete problem why is it useful. In this scenario it is con-
ceivable that industries may sometimes disobey the decisions of the plant. The most ob-
vious reason is when an industry has its retention tank completely full; in this case if the
forthcoming discharge is not authorized, the industry will be forced to discharge it any-
way, thus disobeying the plant. However, an industry could disobey the decisions of the
plant for other uncontrolled and unpredictable reasons, for example when the industry
needs for some reason to have the retention tank empty (for maintenance purposes, for
instance), or when a concrete discharge cannot be stored in the tank because of its high
level of contamination, etc. That is the reason why the robustness mechanism has been
designed to take into account the characteristics of the task in the trust model.

4.1. Solving the WWTPP

The WWTPP can be modeled as a recurrent combinatorial auction, where the auctioneer
is the treatment plant, the resource being sold is its capacity, and the agents using the
resource are the industries that perform discharges. Every discharge is defined as Di =
{industry_idi, si, di, qi, ci}, where si and di are the start time and the duration of the
discharge, and qi and ci are the flow and contaminant levels of the discharge. In this
case the resource consumption (as well as the individual discharges) does not have only
a global capacity limit (hydraulic capacity), but it is extended with many thresholds, one
for each contaminant type. Then the goal of the auctioneer is not only to not exceed the
hydraulic capacity of the plant, but also to have each of the contaminant levels under
its thresholds. To this end the discharge flow as well as each of the contaminants are
considered as separated resources.



With these adjustments, the coordinating scenario described in the previous section
can be easily adapted to be applied to this problem, so the robustness mechanism can
also be used. Here the disobeying probability can be defined as a function of the charac-
teristics of the discharge (or the industry), for example:

• The flow of the discharge.
• Duration.
• Volume (amount of liters of the discharge).
• Contaminant levels.
• Retention tank occupation.

4.2. Implementation

To evaluate the coordination and the robustness mechanisms we have implemented a
prototype of the system that reproduces the coordination process and the communication
between the plant and the industries performing discharges. We have created an agent to
represent the plant and another one for each one of the industries. So far we have only
considered the hydraulic capacity.

To calculate the bid, each industry agent takes into account the urgency for perform-
ing the discharge, based on the retention tank occupation. Thus, the bid value of agent i,
vi, is computed as:

vi =
tank occupationi

total tank capacityi

(3)

In case an industry agent has to reschedule its discharges, its behavior is the follow-
ing: it first tries to store the rejected discharge into the retention tank; the discharge of
the tank is then scheduled as the first activity of the agent after the current conflict fin-
ishes. Otherwise, if the industry has its tank already full, the discharge will be performed
anyway.

The objective function to maximize in the auction clearing is the sum of the winning
bids values. The free linear programming kit GLPK [6] has been used to solve the winner
determination problem appropriately modeled as a mixed integer programming problem
(MIP). The robustness constraint is added to the constraint optimization problem as an
additional constraint.

The trust models of the industries have been implemented using only one charac-
teristic of the discharges: the flow. The models of the industries are learned during the
execution by storing, for each different value of flow of a discharge from an industry,
two counters for the total number of lies and truths (that is, disobedient and obedient
actions), and another value to compute the lie magnitude. These values are updated after
each performed discharge in the following way: if the respective industry was authorized
by the plant, then the number of truths of the corresponding flow is incremented; alter-
natively if the performed discharge was not authorized, then the number of lies is incre-
mented. Independently, the value regarding the average lie magnitude (of this concrete
flow) is updated with the lie magnitude of the current discharge computed as the division
between the used capacity in relation with the requested capacity.



4.3. Experimentation results

In order to evaluate the results we have considered some quality measures based on
different characteristics of the solution:

• number of overflows (NO) occurred during the simulation
• maximum flow overflowed (MFO), measured in m3/day
• total volume overflowed (VO), in liters
• percentage of discharge denials obeyed by the industries (%IO)

The experiments consisted of simulations using a set of real data provided by the
Laboratory of Chemical and Environmental Engineering (LEQUIA). This data is com-
posed of the discharges of 5 industries in two weeks. The first one is a pharmaceutical
industry; it is increasing its discharge flow during the week and does not discharge during
the weekend. The second one is a slaughterhouse that discharges a constant flow, except
at the end of the day when it increases. The third one is a paper industry that discharges
a constant flow during the seven days of the week. The fourth one is a textile industry,
whose discharges flow oscillates during the day. The fifth one is the waste water coming
from the city, whose flow is fixed. The hydraulic capacity of the plant is 32000 m3/day.

We have tested the mechanism in different scenarios and situations. We have ex-
perimented with and without coordination among the industries (without coordination
the treatment plant does never unauthorise a discharge), activating and deactivating the
robustness mechanism, and also changing the obeying behavior of the industries. There
are scenarios where all the industries always obey the decisions of the plant (as long as
they have enough tank capacity), and other scenarios where the industries have some
probability of disobeying the outcome of the coordination mechanism (this probability
depends on the occupation of the tank; the higher the occupation, the higher the chances
of disobeying), and also scenarios where there is one industry (the textile, chosen ran-
domly) that is always disobeying the decisions of the plant.

NO MFO VO %IO
No coordination 80 9826 15.21·106 -

Obey
No Rob 28 4996 3.74·106 98.95
Rob 28 4996 3.74·106 98.95

Disobey
No Rob

113.40
(7.55)

14357
(1077.02)

13.4·106

(319429)
97.23
(0.21)

Rob
121.3
(7.94)

14233
(1358)

13.2·106

(374673)
96.58
(0.41)

TEXTILE INDUSTRY ALWAYS DISOBEYING

No coordination 80 9826 15.21·106 -

Obey
No Rob 112 6523 6.89·106 90.84
Rob 58 6590 5.47·106 96.77

Disobey
No Rob

119.70
(4.72)

14819
(1373.74)

14.3·106

(263955)
89.96
(0.28)

Rob
109.50
(3.95)

14150
(1310)

13.6·106

(242619)
95.19
(0.17)

Table 1. Simulation results.



We can observe in Table 1 the outcome of all these scenarios. First of all we can
notice that the scenario without any coordination produces the worst results regarding
volume overflowed, therefore this is the worst possible scenario as this concrete indicator
is the most important one. When adding the auction-based system the results are highly
improved, principally when all the industries obey the decisions of the plant. The obeying
scenario reflects the best possible circumstances for the problem, however the problem
has been tested with more adverse situations in order to better evaluate the robustness
mechanism.

When all the industries disobey as a function of its tank’s occupation we can notice
a subtle improvement by using the robustness mechanism in both the volume and the
maximum flow overflowed. However the difference is not much relevant, and the number
of overflows is higher within the robust approach.

On the other hand, in the environment where there is one industry always disobey-
ing the plant’s decisions regardless of the disobeying function, the robustness mecha-
nism seems to mark differences, both in the obeying and the disobeying scenarios. All
the indicators are significantly improved when using it, specially regarding the volume
overflowed and percentage of obedience.

5. Conclusions and Future Work

In this paper we have presented a robustness mechanism for auction-based resource allo-
cation problems. Through this mechanism, the system finds a solution that is robust, i.e.
it is able to remain applicable even if there are changes in the environment. Changes in-
volve both modifications on the resources capacities requests and the use of the resource
even when the user is not authorized to. The core of the robustness mechanism consists
in a trust model that is learned during the execution and a risk function associated to the
auctioneer of the resources, that are used together in order to produce a robust allocation.

The results obtained through simulation using real data show that the robustness
mechanism improves the results over the non-robust approach. However, further work
has to be made in the different risk attitudes of the auctioneer as we have not noticed
significant changes when varying its risk attitude from risk-averse to risk-proclive. Also
the trust model needs to be improved as it considers tasks with different characteristics
independently, therefore in problems where the tasks characteristics were too dynamic it
would be useless as there would not be two identical tasks.

It should be noted that the robustness mechanism may induce the agents to dis-
obey, as doing so they are going to be always authorized by a risk-averse auctioneer. To
avoid such a situation another mechanism should be incorporated to the system. Differ-
ent mechanisms to achieve that have already been studied, as for example the addition
of fines (or penalties) to be paid whenever an agent does not obey the decision of the
coordinator; another method would be to stipulate a deposit to be paid for the partici-
pants before beginning the coordination, and returned later only to the ones that have
obeyed the coordinator. However, the price of these fines or deposits should be studied
in more detail in order to make it not too cheap so an agent would prefer to pay it instead
of obeying the coordinator, neither too expensive so that a poor agent would have more
problems than a rich one to pay it.



References

[1] A. Ben-Tal and A. Nemirovski, ‘Robust solutions of uncertain linear programs’, Operations Research
Letters, 25, 1–13, (1999).

[2] D. Bertsimas and M. Sim, ‘The price of robustness’, Operations Research, 52(1), 35–53, (2004). 8.
[3] Jürgen Branke and Dirk Christian Mattfeld, ‘Anticipation and flexibility in dynamic scheduling’, Inter-

national Journal of Production Research, 43(15), 3103–3129, (2005).
[4] Y. Chevaleyre, P.E. Dunne, U. Endriss, J. Lang, M. Lemaître, N. Maudet, J. Padget, S. Phelps, J.A.

Rodríguez-Aguilar, and P. Sousa, ‘Issues in multiagent resource allocation’, Informatica, 30, 3–31,
(2006).

[5] A.J. Davenport, C. Gefflot, and J.C. Beck, ‘Slack-based techniques for robust schedules’, in Proceedings
of the Sixth European Conference on Planning (ECP-2001), pp. 7–18, (2001).

[6] GLPK. GNU Linear Programming Kit, http://gnu.org/software/glpk.
[7] Emmanuel Hebrard, Brahim Hnich, and Toby Walsh, ‘Super solutions in constraint programming’, in

Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Prob-
lems, Lecture Notes in Computer Science, 157–172, Springer, (2004).

[8] Alan Holland and Barry O’Sullivan, ‘Truthful risk-managed combinatorial auctions’, in Proceedings of
IJCAI’07, pp. 1315–1320, (2007).

[9] J. Kalagnanam and D. Parkes, Handbook of Supply Chain Analysis in the E-Business Era, chapter Auc-
tions, bidding, and exchange design, Kluwer Academic Publishers, 2005.

[10] Juong-Sik Lee and Boleslaw K. Szymanki, ‘A novel auction mechanism for selling time-sensitive e-
services’, Proc. 7th International IEEE Conference on E-Commerce Technology (CEC’05), Munich,
Germany, July 2005, pp. 75-82., (2005).

[11] Víctor Munoz, Javier Murillo, Dídac Busquets, and Beatriz López, ‘Improving water quality by coor-
dinating industries schedules and treatment plants’, in Proceedings of the Workshop on Coordinating
Agents’ Plans and Schedules (CAPS), ed., Mathijs Michiel de Weerdt, pp. 1–8. IFAAMAS, (may 2007).

[12] Tuomas Sandholm and Victor Lesser, ‘Leveled commitment contracting: A backtracking instrument for
multiagent systems’, AI Magazine, 23(3), 89–100, (2002).


