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Abstract. Resource allocation problems where tasks have to be assigned to re-
sources in such a way that no resource gets overused can be solved using recurrent
auctions. In dynamic environments where unexpected changes may occur, search-
ing the optimal solution may not be the best choice as it would be more likely to
fail. In these cases a robust solution is preferable. In this paper we present a robust-
ness mechanism for auctions, producing feasible and near optimal solutions even if
non-planned events occur.
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1. Introduction

Many real-world applications pose the problem of resource allocation, such as assigning
memory and computing power to processes, distributing tasks to machines in a factory, or
selecting the personnel to carry out certain jobs. This is an optimization problem where
a set of resources is assigned to a set of agents (the entities needing the resources). The
goal is to find a solution that maximizes or minimizes a given objective function (such as
cost, revenue, makespan, etc.), while fulfilling a set of constraints (usually regarding the
resources). However, finding the optimal solution is not always the best choice, since it
could fail in case the environment changed (a machine breaking down, a process taking
longer than expected, etc.). Therefore, it would be desirable to have a robust solution
that could still be applicable even if unexpected events occurred. Obviously, the price of
robustness is optimality [2], since usually a robust solution will be suboptimal. Therefore,
there is a need of balancing the tradeoff between optimality and robustness.

In some scenarios where the resources can only be used temporally, the alloca-
tion process is continuously repeated. Moreover, in real environments (such as industrial
ones), the access to resources is vital to perform tasks. Thus, it could be the case that an
agent uses more resources than those it was allocated, or even use some resource without
having been authorized to do so. The consequence of such behavior would be resource
overuse, which would negatively affect the rest of the agents. One way of addressing this
problem is by imposing fines or penalties to those agents not obeying the allocation [13].
However, even with that, an agent may still prefer to pay a penalty if it obtains a better
profit by using the resources when not authorized. Therefore, in order to prevent such
a situation, the allocation should incorporate some degree of robustness. Then, even if
some agents disobeyed, the probability of having resource overuse would be lowered.



In this paper we focus on market-based mechanisms, namely auctions, for assigning
resources to agents. Auction mechanisms have become a popular approach for dealing
with resource allocation problems [4]. One of the advantages is that they provide privacy
to the agents, since they do not need to disclose too much private information, and they
also provide more autonomy in the decision-making, in comparison with purely central-
ized approaches. However, the problem of deciding the winners of an auction, known as
the Winner Determination Problem, is a complex optimization problem, and most of the
developed algorithms for solving it are focused on finding optimal solutions instead of
robust ones.

Although robustness has already been studied in the field of mechanism design, it
has been usually to tackle the problem of false-name bids [14] or to achieve mechanisms
that are strategy-proof (that is, the agents’ best strategy is truthful bidding) [5]. However,
as mentioned before, we are dealing with robustness at the solution level, that is, solutions
that are still valid even if the conditions for which they were computed change. This kind
of robustness has been addressed in the planning and scheduling field [1,6,3], but, as
far as we know, the only approach that deals with such robustness in auctions has been
presented in [8]. This work uses the concept of super-solutions [7] to address the problem
of bid withdrawal and generates solutions with a repair cost below a given threshold.
However, it is not applicable to the disobedience problem presented above. Thus, we
have focused our efforts in developing a mechanism for adding robustness to auctions
for scenarios with potentially disobeying agents.

2. Auction-based Resource Allocation

Resource allocation problems can be solved using classical IA techniques, usually based
on centralized approaches where a central element makes all the decisions. However, in
recent years auctions are being increasingly used for these problems, as they are more
indicated for distributed problems where the participants do not want to disclose private
information related to their internal functioning upon which their decisions are based [4].
An auction-based distributed scenario for resource allocation is composed of a cen-
tral element (coordinator) representing the shared resources of certain capacities, and
a set of individuals (agents) competing for the resources. Agents that want to use the
resources for a given period of time send requests to the coordinator composed by the
resource/s that they want to use, and the required period of time. Formally, a request
is defined as {s;,d;,q;}, where s, and d; are, respectively, the start time and dura-
tion of the use of the resources and g; is the capacity requirements of the resources
(¢ = {4i1,4i,2, -, ¢in} where n is the total number of resources). The resources are
then assigned to the requesters using an auction. The goal of the auction is to avoid
overuses of the resources by selecting a subset of the requests, which will gain the right to
use some resources for a given time period, while the remaining should wait for another
opportunity. The selection criteria is based on the bids submitted by the agents.
Formally, the problem to solve in an auction where there are multiple resources of
different capacities is named the Winner Determination Problem (WDP) for multi-unit
combinatorial auctions [9] (similar to the multi-dimensional knapsack problem):
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where N R is the number of requests, z; € {0, 1} represents whether request 7 is de-
nied or authorized, v; € IR™ is the bid value for request i, ¢; ; is its capacity requirement
for the resource j, (); is the resource j capacity, and C is the set of resources.

Note that in a resource allocation environment where the agents continuously need
the use of the resources, the auction is repeated several times. Concretely, each time the
requests overuse the resources an auction is executed to decide which of the requests to
authorize. This scenario where the bidders are continuously competing for the resources
is known as a recurrent auction, and gives rise to a new problem called the Bidder Drop
Problem which happens when an agent participating in many auctions is always losing
[11]. In such a case, the agent could decide to stop participating in the auction or stop
obeying the outcome of the auction. This problem has been typically addressed using
fairness mechanisms [10,12]. However, although fairness incentivizes agents to partici-
pate in auctions, it does not address the robustness of the system. Robustness is a desired
feature in these situations, as it would produce solutions taking into account the agents
which are most likely to disobey, thus preventing overuse of the resources.

3. Robustness in Auctions

As mentioned before, in some domains an interesting feature on auctions is to incorporate
robustness representing the ability of a solution to overcome unexpected changes in the
environment. In such situations we are willing to accept a suboptimal solution in order
to ensure that it remains feasible and near optimal even when the environment changes.
There are two general approaches for achieving robustness in uncertain environments:

® Reactive robustness addresses the problem of how to recover from a disruption
once it has occurred, for example providing an alternative solution.

® Proactive robustness is concerned in finding a solution that takes into account the
possible events in the environment and therefore, the solution is robust by itself.

While reactive robustness has been quite studied combinatorial auctions in the work
of Alan Holland [8], proactive robustness is still relatively unexplored. In the following,
we will design a proactive robustness mechanism for recurrent combinatorial auctions
that considers nearly every possible change on the auction. The mechanism is based on a
building a model of the participants in the auction that is learned in successive clearings
of the auctions. The robustness mechanism consists in three main components:

e Trust model of the agents requesting the resources
e Risk function of the agent selling the resources (the auctioneer, or coordinator)
e Robust solution generation

The first component (the trust model) is concerned with the agents requesting re-
sources. It is a main part of the mechanism as it models the behavior of the agents by
learning from their actions their behavior and the circumstances in which an agent is
most likely to disobey the decisions of the coordinator. The second component is related
to the coordinator and its risk function, as the concept of a robust solution varies depend-
ing on the risk attitude of this concrete agent. Finally, with the inputs coming from all the
agents, the robustness of the system is achieved by combining the risk of the coordinator
with the trust on the agents requesting the resources to generate a solution that is robust,
that is, it is able to absorb some level of changes in the environment.



3.1. Trust model

An agent requesting resources to perform tasks can disobey the decisions of the auction-
eer for several reasons. It is not usually the case that an agent disobeys every decision of
the auctioneer independently of the characteristics of the task to perform. Normally, an
agent would disobey only the decisions that deny some tasks that it needs to perform for
some reason. Therefore the trust model should not contain only a unique global value for
the degree of trust of an agent, but the trust value should be related to a given task fea-
tures. Possible task features to build the trust model with include the resources capacity
requirements, the task duration, etc.

The trust model is learned during the recurrent auction storing not only the proba-
bility of disobeying of the agents, which happens when an agent uses the resource when
it is not authorized to, but also its lying magnitude, representing the difference between
the requested capacity of the resources and the real used capacity, as in some scenarios
an agent may request to perform some tasks using a given capacity of resources and
later use a higher capacity than requested. Consequently, the measures stored by the trust
model are the following:

e Probability of disobeying. This value € [0..1] can be measured in many different
ways, being the most obvious the average of disobediences in relation to the total
number of auctions the agent has been involved in. However, it could be measured
counting also the times where the agent has performed the authorized task but
using a higher amount of capacity than requested.

e Lie magnitude. This value € [0..00] represents the degree of the disobedience.
For example a value of 1 would represent that when the agent disobeys, it uses the
quantity of resources requested for the task, while a value of 1.5 would represent
that it uses 150% of the requested capacity.

A graphical representation of this trust model using only one characteristic of the
task is shown in Figure 1 (to use more task characteristics, additional dimensions would
be added). Note that this model is general enough to allow including even the case where
an industry does never disobey the auctioneer, but it uses a higher amount of capacity
than requested (having a lie magnitude greater than 1 at disobey probability of 0). This
is particularly useful in problems where the resource capacity requirements of the agents
are quite dynamic.

Disobey probability

Task characteristic

Lie magnitude

Figure 1. Trust model.

The trust model is learned by the auctioneer agent at execution time. Every time a
task is performed the trust model of the respective agent is updated checking firstly if the
task has been performed after the authorization of the auctioneer or not, that is, the agent
has disobeyed the result of the coordination (the solution of the auction), and secondly if
the resource capacity used is the same as what was requested.



3.2. Risk function

The risk attitude of the auctioneer characterizes the tradeoff between robustness and
optimality that it wants, given that robustness and optimality are contradictory objectives.
The risk function of the coordinator can be also seen as its willingness to face dangerous
situations.

Risk attitudes are generally categorized in three distinct classes: risk averse, neutral
and proclive. Risk aversion is a conservative attitude for individuals who do not want to
be at stake. Risk neutral agents display an objective predilection for risk, whilst agents
with a proclivity for risk are willing to engage in situations with a low probability of
success. For example, a risk-averse auctioneer would consider that every request with a
probability of disobeying greater than 0 is going to use the resources even if unautho-
rized, and thus it would auction only the remaining resources capacities over the rest of
the requests. On the other hand a risk-proclive auctioneer would consider that if a request
has a low probability of being disobeyed, it would not be the case at this time and hence
the auctioneer would auction a bigger amount of resources capacities, although with a
higher risk of being overused.

Risk

Probability Probability
1 of disobedience 1 of disobedience

(@ (b)

Figure 2. Risk attitude function: (a) averse, (b) proclive.

The risk function f,.;sx defines the risk attitude of the auctioneer (between 0 and 1)
as a function of the probability of disobeying of a given agent and a given request. An
example of a risk function is shown in Figure 2(a). In this case it represents a risk-averse
auctioneer, since the resulting risk value is almost always 1 (it considers risky requests
as if they are going to surely use the resources even if unauthorized), regardless of the
probability of disobeying. On the other hand, a risk-proclive auctioneer would have the
final value almost always set to 0, as seen in Figure 2(b), and a risk-neutral one would
have it set accordingly to the probability of disobeying.

3.3. Robust solution generation

The trust model and the risk function of the coordinator are used to generate the robust-
ness constraint that will provide robust solutions according to the proactive approach.
This constraint is added to the constraint optimization problem (previously formulated
in Equation 1) related to the auction, in order to force the solution to be robust.

In the auction (executed each time a conflict is detected) the auctioneer is faced with
a set of requests (the tasks involved in the conflict), each with trust features associated
obtained from the trust model. Then the auctioneer decides which requests to authorize
in function of its risk attitude.

The robustness constraint is formulated in a way that the solution finds a balance be-
tween the amount of resources required by the authorized requests and the assumed risk



from the unauthorized requests (appropriately weighted by its probability of disobeying,
lie magnitude and the risk function f,.;x of the auctioneer). The objective is not to ex-
ceed the maximum capacities of the resources (Q;). This constraint is defined as shown
in Equation 2.
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The first summatory represents the resources used by the authorized requests, while
the second summatory characterizes the resources potentially used by the unauthorized
requests. Hence, the unauthorized requests are considered as if they were performed in
the cases where the probability of disobeying of the associated agent (F;) is higher than
zero. However this value (appropriately weighted with its corresponding lie magnitude
M) is considered as a function of the risk attitude of the auctioneer f,;s;. In this case
we have considered that the lie magnitude is directly multiplied by the risk value, but
another function could be used as well.

Another way of understanding this equation is by moving the second summatory to
the right side. Then it can be read as if a concrete capacity of the resource/s is reserved to
be used by the unauthorized tasks that are likely to be disobeyed and performed anyway.

4. Experimentation

To test the robustness mechanism previously described, we have used a real-world prob-
lem: the Waste Water Treatment Plant Problem (WWTPP). The main components in this
problem are the Waste Water Treatment Plant and the set of industries performing waste
discharges to the sewage. The job of the treatment plant is to process the sewage coming
from the industries, removing its contaminants in order to return a clean waterstream
back to the river. If the discharges are done without any coordination, the amount of
water arriving at the plant may exceed its capacity, which causes the overflow to go di-
rectly to the river without being treated and increasing its contamination. Thus, in order
to prevent such dangerous environmental situation, the industrial discharges should be
temporally distributed so that all of them can be fully treated.

We assume that each industry has a retention tank (of a given capacity) where it can
store a discharge whenever it is not authorized, and empty it later on. In this scenario the
recurrent auction mechanism will determine which discharges to authorize and which to
be temporarily stored in the tank in order to not exceed the plant’s capacity.

Regarding the robustness mechanism proposed in this paper, it is easier to under-
stand more clearly with this concrete problem why it is useful. In this scenario it is con-
ceivable that industries may sometimes disobey the decisions of the plant. The most ob-
vious reason is when an industry has its retention tank completely full; in this case if
the forthcoming discharge is not authorized, the industry will be forced to discharge it
anyway, thus disobeying the plant. However, an industry could disobey the decisions of
the plant for other uncontrolled and unpredictable reasons, for example when an industry
cannot use its retention tank (for maintenance purposes, for instance), or when a con-
crete discharge cannot be stored in the tank because of its high level of contamination,
etc. That is the reason why the robustness mechanism has been designed considering the
characteristics of the task in the trust model.



4.1. Solving the WWTPP

The WWTPP can be modeled as a recurrent combinatorial auction, where the auctioneer
is the treatment plant, the resource being sold is its capacity, and the agents using the
resource are the industries that perform discharges. Here the resource consumption (as
well as the individual discharges) does not have only a global capacity limit (hydraulic
capacity), but it is extended with many thresholds, one for each contaminant type. The
goal of the auctioneer is not to exceed any of its thresholds (hydraulic capacity and
contaminant levels).

The coordinating scenario described in the previous sections can be easily adapted
to be applied to this problem, so the robustness mechanism can also be used.

4.2. Implementation

To evaluate the coordination and robustness mechanisms we have implemented a pro-
totype of the system reproducing the coordination and communication process between
plant and industries. So far we have only considered the hydraulic capacity of the plant.
Industry agents calculate their bids taking into account the urgency to perform a dis-
charge, based on the percentage of occupation of the tank. In case an industry agent is
denied to perform one of its discharges, it first tries to store the rejected discharge into
the tank, scheduling the discharge of the tank as its first activity after the current conflict
finishes. If the industry has its tank already full, the discharge is performed anyway.

The free linear programming kit GLPK (GNU Linear Programming Kit) has been
used to solve the winner determination problem related to each (multi-unit) auction, mod-
eling it as a mixed integer programming problem. The robustness constraint is added as
an additional constraint.

The trust models of the industries have been implemented using only one charac-
teristic of the discharges: the flow. The models of the industries are learned during the
execution by storing the total number of lies and truths (that is, disobedient and obedient
actions), together with a value to compute the lie magnitude. These values are updated
after each performed discharge in the following way: if the industry was authorized then
the number of truths of the corresponding flow is incremented; otherwise the number
of lies is incremented. Independently, the lie magnitude is computed as the difference
between the used capacity and the requested capacity.

4.3. Experimentation results

Results have been evaluated considering some quality measures based on different char-
acteristics of the solution:

e number of overflows (NO) occurred during the simulation

e maximum flow overflowed (MFO), measured in m? /day

e total volume overflowed (VO), in liters

e percentage of discharge denials obeyed by the industries (%10)

The experiments consisted of simulations using a set of real data provided by the
Laboratory of Chemical and Environmental Engineering (LEQUIA). This data is com-
posed of the discharges of 5 industries in two weeks. The first one is a pharmaceutical
industry; it is increasing its discharge flow during the week and does not discharge during



the weekend. The second one is a slaughterhouse that discharges a constant flow, except
at the end of the day when it increases. The third one is a paper industry that discharges
a constant flow during the seven days of the week. The fourth one is a textile industry,
whose discharges flow oscillates during the day. The fifth one is the waste water coming
from the city, whose flow is fixed. The hydraulic capacity of the plant is 32000 m>/day.

We have tested the mechanism in different scenarios and situations. In the first sce-
nario there is no coordination among the industries (without coordination the industries
perform its initial discharges plans, and the treatment plant does never unauthorise any
discharge). The second scenario uses the coordination mechanism and assumes that the
industries always obey the decisions of the plant, as long as they have enough tank ca-
pacity. In the third scenario we introduce a probability of disobeying the outcome of the
coordination mechanism. This probability depends on the occupation of the tank (the
higher the occupation, the higher the chances of disobeying); a graphical representation
of this function is shown in Figure 3. Two variations of the disobeying probability of
disobeying have been tested.
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Figure 3. Disobey probability function.

Additionally, we have tested the system with another scenario where there is one
single industry (the textile, chosen randomly), that will always disobey the decisions of
the plant if any of its discharges is unauthorized. Every scenario has been tested activat-
ing and deactivating the robustness mechanism and with different risk attitudes of the
coordinator (averse, neutral and proclive).

The outcome of all the scenarios is shown in Table 1, with the average and deviation
(in brackets) of 10 simulations performed for each scenario. Concretely, we can notice
that the non-coordinating scenario produces the worst results regarding volume over-
flowed (which is the most important indicator), while the auction-based system improves
the results, principally when all the industries obey (this reflects the best possible circum-
stances). With disobeying industries we can notice a subtle improvement when using the
robustness mechanism in both the volume and maximum flow overflowed yet the differ-
ence is not much relevant, and the number of overflows is generally higher. Regarding
the risk attitude of the coordinator we do not observe its effects in this scenario.

In the environment where there is one industry always disobeying, the robustness
mechanism seems to mark differences given that all the indicators are significantly im-
proved, specially regarding the volume overflowed and percentage of obedience. How-
ever, in this scenario, like in the previous, the different risk attitudes do not produce clear
differences in the outcome.



NO MFO VO %10

No coordination 30 9826 15.91.10° -
Obey 28 4996 | 3.74.106 | 98.95
No Robustness 77.60 14432 11.5-108 98.55
(4.12) | (865.93) | (216866) | (0.12)
78.70 14360 11.3-106 | 98.27
. . Averse
Low Disobedience (7.15) (1522) (261362) (1.57)
Robustness
Neutral 79 13531 11.4-106 | 98.19
(7.83) (1396) | (260669) | (0.24)
Proclive 84.1 14052 11.3-106 | 98.15
(5.16) (1006) | (251712) | (0.17)

126.60 14398 13.3-108 96.48
(6.13) (1604) (363484) (0.31)

126.60 14398 13.3-109 96.48

No Robustness

Avers
Medium Disobedience verse 6.13) | (1604) | (363484) | (0.31)
Robustness :
Neutral 122.9 13966 13.2:108 | 96.61
(6.84) (803) | (403934) | (0.32)
. 121.3 14233 13.2:106 | 96.58
Proclive

(7.94) (1358) | (374673) | (0.41)
TEXTILE INDUSTRY ALWAYS DISOBEYING

No coordination 80 9826 15.21-109 -
Obey No Robustness 112 6523 6.89-10° 90.84
Robustness 58 6590 5.47-106 96.77
112 14955 | 12.6-106 | 90.98
No Robustness ©09) | (1201.58)| 233076) | (0.2)
77.70 14225 | 11.8-10% | 96.69

. . Averse
Low Disobedience (3.68) (1212) (205150) (1.57)
Robustness

Neutral 82.5 15110 | 11.9-10% | 96.66
(7.66) (997) (199074) (0.16)
Proclive 81.2 14018 | 11.8.106 | 96.68
(4.44) (1596) (133988) (0.18)

119.70 14819 14.3-106 89.96
(4.72) (1373.74) | (263955) (0.28)

109.50 14150 13.6-109 95.19

No Robustness

A 3
Medium Disobedience Verse 1395 | (1310) | (242619) | (0.17)
Robustness
Neutral 113.5 13708 13.6-10 | 95.16
(5.5) (1040) | (445501) | (0.37)
. 110.9 14522 | 13.6:106 | 95.31
Proclive

(8.16) (1571) (338985) (0.29)

Table 1. Simulation results.

5. Conclusions and Future Work

In this paper we have presented a proactive robustness mechanism for auction-based
resource allocation problems. Through this mechanism, the system finds a solution that is
robust, i.e. it is able to remain applicable even with changes in the environment. Changes
involve both modifications on the resources capacities requests and using the resource



when the user is not authorized to. The core of the robustness mechanism consists in
a trust model that is learned during the execution and a risk function associated to the
auctioneer of the resources, that are used together in order to produce a robust allocation.

Results obtained through simulation using real data show that the robustness mech-
anism improves the results over the non-robust approach. However, further work has to
be made in the risk attitudes of the auctioneer as we have not noticed significant changes
when varying it. Also the trust model needs to be improved, as it considers tasks with
different characteristics independently, yet in problems where the tasks characteristics
were too dynamic it would be useless as there would not be two identical tasks.

It should be noted that the robustness mechanism may induce the agents to disobey.
Different mechanisms to avoid this situation have already been studied, as for example
the addition of fines (or penalties) to be paid whenever an agent does not obey; another
method would be to stipulate a deposit to be paid for the participants before beginning the
coordination, and returned later only to the obeying agents. However, the price of these
fines or deposits should be studied in more detail in order to make it not too cheap so an
agent would prefer to pay it instead of obeying the coordinator, neither too expensive so
that a poor agent would have more problems than a rich one to pay it.
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