
CABRO: Winner Determination
Algorithm for Single-unit Combinatorial

Auctions

Vı́ctor MUÑOZ and Javier MURILLO
{vmunozs, jmurillo}@eia.udg.es

University of Girona

Abstract. In this paper we present CABRO, an algorithm for solving the winner
determination problem related to single-unit combinatorial auctions. The algorithm
is divided in three main phases. The first phase is a pre-processing step with some
reduction techniques. The second phase calculates an upper and a lower bound
based on a linear programming relaxation in order to delete more bids. Finally, the
third phase is a branch and bound depth first search where the linear programming
relaxation is used as upper bounding and sorting strategy. Experiments against spe-
cific solvers like CASS and general purpose MIP solvers as GLPK and CPLEX
show that CABRO is in average the fastest free solver (CPLEX not included), and
in some instances drastically faster than any other.

Keywords. winner determination problem, combinatorial auctions

Introduction

Research in combinatorial auctions has grown rapidly in the recent years. This kind of
auctions allow bidders to place bids on combinations (also named bundles, collections or
packages) of items rather than just on individual items. This fact allows bidders to better
express their interests as well as other restrictions such as complementarity or substi-
tutability [9,4]. In a single-unit combinatorial auction the seller (auctioneer) is faced with
a set of bids with different prices, and his aim is to select the best subset of them (max-
imizing the sum of its prices), the winners, so that there does not exist any pair of them
sharing any item. The problem of selecting the winners in an auction is known as the
Winner Determination Problem (WDP) and is particularly difficult in combinatorial auc-
tions as it is equivalent to the weighted set-packing problem and the maximum weighted
clique problem and therefore NP-hard [8,7]. Furthermore, it has been demonstrated that
the WDP cannot even be approximated to a ratio of n1−e (any constant factor) in poly-
nomial time, unless P = NP [9].

Since 1998 there has been a surge of research on designing efficient algorithms for
the WDP (see [3,7] for a more extended survey). Given that the problem is NP-Hard in
the strong sense, any optimal algorithm will be slow on some problem instances. How-
ever, in practice, modern search algorithms can optimally solve the WDP in a large vari-
ety of practical cases. There exist typically two different ways of solving it. On one hand

there exist specific algorithms that have been created exclusively for this purpose, such
as CASS [4] and CABOB [10]. On the other hand, the WDP can be modeled as a mixed
integer linear problem (MIP) and solved using a generic MIP solver. Due to the effi-
ciency of actual MIP solvers like GLPK (free) and specially CPLEX (commercial), the
research community has nowadays mostly converged towards using MIP solvers as the
default approach for solving the WDP. There also exist sub-optimal algorithms for solv-
ing the winner determination problem that find quick solutions to combinatorial auctions
[11,12]. However we will focus only on optimal solutions.

An interesting thing to be noted about the modeling of the WDP as a MIP is that if
bids were defined in such a way that they could be accepted partially, the problem would
become a linear program (LP) which, unlike MIP, can be solved in polynomial time. We
have kept this idea in mind to design a new algorithm, CABRO, which combines LP,
search and several reduction techniques to obtain better results than other solvers, even
CPLEX in some particular instances.

1. Notation

Here we introduce a few notation that is going to be used through this paper. In a single-
unit combinatorial auction the auctioneer receives a set of bids B = {b1, ..., bn}, each
of them composed by a price p(bi) and a subset of items g(bi) of size n(bi) (such that
n(bi) = |g(bi)|). The complete set of items is I = {it1, ..., itm}.

Useful relations between bids include b(iti) as the set of bids that contain the item
iti, and C(bi) as the set of bids compatible with bid bi (i.e. the set of bids that do not
contain any item in g(bi)). Additionally, C(bi, bj) and ¬C(bi, bj) represent whether bids
bi and bj are compatible or incompatible.

2. The Algorithm

CABRO (Combinatorial Auction BRanch and bound Optimizer) is mainly a branch and
bound depth-first search algorithm with a specially significative procedure to reduce the
size of the input problem. The algorithm is divided in three main phases:

• The first phase performs a fast preprocessing (polynomial time) with the aim of
removing as many bids as possible. Bids removed in this phase may be either bids
that are surely not in the optimal solution, or bids that surely are.

• The second phase consists in calculating upper and lower bounds for each bid.
The upper bound of a bid is computed by formulating a relaxed linear program-
ming problem (LP), while the lower bound is computed generating a solution
quickly. This phase may also remove a notable amount of bids.

• The third phase completes the problem by means of search, concretely a branch
and bound depth first search. In this phase the two previous phases are used also
as heuristic and for pruning.

In some instances it is not necessary to execute all the three phases of the algorithm,
for example when the optimal solution is already found before the search phase (which
happens more frequently than expected). The algorithm is able to end prematurely either

It 2

It 1 It 2

b1

b2

It 1 It 2b3

It 1

It 2 It 3

b1

b2

It 2 It 4b3

(a) (b)

It 1 It 2

It 1 It 2 It 3

b1

b2

30

20

It 1

It 1 It 2 It 3

b1

b3

15

20

It 215

b2

(c) (d)

Figure 1. Examples of (a) dominated item (it1), (b) solution bid (b1), (c) dominated and (d) 2-dominated bids.

when all of the bids have been removed or when at some point of the execution the global
lower bound reaches the global upper bound.

This algorithm also provides anytime performance, giving the possibility to be
stopped at any time during the execution and providing the best solution found so far. In
the following sections each of the three phases of the algorithm are explained in detail.

2.1. First phase: Pre-processing

This phase uses fast algorithms (with polynomial-time complexity) to reduce the size
of the problem by deleting bids and items that either cannot be present at the optimal
solution or that surely belong to it. This phase consists of 8 separate strategies (steps),
each of them using a different criteria to remove either bids or items.

• Step 1: Bids with null compatibility. In this step all the bids that do not have
any compatible bid are deleted, except for the bid with the highest price bh. These
bids are surely not in the optimal solution since the maximum benefit of a solu-
tion containing any of them would be its own price, yet it still does not surpass
the price of the bid bh.

• Step 2: Dependent items. Items give information about incompatible bids. Still
in some cases the information given by an item is already included into another’s:
the item is dependent. Then, the former can be removed without any loss of in-
formation. Hence, this step deletes (leaves out of consideration) dependent items.
More formally, for each pair of items (it1, it2) such that b(it1) ⊆ b(it2), it1 may
be deleted from the problem since the information given by it1 is redundant. Fig-
ure 1 (a) shows an example of this situation; here item it1 can be deleted given
that the information given by it1 (¬C(b2, b3)) is already included in the informa-
tion given by it2 (¬C(b1, b2), ¬C(b2, b3) and ¬C(b1, b3)).

• Step 3: Bids of the solution. In some instances there may exist bids such that all
of its items are unique (the bid is the only one containing them), and therefore the
bid does not have any incompatible bid. In such situations the bid is surely part
of the optimal solution.
This step finds all the bids complying with this condition, adding them to the
optimal solution and being removed from the remaining set of bids. Figure 1 (b)
shows an example of this situation, where bid b1 is added to the optimal solution

b1

b2

b3

b4

b5

p(b1) = 120

p(b2) = 100

p(b5) = 90

p(b4) = 100

p(b3) = 50

compatible(b1) = b3

compatible(b2) = b3

compatible(b3) = b1, b2, b4, b5

compatible(b4) = b3, b5

compatible(b5) = b3, b4

It 1 It 4

It 2 It 4

It 3

It 1 It 2

It 4

It 3

It 1 It 2

b3

b2

It 1 It 2b1

It 3

It 4

30

50

10

(a) (b)

Figure 2. Left: Example of pseudo-dominated bid (b1 is pseudo-dominated). Right: Example of compatibili-
ty-dominated bid (b2 is compatibility-dominated by b1).

given that its item i1 is unique.

• Step 4: Dominated bids. This is the same pre-processing step that CASS [4]
and CABOB [10] perform: the elimination of dominated bids. A bid is domi-
nated by another when its set of items includes another bid’s items and its price
is lower. More formally, for each pair of bids (bi, bj) where g(bi) ⊆ g(bj) and
p(bi) ≥ p(bj), bj may be removed as it is never preferable to bi. Figure 1 (c)
shows an example of a dominated bid (b1 dominates b2).

• Step 5: 2-Dominated bids. This is an extension of the previous technique (also
noticed in [9]), checking whether a bid is dominated by a pair of bids. In some
cases a bid is not dominated by any single bid separately, but the union of two bids
together (joining items and adding prices) may dominate it. Figure 1 (d) shows an
example of a 2-dominated bid (the union of b1 and b2 dominates b3). This step can
be easily generalized to check n-dominated bids. However, for many reasonable
distributions, the probability of a bid being dominated by n bids is very low for
higher values of n, still requiring much more processing (finding all subsets of
size n), so this generalization is not useful at all for n > 2.

• Step 6: Pseudo-dominated bids. This step is an even more complex generaliza-
tion of the dominating techniques. Here we deal again with pairs of bids (bi, bj)
such that not all of the items in bi are contained in bj , but there is one single item
itk not included. In this situation the bid bi can be removed only if adding to its
price the price of its best (highest price) compatible bid containing item itk is not
higher than the price of the bid bj . In such a situation bj is always preferable to
bi even when taking bi together with its best compatible bid; therefore bi does
definitely not belong to the optimal solution and might be removed. Figure 2 (a)
illustrates this situation: here b2 pseudo-dominates b1 since its price (50) is higher
than the sum of bid b1’s price (30) plus the price of its best compatible bid con-
taining the item it3, in this case b3 (10), therefore b1 can be removed.

• Step 7: Upper and lower bound values. In this step, fast upper and a lower
bounds are assigned to each bid with the aim of deleting bids with its upper bound
lower than a global lower bound (GLB)1, since they cannot improve the best
solution already found.
The upper bound u of a bid bx is calculated according to Equation 1 where
C ′(bx, itk) is the set of compatible bids of bx including item itk. Roughly, it com-
putes the upper bound of a bid bi by adding to its price the best possible prices of
the bids containing the items not included in g(bi).
After that, the lower bound of the bids is then calculated constructing a solution
of a bid by iteratively attempting to add all of its compatible bids to the solution.
Its compatible bids are ordered in descending order according to the upper bound
previously calculated. All the solutions obtained with this algorithm are valid so-
lutions and update the GLB accordingly. Note that GLB actually stores the best
solution to the problem found so far (although it may not be the optimal one),
therefore it can be returned immediately if the user decides to stop de execution,
thus providing anytime performance.

u(bx) = p(bx) +
∑

∀i/∈g(bx)

max
∀j∈C′(bx,itk)

p(bj)
n(bj)

(1)

• Step 8: Compatibility-Dominated bids. This step is another generalization of
dominated bids. A bid bi is compatibility-dominated by another bid bj if the set
of compatible bids of bi is a subset of the set of compatible bids of bj and its
price is lower. More formally, for each pair of bids (bi, bj) where C(bi) ⊆ C(bj)
and p(bi) ≥ p(bj), bj may be removed as it is never preferable to bi. Figure 2
(b) shows an example where b2 is not dominated by b1 but it is compatibility-
dominated.

Once all of these steps have been executed, since the problem has changed, it may
be the case that some bids and items previously undeleted can now be removed. For
example the deletion of a bid may cause the appearance of dominated items and vice-
versa. Therefore phase 1 is repeated until it does not remove any more bid or item.

2.2. Second phase: Upper and Lower Bounding

In the second phase, the algorithm calculates improved upper and lower bounds for each
bid. In order to compute the upper bound for a given bid bi, a relaxed linear programming
(LP) problem is formulated. This relaxed formulation defines the bids in such a way that
they can be accepted partially (a real number in the interval [0, 1]), therefore it can be
solved using the well-known simplex algorithm [2], which solves most of the instances
in polynomial-time. The relaxed version does not contains neither the current bid bi nor
none of the bids with items included in bi (i.e. its incompatible bids). Adding the price
of the bid bi to the solution of the relaxed LP problem gives a new upper bound that is
usually much more precise than the one obtained in step 7 of phase 1.

This step firstly performs an ordering of the bids according to the upper bound value
calculated in step 7 of phase 1 in ascending order. Then the process of calculating new

1The global lower bound (GLB) is the best (maximum) lower bound found, associated to a valid solution.

upper bounds using the simplex method starts with the bid with the lower upper bound,
and each time a bid’s upper bound is lower that the GLB, it is deleted, thus decreasing
the size of the subsequent bids’ simplex. Note that the chosen ordering, beginning with
the “worst” bids, may seem inappropriate, but this is in fact a good strategy since the
worst bids’ upper bounds are usually much faster to compute than the “best”, hence we
quickly obtain accurate upper and lower bounds that may allow to remove lots of bids
rapidly, thus decreasing the size of the problem and making “best” bids also faster to be
computed. This fact has been verified experimentally.

Regarding the lower bound for each bid bi, it is computed using the values returned
by the LP solver, and updates the GLB accordingly. The solution is constructed by firstly
considering any value greater than 0.5 to be actually 1; that is, part of the (partial) so-
lution. This assumption is not inconsistent (it does not produce solutions containing in-
compatible bids) because compatible bids are restricted to sum at most 1, therefore two
incompatible bids cannot have both values larger than 0.5. After that, the remaining bids
(with values smaller or equal to 0.5) are attempted to be put into the solution in descend-
ing order. Of course if the solution of the LP was integer this process is not required, as
it is the optimal solution for that bid.

2.3. Third phase: Search

The third phase (iCabro) performs a branch-and-bound depth-first search with the re-
maining bids of the previous phases (L). The full algorithm can be seen in Figure 3. The
value of the best solution found so far (GLB) is stored in the global variable bSolution.
Initially bSolution=0, and the search starts by calling iCabro(L,0).

1 procedure iCabro(L,cSolution)
2 for each element b of L
3 L2 ← L

⋂
compatible(b)

4 cSolution2 ← cSolution
⋃

b
5 LPSol ← simplex(cSolution2)
6 if LPSol is integer then
7 cSolution2 ← cSolution2

⋃
LPSol

8 L2 ← ∅
9 end-if
10 if v(LPSol) > v(bSolution) then
11 if v(cSolution2) > v(bSolution) then
12 bSolution ← cSolution2
13 end-if
14 if L2 is not empty then
15 sort(L2)
16 iCabro(L2, cSolution2)
17 end-if
18 end-if
19 end-for
20 end-procedure

Figure 3. Pseudo-code algorithm of iCabro procedure

The iCabro procedure processes the incoming list of bids L performing the follow-
ing steps:

• The algorithm begins getting the first bid b of the list L (recall that L is sorted
according to the upper bound computed in phase 2). A new list L2 is created as
the intersection between L and C(b) (compatible bids of b). In deeper nodes (as it
is a recursive function) the set L2 represents the compatible bids with the current
solution.

• After that, the algorithm formulates and solves the Linear Programming (LP)
problem related to the current solution. If the result of the LP problem is integer
then the algorithm finishes (prunes) the current branch, as the optimal solution of
the branch has been found.

• At line 10 the algorithm verifies if the upper bound of the current solution is
greater than the GLB (the best solution found so far). If this is the case the search
continues through this branch updating the best current solution if necessary. Oth-
erwise, the branch is pruned.

• At line 14 the algorithm verifies that the L2 set is not empty, given that if it is
empty then it means that the current solution does not have any more compatible
bids and consequently the branch is finished. Alternatively, if this condition does
not apply, then the following action is to sort the list L2 according to the upper
bound of each bid, in order to perform a recursive call to iCabro with the list L2.

3. Results

To evaluate the CABRO algorithm we have compared it against both specific algorithms
and general purpose MIP solvers. We have chosen CASS for the specific solver instead of
CABOB because although their authors claim that it outperforms CASS, there is no im-
plementation of it available publicly. For the MIP solver, both GLPK (free) and CPLEX
10.1 (commercial) have been tested.

Test examples have been generated using the popular benchmark for combinatorial
auctions CATS (Combinatorial Auctions Test Suite) [6], which creates realistic auction
instances. Since its first release in 2000, CATS has became the standard benchmark to
evaluate and compare WDP algorithms [10,7]. The CATS suite generates instances fol-
lowing five real-world situations and seven previously published distributions by differ-
ent authors (called legacy). Given a required number of goods and bids, all the distribu-
tions select which goods to include in each bid uniformly at randomly without replace-
ment.

For most of the five real-world distributions a graph is generated representing adja-
cency relationships between goods, and it is used to derive complementarity properties
between goods and substitutability properties for bids. Some of the real-world situations
concern complementarity based on adjacency in (physical or conceptual) space, while
the remaining concern complementarity based on correlation time. The characteristics of
each distribution are as follows:

• Paths (PATHS). This distribution models shipping, rail and bandwidth auctions.
Goods are represented as edges in a nearly planar graph, with agents submitting
a set of bids for paths connecting two nodes.

• Arbitrary (ARB). In this distribution the planarity assumption is relaxed from
the previous one in order to model arbitrary complementarities between discrete
goods such as electronics parts or colectables.

• Matching (MAT). This distribution concerns the matching of time-slots for a fixed
number of different goods; this case applies to airline take-off and landing rights
auctions.

• Scheduling (SCH). This distribution generates bids for a distributed job-shop
scheduling domain, and also its application to power generation auctions.

The seven legacy distributions are the following:

• L1, the Random distribution from [9], chooses a number of items uniformly at
random from [1,m], and assigns the bid a price drawn uniformly from [0, 1].

• L2, the Weighted Random distribution from [9], chooses a number of items g
uniformly at random from [1, m] and assigns a price drawn uniformly from [0,
g].

• L3, the Uniform distribution from [9], sets the number of items to some constant
c and draws the price offer from [0, 1].

• L4, the Decay distribution from [9] starts with a bundle size of 1, and increments
the bundle size until a uniform random drawn from [0, 1] exceeds a parameter α.

• L5, the Normal distribution from [12], draws both the number of items and the
price offer from normal distributions.

• L6, the Exponential distribution from [4], requests g items with probability
Ce−g/q , and assigns a price offer drawn uniformly at random from [0.5g, 1.5g].

• L7, the Binomial distribution from [4], gives each item an independent probability
of p of being included in a bundle, and assigns a price offer drawn uniformly at
random from [0.5g, 1.5g] where g is the number of items selected.

We have also created a new distribution called transports (TRANS) based on a real
problem: the road transportation problem. The problem roughly consists of finding the
best assignment of available drivers to a set of requested services given a cost function
and subject to a set of constraints (see [1] for more details). To model this problem as an
auction the bids represent journeys (a set of services) associated with a driver, therefore
its items represent the services performed as well as the driver used. Note that the origi-
nal problem consists in minimizing the final cost of doing all the services, while an auc-
tion is concerned on maximizing. Therefore, the costs associated to the bids are appro-
priately transformed so that the maximized solution corresponds to the real (minimizing)
solution.

We have generated 100 instances of each distribution with different amounts of bids
and items. Each instance has been solved using CABRO, CASS, GLPK 4.9 and CPLEX
10.1 with a timeout of 300 seconds. The first three methods have been run in a 2.4GHz
Pentium IV with 2Gb of RAM running under Windows XP SP2, while CPLEX has been
run on a 3.2GHz Dual-Core Intel Xeon 5060 machine with 2 Gb of RAM running under
GNU/Linux 2.6.

Figure 4 (left) shows the average execution time (in seconds) required for each
method to solve all the instances of all the distributions. Here we can observe that CPLEX
is in average the fastest solver since it solves all the instances (1167 auctions) in con-
siderably less time than the other solvers. Recall that the machine used for CPLEX is
considerably faster than the one used for the others; however, we believe that the results
on equal machines would not change significantly. Yet CABRO spends less time than the
free solvers GLPK and CASS.

0

50

100

150

200

250

300

350

L
1

L
2

L
3

L
4

L
5

L
6

L
7

A
R
B

M
A
T

P
A
T
H
S

S
C
H

T
R
A
N
S

A
v

g
.

e
x

e
c

u
ti

o
n

 t
im

e
 (

s
e

c
)

CABRO CASS GLPK CPLEX

0

50

100

150

200

250

CABRO CASS GLPK CPLEX

A
vg

. e
xe

cu
ti

o
n

 t
im

e
(s

ec
)

Figure 4. Left: Global comparative. Right: Comparative over distributions.

Figure 4 (right) shows the results in each of the distributions comparing the average
time required (in seconds) to solve all the instances of each distribution with the four
methods. Here we can observe that in two distributions (L2 and L7) CABRO is clearly
the best algorithm and in other one (ARB) is also the best solver but CPLEX is very
close. In the rest of distributions CPLEX is the best. Regarding the free solvers, GLPK is
cleary the best solver in L3, L5, TRANS, MAT and PATHS while CABRO is cleary the
best in L1, L2,L7, ARB and SCH. CASS is only rather competitive in L1, L2, L7 and
ARB distributions.

CABRO CASS GLPK CPLEX

F ¬F % F ¬F % F ¬F % F ¬F %

L1 80 15 84.2 67 28 70.5 39 56 41.1 95 0 100.0
L2 100 0 100.0 90 10 90.0 7 93 7.0 50 50 50.0
L3 54 46 54.0 3 97 3.0 84 16 84.0 98 2 98.0
L4 100 0 100.0 22 78 22.0 100 0 100.0 100 0 100.0
L5 44 56 44.0 23 77 23.0 61 39 61.0 90 10 90.0
L6 53 47 53.0 46 54 46.0 70 30 70.0 100 0 100.0
L7 100 0 100.0 68 32 68.0 0 100 0.0 15 85 15.0

ARB 96 4 96.0 86 14 86.0 81 19 81.0 99 1 99.0
MAT 81 19 81.0 0 100 0.0 100 0 100.0 100 0 100.0

PATHS 55 17 76.4 1 71 1.4 72 0 100.0 72 0 100.0
SCH 98 2 98.0 9 91 9.0 84 16 84.0 100 0 100.0

TRANS 94 6 94.0 24 76 24.0 100 0 100.0 100 0 100.0

TOTAL 955 212 81.8 439 728 37.6 798 369 68.4 1019 148 87.3
Table 1. Finished auctions (F), not finished auctions (¬F) and percentage of finished auctions (%) before the
timeout.

Table 1 shows the number of auctions finished (F), the number of auctions not
finished (¬F) and the percentage of finished auctions (%) before the timeout, for each
method and each distribution. The results are similar to the execution time results, with
CPLEX being the best method in absolute results, as it solves up to 1019 instances (87%).
However, there is not any method that can be claimed to be the best, since it depends on
the kind of data that the auction is processing. Particularly, CABRO performs better for

the weighted random and binomial distributions, solving 100% of the instances, while
CPLEX only solves 15% in L7 and 50% in L2.

4. Conclusions

In this paper an algorithm for solving combinatorial auction problems has been pre-
sented. It uses many reduction techniques, together with an heuristic function based on
linear programming techniques that provides more pruning. We have compared its per-
formance with other existing algorithms obtaining encouraging results, particularly for
weighted random and binomial distributions. In the future, we plan to hugely improve
the algorithm with new reduction strategies as well as integrate it in the search phase. We
also plan to improve the upper bound function used in the first phase and to test other
sorting criteria to obtain better lower bounds. Also, we would focus on understanding
the different characteristics of the domains and its influence in the solution time, and
theoretically characterize domains where CABRO outperforms CPLEX and work in the
domains where it does not. We expect that these changes would significantly improve
the algorithm performance. Another interesting point would be to extend this algorithm
to deal also with multi-unit combinatorial auctions, as there are not many specific algo-
rithms for this kind of auctions. Finally, we will study another criteria to evaluate the
algorithm as for example the anytime behavior and the memory consumption, as it is
known to be a drawback of MIP solvers.

References

[1] Javier Murillo and Beatriz Lopez, ‘An empirical study of planning and scheduling interactions in the
road passenger transportation domain’, Proceedings of PlanSIG 2006, 2006., 129–136, (2006).

[2] George B. Dantzig, ‘The simplex method’, RAND Corp, (1956).
[3] Sven de Vries and Rakesh V. Vohra, ‘Combinatorial auctions: A survey’, INFORMS Journal on Com-

puting, (3), 284–309, (2003).
[4] Yuzo Fujishima, Kevin Leyton-Brown, and Yoav Shoham, ‘Taming the computational complexity of

combinatorial auctions: Optimal and approximate approaches’, in International Joint Conferences on
Artificial Intelligence (IJCAI), pp. 548–553, (1999).

[5] Holger H. Hoos and Craig Boutilier, ‘Solving combinatorial auctions using stochastic local search’, in
AAAI/IAAI, pp. 22–29, (2000).

[6] Kevin Leyton-Brown, Mark Pearson, and Yoav Shoham, ‘Towards a universal test suite for combinato-
rial auction algorithms’, in ACM Conference on Electronic Commerce, pp. 66–76, (2000).

[7] Yoav Shoham Peter Cramton and Richard Steinberg, Combinatorial Auctions, MIT Press, 2006.
[8] M. H. Rothkopf, A. Pekec, and R. M. Harstad, ‘Computationally manageable combinatorial auctions’,

Technical Report 95-09, (19, 1995).
[9] Tuomas Sandholm, ‘Algorithm for optimal winner determination in combinatorial auctions’, Artificial

Intelligence, 135(1-2), 1–54, (2002).
[10] Tuomas Sandholm, Subhash Suri, Andrew Gilpin, and David Levine, ‘CABOB: A fast optimal algorithm

for combinatorial auctions’, in IJCAI, pp. 1102–1108, (2001).
[11] D. Schuurmans, F. Southey, and R. C. Holte, ‘The Exponential Subgradient Algorithm for Heuristic

Boolean Programming’, in IJCAI, (2001).
[12] Holger H. Hoos, and Craig Boutilier, ‘Solving Combinatorial Auctions Using Stochastic Local Search’,

in AAAI/IAAI, pp. 22-29, (2000).

