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Abstract
This paper addresses the problem of estimating the

motion of an Autonomous Underwater Vehicle (AUV),
while it constructs a visual map (�mosaic� image) of the
ocean floor. The vehicle is equipped with a down-looking
camera which is used to compute its motion with respect to
the seafloor. As the mosaic increases in size, a systematic
bias is introduced in the alignment of the images which
form the mosaic. Therefore, this accumulative error
produces a drift in the estimation of the position of the
vehicle. When the arbitrary trajectory of the AUV crosses
over itself, it is possible to reduce this propagation of
image alignment errors within the mosaic. A Kalman filter
with augmented state is proposed to optimally estimate
both the visual map and the vehicle position.

1 Introduction

Creating visual maps of the ocean floor is an important
tool for underwater navigation. Consider an AUV
equipped with a down-looking camera, which provides
images of the seabed as the vehicle moves. The alignment
of these images provides the necessary information to
estimate the position and orientation of the vehicle [1,2].
At the same time, warping the aligned images creates a
visual map, known as mosaic, which can be used for
planning future missions [3]. While the mosaic is
constructed, the vehicle can localize itself in this map,
following the Concurrent Mapping and Localization
methodology [4,5].

Unfortunately, as the vehicle moves, cumulative error is
introduced in the alignment of consecutive images within
the mosaic, and therefore in the estimation of the position
of the vehicle. This drift can be corrected by taking the
submersible periodically to the surface to perform a GPS
reading. However, this is a very inefficient solution when
the submersible carries out a mission in deep sea, and new
errors can be accumulated while the robot goes up and
down through the water column. An alternative solution
consists in placing various acoustic emitter/receiver
devices covering the area of interest. Then, this acoustic
transponder network (ATN) can be used to obtain absolute
3D position measures of the vehicle when navigating

within the volume covered by the network. This option,
though accurate, has the disadvantages of its high
operating cost, and limited navigation area.

For the case in which it is not possible to obtain absolute
positioning measures (GPS or ATN), Stanford/MBARI
researchers proposed to exploit the additional information
gained when the vehicle path crosses itself [6]. When
performing a mission, the submersible follows an arbitrary
path, while the mosaicking system constructs a visual map
of the surveyed area. As the mosaic increases in size,
image local alignment errors increase the error margin
associated to the position of the vehicle. Occasionally, this
path may cross over itself. In this situation new
information is available, and the system can readjust the
position estimates. Then, the uncertainty concerning
vehicle position can be reduced, since the images that have
been previously added to the mosaic have a smaller error
variance. The technique proposed by Stanford/MBARI was
based on an iterative smoother-follower filter [6,7]. In this
paper, we propose the use of a Kalman Filter to both (a)
forward filter the position of the vehicle, and (b) backward
smooth the vehicle trajectory at crossover points.

2 Overview of the System

Our testing platform is the GARBI underwater vehicle [8].
Among other sensors, GARBI is equipped with a down-
looking camera and a sonar altimeter. When the robot
navigates close to the ocean floor, the altimeter provides
the distance from the robot to the ocean floor (z), while a
mosaicking algorithm provides an estimation of its 2D
motion and yaw orientation [1,9]. This estimation requires
previous knowledge of the intrinsic parameters of the
camera and periodic altimeter readings. The coordinate
system of GARBI is located at the focal point of the cam-
era. Due to the distribution of weight, the vehicle is stable
in pitch and roll. The differences in elevation of the floor
relief are assumed to be negligible with respect to the
navigation altitude of the vehicle. Every time an image is
processed by the mosaicking module, an incremental
motion estimation is obtained for x, y and yaw orientation
.                       These measures are incremental with re-
spect to the previous measurement. Therefore, they provide
a measure of the motion of the camera (and the vehicle)
between the acquisition of two consecutive images.
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3 Positioning from KF smoothing

3.1 Introduction

As described before, the perception system accumulates
the positioning errors associated to every incremental
measurement provided by the mosaicking algorithm, pro-
ducing an unbounded error in absolute positioning. There-
fore, camera position variances will increase monotoni-
cally along the sequence, and at the same time the quality
of the mosaic will decrease. In order to detect a crossing
path, we use the technique proposed by Fleischer et al.
[6,7]. It consists of exploiting the information provided by
the error variance window associated to every image,
which can be used to detect when the vehicle path loops
back upon itself. Since this window represents the bounded
area in which the image is located, it is necessary to check
if the area covered by the error variance of the current
image intersects the mosaic image in an already surveyed
zone. In this case, both images are correlated and a new
estimation of the vehicle location is obtained.

Once the crossover has been detected, the next step
consists in re-aligning the sequence of images that form the
mosaic, taking into account: (a) the incremental measures
computed by the mosaicking; and (b) the crossover data.
This implies to estimate, at time k, the position and
orientation of the vehicle prior to time k. The estimation of
the state of a system    at time instant i, based on the
measures up to time k, with i k< , is known as smoothing
in the literature [10]. An optimal estimation technique is
needed to minimize the variances on the image positions.
We propose to perform this optimization by means of
classical filtering techniques, estimating the vehicle motion
and, at the same time, use these estimations to improve
mosaic alignment when crossovers occur.

The proposed strategy consists of developing a Kalman
filter [11,12] capable of dynamically estimating both the
current vehicle position and past trajectory. The state
vector        of our filter includes position and yaw orien-
tation of the submersible. Therefore, the vehicle is
assumed to be passively stable in pitch and roll, since its
center of mass is below its center of buoyancy.

At every time step, the mosaicking system measures
local displacements, which are converted into global
position estimates build upon consolidating every image
into the global mosaic frame. The measured local
displacements are always referenced to a node of the image
chain that form the mosaic. The nodes are defined by the
location of the central point of an image. Normally, this
node is the previous image of the sequence, but eventually
it could be another node of the image chain as a
consequence of crossover detection. A general block
diagram of the overall smoothing process is illustrated in
Figure 1. The incremental information provided by the
mosaicking system (dashed box at the left of the Figure)

feeds the smoother module, which provides a new state
estimation. This estimation is used to update the mosaic
and vehicle positioning, as well as providing information
for detection of future crossovers.

Therefore, the state vector of the system has to keep the
information regarding the position of the center of all the
images of the sequence. Moreover, since measurements are
incremental, it is necessary to keep track of all measures.
This is not possible with a standard state vector x(k), since
x(k) contains only information about the current state of
the system (at time step k). This problem can be solved by
augmenting the state vector every time a new measure has
been added to the system. Therefore, the state vector of our
filter has the following form:
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where ( )v kx  is the state of the vehicle and { ( ),i kx
0,.., 1}i k= −  are the locations of the central point of the

first k images which form the mosaic. When augmenting
the state vector, the current estimate error covariance has
also to be augmented, to reflect the new state, giving rise
to:
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which is obviously symmetric and where submatrix  Pv,v(k)
represents the covariance of the vehicle (uncertainty in the
vehicle�s position at time k); and submatrices Pv,j(k) and
Pi,j(k) are the covariance between the vehicle and the jth

image and the covariance between the ith image and the jth

image, respectively.

Figure 1. Block diagram of the KF smoother for
global state estimation.
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This leads to the implementation of an augmented state
Kalman filter (ASKF) [13,14], which integrates either the
filtering of the vehicle motion and the smoothing of the
mosaic based on intersecting trajectories. This approach
has several advantages:
• It is able to integrate all the available information:

vehicle�s dynamic model, correlation of consecutive
(adjacent) images, crossover correlation and other
sensor measurements (e.g. sonar-based altimeter).

• It continuously updates, with a simple procedure, the
state of the vehicle and that of the images which form
the mosaic. At the same time, it updates their associated
covariances: vehicle-to-vehicle, vehicle-to-image and
image-to-image.

• It permits dealing with trajectories of any complexity
(i.e. multiple loops) in a simple manner. If multiple
crossovers occur, the state estimation error covariance
Paug(k) would evolve accordingly to the complexity of
the trajectory, due to smoothing in intermediate loops.

Therefore, ASKF is a good framework to keep track of
the state of the vehicle and those of every image of the
mosaic images; containing all this information in a single
state vector. However, it has the drawback of the
increasing size of the matrices involved in the filter.

3.2 Theoretical Principles

From the description presented above, the state estimation
� ( )aug kx  and its associated covariance ( )aug kP  are propa-

gated according to KF time update equations:
� �( 1) ( ) ( ) ( ) ( )aug aug aug aug augk k k k k− + = +x A x B u  (3)

 ( 1) ( ) ( ) ( ) ( ) ( ) ( )T T
aug aug aug aug aug aug augk k k k k k k− + = +P A P A B Q B (4)

where, as the position of images does not vary as a func-
tion of time, the system dynamics ( )aug kA  and the system

noise covariance ( )aug kQ  are:
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where the identity matrix I has a size dim( )ik ⋅ x . Since the

system does not have any input, ( ) 0=ku  and ( ) =kB I .
At every time step k, the mosaicking system finds the

registration parameters between two consecutive (adjacent)
images. Therefore, a new measure zadj(k) is obtained at
every time step. However, when a crossover is detected, an
additional measure  zcross(k)  is obtained.

In the case of registration of consecutive images
(adjacent case), the measure z(k) measures the position of
the kth image (which corresponds to the position of the
vehicle) with respect to the th( 1)k −  image, so that:

( ) ( )adjk k=z z (6)

[ ]1( ) ( ) ( )  aug v kk k k−= −H H H 0 0" (7)

However, when a crossover is detected, the current
image kth also intersects with the mosaic image. Then, the
measurement vector z(k) becomes:
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which means that we have two measures, a measure with
respect to the previous image zadj(k), and a second one with
respect to the area where the crossover has been detected
zcross(k). If the crossover corresponds to an image j, the
measurement matrix Haug(k) incorporates a measurement in
column j, becoming:
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The form of the measurement submatrix of the vehicle
( )v kH , image measurement submatrices 1( )k k−H  and

( )j kH , and measuring subvectors z{adj,cross} are detailed in

section 3.3.
Then, difference between the measurement z(k) and the

previous �a priory� estimation is given by:
�( ) ( ) ( ) ( )aug aug augk k k k−= −r z H x (10)

This difference is called innovation, and its covariance
( )kS  is:

T( ) ( ) ( ) ( ) ( ) aug aug augk k k k k−= +S H P H R (11)

where zaug(k) is the measuring vector, R(k) the measure-
ment error covariance and ( )aug kH  is the measurement

matrix.
The measures allow the correction of the estimated state

and its associated covariance are corrected according to the
KF measurement update equations. So, the filter gain can
be expressed as:

 1( ) ( ) ( ) ( )  T
aug augk k k k− −=K P H S (12)

the corrected state estimate corresponds to:
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and its error covariance becomes:
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It has been proved in [10] that equation (14), which
updates the error covariance, is better conditioned for
numerical computation than the equivalent usual form
shown in equation (15).

( )( ) ( ) ( ) ( )aug aug augk k k k−= −P I K H P (15)

Once the phases of propagation and correction have
been completed, the state and covariance are augmented to
add the positioning of the new kth image.

3.3 Implementation

The augmented Kalman filter, as described in the previous
section, allows the estimation of the state of both the vehi-



cle and the images of the mosaic. This section introduces
the assumed dynamic model of the vehicle, the state vector
of the images, and some characteristics of the measurement
model and the addition of new images to the filter.

Vehicle Model

Although an accurate dynamic model of the vehicle which
has been used in simulation is available [15], our KF
approach assumes a mathematical description based on a
linear model. This assumption is made to obtain a more
generic and simple filter, which can be more easily adapted
to other submersibles. The vehicle state is described by its
position and velocity in the following way:
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T
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where (x,y) are relative to a mosaic-fixed coordinate
system, z is relative to an earth fixed coordinate system
and Ψ (yaw) is the heading of the vehicle with respect to a
fixed coordinate system.

The considered dynamic model of the vehicle ( )v kA  is
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where I is the 4-dimension identity, and dt is the sampling
period. Finally, the process noise ( )v kQ  is given by [5,14]:
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where       is  a  diagonal  4-dimensional  matrix  of process
noise variances in (x,y,z,Ψ) coordinates, used as tuning
parameters.

Image model

Every image has an associated state vector which contains
the information required to position the corresponding
image in the mosaic, so that:

[ ]  ( 0,..., 1)( )     = −= Ψ T

i i i i i i kk x y zx  (19)

The vectors measuring the displacement with respect to
the previous image ( )adj kz , and the mosaic area where the

crossover has been detected ( )cross kz , are described by

{ }
 

,   ( ) ψ = ∆ ∆ ∆ 
T

x yadj cross k zz (20)

where                          are the coordinates of the position of
the present image with respect to the previous image (�adj�
subindex) or with respect to the closer node of the mosaic
image (�cross� subindex). On the other hand, z represents
the altitude of the vehicle at the time the present image has
been taken. This absolute measurement can be obtained
from a sonar altimeter.

Measurement matrix

Therefore, the vehicle measurement submatrix          should

be defined as

4 4 4 4( ) v k × ×=   H I 0 (21)

and image measurement submatrices 1( )k k−H  and ( )j kH

{ }1( ) ( ) 1,1,0,1k jk k diag− = =H H (22)

Note that the component corresponding to measure z in
equation (27) is not updated from the image, but directly
provided by the altimeter sensor.

The measurement covariance matrix in the case of
adjacent measure is                . However, if there is a
crossover measurement in addition to the adjacent one,
R(k) becomes:
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                           are the measurement variances of image
correlation in the mosaic, and        the variance of the sonar
altimeter.

State augmentation

Finally, the information of the present image which is
necessary to augment the state vector and its covariance
matrix can be obtained from the terms relative to the
vehicle. Therefore:

4 4 4 4
� �( 1) ( 1)k vk k× ×+ = +  x I 0 x (24)

,( , , 1,...,0) 4 4 ,( , , 1,...,0)4 4( 1) ( 1)k v k k v v v kk k− × −×+ = +  P I 0 P (25)

where equation (25) selects the information from the row
and column related to the vehicle position.

3.4 Optimizations

In order to take advantage of the sequential character of the
filter, we should pay attention to its computational cost.
Obviously, as the ASKF incorporates new measures at
every iteration, its size will increase. Given that it es-
sentially involves matrix multiplications, the cost will be
approximately O(n3), where n is the number of images
added to the mosaic. However, in this implementation, the
cost can be significantly reduced considering the trivial
submatrices (zeros and identities) in Aaug(k), Qaug(k) and
Haug(k). Then, only the products which involve non-trivial
submatrices have to be computed, and then the trivial and
non-trivial parts of the matrices can be linked together to
form the final matrix. In this way the computational cost
can be reduced from O(n3) to O(n).

Although this improvement is quite significant, as state
augments it becomes more and more difficult to obtain
real-time performance. Therefore, the number of images
which are added to the state should be kept to a minimum.
Then, although new images are processed at constant time
intervals, incremental position estimations can be injected
into the filter at a given sampling rate, instead of using all
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the images to update the filter. In this way, the matrices
involved in the computations of the ASKF do not increase
so rapidly.

4 Results

In order to create a set of test trajectories, the GARBI
Autonomous Underwater Vehicle Simulator (AUVS) for
virtual and/or real applications [16] has been used. This
simulator incorporates the identified dynamic model of
GARBI, and it is able to create the sort of trajectories that
the vehicle would follow in a real mission. Moreover, the
mosaic-based perception system has been modeled in the
GARBI simulator. Every time a new image is added to the
mosaic, an incremental displacement measure referred to
the previous image is obtained. As derived from our
experimentation [17], every new measure is affected by a
zero-mean Gaussian error. In this way, accumulated drift
error can be simulated.

The simulator has been used to generate a trajectory
with 3 crossing paths, with the vehicle navigating in an
area of 40×50 meters. In addition to the real trajectory, the
simulator provides the estimated trajectory provided by the
perception system. Figure 2 shows the sample trajectory
including 3 crossover paths. The dashed blue line
represents the real trajectory and the trajectory estimated
by the mosaicking system is shown in solid green. The
path of the vehicle starts at the bottom left of the image.
The evolution of the smoothed trajectory can be followed
in the different sub-figures (illustrated in magenta with a
marker at every sample point). Figure 2(a) shows the
trajectory filtered by the ASKF before the first crossover is
detected. It basically follows the trajectory computed by
the mosaicking system (solid-green). It can be observed
that the smoothed trajectory stops before intersecting its
path. This means that the crossover detector tells the robot
that it has already arrived to a crossover point, although the
robot thought that it was further from that point. With this
information, the ASKF smooths back the positions of the
previous images, and then it goes on filtering the vehicle
trajectory (Figure 2(b)). Again, an intersection is detected.
It can be observed in Figure 2(c) that the smoothed
trajectory in the top of the map goes down, after the second
crossover, approaching the real trajectory. Finally, Figure
2(d) shows the smoothed trajectory after the third path
intersection. Here we have shown the evolution of the
smoothed trajectory superimposed on the final real and
measured paths; however, it should be noted that the
smoothed trajectory is updated sequentially, as the mosaic
provides every new measurement.

The accumulated drift is illustrated in Figure 3. Initially,
both the trajectory computed by the mosaic and the ASKF
smoother present a similar drift. When the first crossover is
detected, drift  of  the  smoothed  path  can be  reduced to a

(a) (b)

(c) (d)

Figure 2. Sample trajectory with 3 intersections.
The sequence shows the real trajectory
(dashed-blue), non-smoothed estimated trajec-
tory (solid-green) and the evolution of the
smoothed trajectory (magenta with markers) as
new crossovers are detected.

very low value. Then it increases again, but the second
loop keeps the drift in a considerably smaller range than
the measured trajectory. Figure 4 shows the drift
independently plotted for the x and y coordinates. The
diagonal components of the final state error covariance
Paug are used to compute the uncertainty bounds of the
smoothed trajectory, drawn as 3 times the estimated
standard deviation at every point.

Figure 3. Drift evolution of the vehicle trajectory
in the mosaic plane. Drift of the smoothed (ma-
genta with markers) and non-smoothed  (solid-
green) trajectories.



Figure 4. Drift of the smoothed (magenta) and
non-smoothed (solid-green) trajectories for the
X and Y coordinates. The uncertainty bounds of
the smoothed trajectory (dashed) is drawn as 3
times the estimated std. deviation (obtained
from the final Paug).

5 Conclusions

In this paper we have presented a positioning system for
AUV navigation. A method for the optimal estimation of
the trajectory of the vehicle after a successful crossover
path has been described.

Kalman filtering with augmented state (ASKF) has
proved to be the adequate framework for the development
the optimal estimator. Although the idea of taking profit of
additional information when the vehicle path crosses itself
is not new, our approach presents several advantages with
respect to previous systems. First, the system is able to
cope with several loops. Second, it is a sequential
algorithm. Therefore it can optimize dynamically as new
data gets into the system, instead of having to wait for all
the data to process it afterwards, like batch filters. Finally,
the filter performs forward iterations which allow the
system to estimate the trajectory from the noisy data.
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