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Abstract: This paper proposes a real-time navigation system for an AUV that takes 

advantage of the complementary performance of a sensor suite including a DVL, a 

compass, a depth sensor and altimeter sensors with a feature based motion estimator using 

vision. To allow for real-time performance of the vision based motion estimator a simple 

but fast correlation algorithm is used for feature matching. The compass and the depth 

sensors are used to bound the drift of the heading and depth estimations respectively. The 

altimeter is required in order to translate the feature displacements measured from the 

images into the metric displacements of the robot. While the robot must rely on DVL 

navigation above a certain altitude where vision is useless, DVL measurements can be 

complemented with higher frequency accurate motion estimates from the vision system 

when navigating close to the seafloor. Copyright © 2007 IFAC 
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1. INTRODUCTION 

 

Underwater navigation is an extensive area of 

research and poses a number of difficult challenges. 

Accurate navigation systems are vital for all 

underwater missions for correct registration between 

sensor and navigation data and also for control and 

final recovery of the vehicle. Most of the state of the 

art navigation systems (Kinsey, Eustice et al. 2006) 

are based on the use of velocity measurements from 

a Doppler velocity log (DVL) sensor conveniently 

fused with accurate heading measurements gathered 

with a gyrocompass. To bound the drift inherent in 

the system, position fixes from an acoustic 

transponder network (LBL, USBL, GIB) are 

commonly used. However, this option raises the 

mission cost as transponders require deployment 

prior to the mission (Long Base Line) or a mother 

ship is necessary (Ultra Short Base Line). This 

solution also limits the area in which the vehicle can 

accurately navigate to within the bounds of the 

transponder network.  

 

Over recent years, computer vision has been the 

subject of increased interest as a result of improving 

hardware processing capabilities and the need for 

more flexible, lightweight and accurate sensor 

solutions (Horgan and Toal 2006). Many researchers 

have explored the possibility of using computer 

vision as a primary source for AUV navigation. 

Techniques for implementing computer vision in 

order to track cables on the seabed for inspection and 

maintenance purposes have been researched 

(Balasuriya and Ura 2002; Ortiz, Simo et al. 2002). 

Station keeping, the process of maintaining a 

vehicle’s pose, is another application that has taken 

advantage of visions inherent accuracy and high 

update rate (Negahdaripour, Xu et al. 1999). Motion 

estimation from vision is of particular interest for the 

development of intervention class vehicle navigation 

(Caccia 2006). Wreckage visualization and biological 

and geological surveying are examples of many 

applications that use image mosaicking techniques to 

acquire a human interpretable view of the ocean floor 

but it has also been proven as an appropriate means 

for near seabed vehicle navigation (Garcia, Cufi et al. 

2006); (Negahdaripour and Xu 2002). 

 

In this paper we propose a navigation system based 

on a complementary sensor suite. The navigation is 

solved by means of an extended Kalman filter (EKF) 

using a constant velocity model and updated with 

velocity, heading and depth measurements. When the 

robot navigates above a predefined boundary 

altitude, the bottom tracking velocity readings 

coming from the DVL are used to update the filter. 

When the robot navigates close to the seafloor, DVL 

readings are frequently lost, so velocity 



     

measurements are taken from a motion estimator 

based on image mosaicking techniques instead. If 

both measurements are available, the DVL and the 

vision-based velocity estimates are fused using the 

EKF. In all cases, yaw and depth measurements 

coming from the compass and the depth cell are used 

to limit the drift in the corresponding variables. 

Moreover, the altitude readings are used to convert 

pixel measurements into metric displacements 

needed to compute the velocity.  

 

The paper is organized as follows. First, a brief 

overview of the mosaicking system structure and 

functionality is presented. The implementation of the 

extended Kalman filter is then described, detailing 

the model used. The experimental results gained 

from the test tank at the University of Girona are 

reported and discussed. Finally, the conclusions and 

future work are presented. 

 
 

2. MOSAICKING SYSTEM 

 

The creation of the mosaic is accomplished in the 

following stages (See Fig. 1). First, a detector of 

interest points is used to select scene features in the 

current image that can be reliably detected and 

matched in the next image of the sequence after the 

camera location has changed. Image correspondences 

are then located between incremental images using a 

correlation-based matching approach. The system 

identifies the points that describe the dominant motion 

of the image by means of a robust outlier-detection 

algorithm. Once the pairs of features describing the 

dominant motion have been selected, a 2D planar 

transformation matrix relating the coordinates of both 

images is computed. Finally, the registered images can 

be merged onto a composite mosaic image and an 

estimation of the vehicle linear velocities u and v and 

angular velocity r can be computed and outputted to 

the EKF. 

 

 
2.1 Selection of Interest Points 

 

The first step of the mosaicking algorithm is the 

selection of adequate interest points in the present 

image to be matched in the next frame. An interest 

point is a point in an image which has a well-defined 

position and can be robustly detected. The feature 

detector implemented searches for small zones 

presenting high spatial gradient information in more 

than one direction, as performed by the Harris corner 

detector (Harris and Stephens 1988). To do this, the 

image is convolved with two directional high-pass 

filters (in the x and y directions). The areas with the 

highest gradient in both directions are selected as 

interest points.  

 

 
2.2 Interest Point Matching  

 

Once the interest points in the reference image I
(k)

 

have been obtained, the algorithm searches for the 

candidate matches in the next image I
(k+1)

. The 

matching process is accomplished in the following 

way (see Fig. 1): For every interest point mj
(k)

 in 

image I
(k)

 a correlation is performed by convolving a 

small search window over image I
(k+1)

. This search 

window centered at mj
(k+1)

 in I
(k+1)

 is translated from 

its position mj
(k)

 in I
(k)

 taking into consideration the 

previous homograph calculated from the mosaicking 

system. This helps reduce the size of the search 

window and improve system performance. A 

similarity measurement is computed for each feature 

by means of a correlation score.  

 

 
Fig. 1. Mosaicking Process 
 

 
2.3 Estimation of Dominant Motion through Outlier            

Rejection 

 
After the correspondences have been solved, a set of 

displacement vectors relating the features of two 

images of the sequence is obtained. Every vector 

relates the coordinates of the same feature in both 

images. Our aim is now to recover the apparent 

motion of the camera from these features. This can 

be done by computing a 2D transformation matrix H 

which relates the coordinates of a scene point in 

frame I
(k+1)

 with the coordinates of the same point in 

the previous frame I
(k)

, 
 

i.e.                        
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denote a correspondence point in two consecutive 

images; and the symbol ~ indicates that the points are 

expressed in homogeneous coordinates. The matrix 

that performs this transformation is known as 

“homography”, and can be computed by singular 

value decomposition (SVD) if 2 or more pairs of 

matchings are available (Cufi, Garcia et al. 2002). The 

similarity transformation described by matrix H has 4 

degrees of freedom as the test vehicle has been 

designed to be passively stable in pitch and roll (its 

center of gravity is below the center of buoyancy). For 

this reason, rolling and pitching motion of the vehicle 

are very small, and therefore better results are obtained 

with a simple motion model. 

 

Although the correlation system is devoted to the 

matching procedure, some false matches (known as 



     

outliers) could still appear among the correct 

correspondences. For this reason, a robust estimation 

method has to be applied.  The Least Median of 

Squares (LMedS) algorithm is used for finding the 

matrix H that minimizes the median of the squared 

residuals. 
 

2 ( ) ( 1) 2 ( 1) ( )
( ( , )) ( ( , ))

k k k k

err j j j j
M med d d

+ +
= +

-1
m Hm m H m� � � �      (4) 

 
where, d

2
( m� j

(k)
, Hm� j

(k+1)
)  is the square Euclidean 

distance from a point m� j
(k)

 , defined on image I
(k)

, to 

the projection on the same image plane of its 

correspondence m� j
(k+1)

. Hence, the error is defined 

by the distance of a point to the projection of its 

correspondence. In our case, with only three motion 

parameters estimated (x and y displacement and yaw 

rotation), the number of samples required to have a 

probability of 0.99 that at least one sample has no 

outliers is 7 assuming 20% of outliers in the data. 

Hence, the algorithm can be easily implemented in 

real-time. 

 

 
2.4 Mosaic Construction and velocity estimation 

 

The process of mosaic construction selects the initial 

image of the sequence as a base frame. The mosaic 

coordinate system is placed at the origin of this 

reference frame. When image I
(k+1)

 has to be added to 

the mosaic, a 2D planar transformation kHk+1 

provides its best fitting with respect to the previous 

image.  The matrix H, defined for each image, is also 

converted into linear vehicle velocity measurements 

u and v and rotation velocity r to be inputted into the 

extended Kalman filter. The linear velocity 

calculations require knowledge of the intrinsic 

parameters of the camera gained from camera 

calibration, periodic altimeter readings averaged 

from the 3 cosine corrected altitude measurements 

from the DVL and by noting the sampling time 

between frames. A pixel to metric conversion can 

then be calculated by applying the geometric law of 

perspective relation (Cufi, Garcia et al. 2002). 

Incremental measure d between two images can be 

decomposed into dx and dy, measured in pixels with 

respect to the coordinate system of the previous 

image.  
 

         
.

x

x

d Z
D
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=             
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y
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d Z
D
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=         (5) 

 

where, Dx and Dy are the components of the 

incremental motion from image I
(k)

 to I
(k+1)

 in metric, 

Z is the camera altitude and f is the camera focal 

length. With knowledge of the time between frames 

Dx and Dy can be converted into vehicle velocities. 

The rotation parameter in each homography is 

converted into radians/sec to gain the angular 

velocity r. The differences in elevation of the floor 

relief are assumed to be negligible with respect to the 

navigation altitude of the vehicle.  

 

 

 

4. EXTENDED KALMAN FILTER 

 

Due to the non-linear nature of vehicle motion the 

extended Kalman filter (EKF) has been chosen as an 

appropriate filter for solving the navigation problem. 

The EKF is used to fuse sensor information from the 

mosaicking system, DVL, depth sensor and compass 

to provide better navigational estimates (see Fig. 2). 

The following vector has been formulated to represent 

the estimated state of the vehicle: 

 

                  ˆˆ ˆ ˆ ˆ ˆ ˆ ˆˆ[ ]
T

x y z u v w rψ=x         (6) 

 

The first four elements in equation (6) represent the 

position and yaw of the vehicle in world coordinate 

frame and the other four elements represent the linear 

and angular velocities in the vehicle coordinate 

frame. This state estimation is associated with a 

covariance that is defined by the P matrix.  

 

ˆ ˆ( [ ][ ] | )
T

k k k k
E= − −P x x x x Z        (7) 

 

 
 
Fig. 2. System structure 
 

 
4.1 Initialization 

 

To initialize the state vector the first valid 

measurement of the compass is taken as the vehicle 

yaw (ψ). The appropriate value of uncertainty for the 

yaw is also inserted into the P matrix. Without lost of 

generality, the other values in the state vector can be 

initialized to 0 thus assuming the vehicle is starting 

from a static position at the origin of the world 

coordinate frame.  

 

 
 
Fig. 3. ICTINEU

AUV 
 testing vehicle 



     

4.2 Prediction 

 

A four-degree of freedom constant velocity 

kinematics model is employed, as the vehicle is 

passively stable in pitch and roll. The following 

equation describes the state prediction model: 
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The unmodeled perturbations are represented by a 

zero mean white Gaussian noise in acceleration with 

covariance Q propagating to the velocity and 

position through integration. The uncertainty in this 

prediction is updated after each measurement using 

the common EKF equations: 

 

1 1

T T

k k k k k k k

−

− −
= +P A P A W Q W              (9) 

 

where, W is the Jacobian matrix of the partial 

derivatives of the model with respect to process noise 

and A is the Jacobian matrix of the partial derivatives 

of the model with respect to state vector.  

 

 
4.3 DVL, compass and depth sensor update 

 

The update step can merge information from 

multiple sensors depending on which is outputting 

the latest information. The DVL provides two types 

of velocity measurements, water track velocity and 

bottom track velocity. In the absence of currents, as 

in the experimental setup used for this work, the 

through water velocity can be considered as another 

robot velocity measurement, with less certainty than 

the bottom track velocity. For both measurements, 

the DVL provides a status parameter indicating the 

quality of the data, which allows us to neglect 

inaccurate readings. A pressure sensor is also used to 

acquire depth measurements while a compass 

provides measurements of the yaw. The generic 

measurement vector for all these sensors is as 

follows: 

[        ]
T

D w w w b b b
u v w u v w z ψ=z       (10) 

 

where, subscript w and b represent water and bottom 

tracking velocity respectively. As all these 

measurements are direct observations of the state 

vector a linear measurement model is implemented 

as follows: 

   
1
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This is the generic form of the HD matrix, however, 

depending on the measurements available and the 

status parameter the HD matrix can change 

accordingly by adding or removing rows. Matrix RD is 

the covariance associated with the measurement and as 

such is also subject to change depending on the 

available measurements. 
 

2 2 2 2 2 2 2 2(        )D w w w b b bu v w u v w zdiag ψσ σ σ σ σ σ σ σ=R   (13) 

 
The typical EKF equations are used to update the 

state estimate. Equation (13) computes the Kalman 

gain and equation (14) uses this gain, the new 

measurements and the previous state estimate to 

update the state. The uncertainty in this estimate is 

updated using equation (15). 
 

 1
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4.4 Mosaic measurement update 

 

For each new frame considered by the mosaicking 

system a new measurement for the velocities uc, vc 

and rc in the camera coordinate frame are provided. 

The following equations are the measurement vector 

and measurement model respectively: 
 

[   ]T

M c c cu v r=z                       (17) 
 

1
ˆ ˆ

M M k

−

+
=z H x                          (18) 

 
For ICTINEU

AUV
, while the robot frame is located at 

the center of the DVL position, the camera is not 

centered with respect to the robot z-axis. Hence, if 

the robot rotates around while maintaining its 

position, the image mosaicking system would detect 

a linear motion due to the camera displacement. 

Hence, the camera position (XC, YC) has to be used 

within the HM matrix to account for this offset.  
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2 2 2

(   )
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The EKF equations (14, 15 and 16) are again used to 

perform the update.  

 

 



     

5. EXPERIMENTAL RESULTS 

 

A data set was collected using the ICTINEU
AUV

 (see 

Fig. 3) in the test tank at the University of Girona 

(see left of Fig. 5.). A printed poster of a seabed 

environment was placed at the bottom of the tank in 

an attempt to simulate real seabed conditions (see 

Fig. 5 left). All sensor data collected was processed 

off line. 

 

 
 

Fig. 4. Test tank facility at the University of Girona 
 

 
 

Fig. 5. Left –Printed poster of seabed. Right – Image       

mosaic of the poster in the test tank constructed 

using 1080 images and rendered from the last to 

the first image 

 

During the experiment the robot was manually 

piloted to complete a loop trajectory over an 

approximate area of 25m
2
. During the 3mins 42 

seconds needed to follow the trajectory, images were 

grabbed at a rate of approximately 10Hz and 

synchronized with compass, depth sensor, altitude 

and DVL measurements. A subset of these images 

were used to create the mosaic and estimate 

velocities, in this case one in every two (5Hz) . 

 

 
 

Fig. 6. Trajectory estimated using only mosaic 

measurements, only the DVL, and fusing all the 

sensors through an EKF. 

Fig. 5 (right) shows a rendering of the image mosaic 

based on the raw mosaic motion estimations (without 

the Kalman Filter) illustrating its accuracy. The black 

trajectory in fig.6 was estimated using only the 

mosaic measurements. It can be appreciated that the 

trajectory loop is totally closed. By carefully 

inspecting fig.6 it is clear that after the last turn 

before closing the loop (bottom right corner), and 

mainly due to the drift accumulated in the mosaic 

heading, the trajectory gets closer to the initial track 

than it should. For this reason several objects appear 

duplicated and the bottom boundary becomes 

discontinuous. 

 

 
 

Fig. 7. Surge velocity estimation illustrating the 2σ 

bound and the measurements from both the DVL 

and the mosaicking system 

 

 

 
 

 
Fig. 8. X and Y Position estimates detailing the 2σ 

bound. 

 

Fig.6 also shows dead reckoning estimation using 

only the DVL measurements and in this case the 

trajectory is very inaccurate. This is mainly due to 

the poor acoustic conditions of the small test tank as 

well as the slow motion of the robot. This can be 

appreciated in fig.7, which shows the difference in 

the noise of the DVL velocity measurements and the 

mosaic velocity measurements. For this reason, the 

filter was tuned to put more trust in the mosaic 



     

measurements and the model rather than in the DVL 

velocity measurements. On the other hand, yaw 

measurements of the compass provide absolute yaw 

fixes that bound the drift in the heading. While DVL 

measurements are of little help (in water tank 

conditions), depth and yaw give absolute measures of 

the vector state, and thus improve the estimated 

trajectory. As a result, the trajectory estimated by the 

EKF is better. Unfortunately, at this point, our 

software does not allow us to render the mosaic 

using the trajectory estimated by the EKF. Hence, the 

only way to validate the trajectory (fig.6 and 8) is to 

manually check that the misalignment observed in 

the rendered mosaic is in agreement with the distance 

between the initial and the last tracks, where the 

mosaic detected a false intersection. 

 

 

6. CONCLUSIONS  

 

This paper presents preliminary work towards a real-

time navigation system by integrating an image 

mosaicking motion estimator with navigation sensors 

commonly available in today’s UUVs. To allow for 

real-time motion estimation, the feature matching 

process implemented on successive images is 

performed through a simple but fast correlation 

algorithm. Even though this feature correlator is 

known to present poor performance during fast turns, 

in the water tank conditions where the navigation 

system was tested, the accuracy of the velocity 

estimates from the image mosaicking system 

significantly outperformed the DVL measurements. 

On the other hand, absolute compass and depth 

readings bounded the drift in the heading and depth 

that would be obtained otherwise. While not possible 

to demonstrate in lab conditions, we believe that an 

interesting characteristic of the proposed navigation 

system comes from the complementary attributes of 

the DVL and the vision system. While the DVL is 

able to provide velocity measurements with a 

moderate update rate at altitudes where vision is 

useless, vision allows for high update rates, very 

close to the bottom, with significant accuracy. 

 

 

7. FUTURE WORK 

 

Future work will improve the feature correlator by 

taking advantage of the heading estimations available 

from EKF. Another interesting improvement consists 

of exploiting the fact that interest points are re-

observed several times before they disappear from 

the camera view. Hence, it is possible to include 

them in the vector state while they are visible. Since 

their position is correlated with the robot position, it 

is expected that every observation of the interest 

points will improve our estimate of the robot 

position.  

 

As implemented, the ability to accurately convert 

from pixel to metric measurements for vehicle 

motion estimation is dependant on reliable altitude 

measurements. Altimeter sonar’s generally have a 

minimum blanking range of between 0.5 and 1 meter 

whereas in the case of computer vision, accuracy 

improves with decreasing range. A potential solution 

to extend the applicability of the vision based 

navigation system in near-seabed/intervention 

operations and overcome the limitations of current 

altitude sensors blanking range, is to employ a newly 

developed 2MHz short range wide angle ultrasonic 

transceiver with a minimum range of less than 0.02 

meters (Nolan and Toal 2006) and this will be 

investigated. 
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