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Abstract

An overview of underwater SLAM implementations el as submapping SLAM approaches is given
in this paper. Besides, the implementation of thealed selective submap joining SLAM on the
SPARUS AUV is presented. SPARUS carries a dowmipoltical camera. The information gather
by this camera is run through SLAM, together withbmard navigation sensors, producing a precise
localization of the vehicle and a consistent fingp. Experimental validation on a real dataset is
described, showing a promising performance of ayslementation.

1. Introduction

In the last decade, different underwater vehickegehbeen developed in order to explore underwater
regions, especially those of difficult access famians. The use of Remotely Operated underwater
Vehicles (ROVs) is very common, however, ROVs regai link, i.e. a tether, to the ship in order to
be operated by a person aboard of the ship. Thertet a group of cables that carry electrical powe
video and data signals back and forth between pleeator and the vehicle. In order to avoid the need
for a tether, several research groups and devaldpeused on developing Autonomous Underwater
Vehicles (AUVs). AUVs are equipped with on-boardchsars, which provide valuable information
about the vehicle state and the environment. Camdpithis information with control algorithms
makes the vehicle fully autonomous.

Some examples of these AUVs are the ICTINEU (sge Biand the SPARUS (see Fig. 2) developed
by VICOROB research group at the University of @aoBoth vehicles were developed with the
purpose to participate in the Student Autonomousiddmater Challenge — Europe (SAUC-E)

competition. ICTINEU won the 2006 SAUC-E editiorhile SPARUS is a more recent development,
torpedo shaped AUV, which won the 2010 SAUC-E editiSPARUS is the vehicle we used to test
the method presented in this work.

Fig.1: Picture of ICTINEU AUV operating inside thest water tank at the Underwater Robotics
Research Center (CIRS — Girona, Spain).
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Fig.2: Picture of SPARUS AUV operating open wateder the supervision of a diver.

Some widely used sensors for land and aerial robdotsnot work or are not precise enough
underwater. For instance, the use of camerasfisulifdue to the lack of visibility and scatterintye
laser range finders are imprecise working in thesmarios because of light attenuation; and GPS
signal does not work underwater. The sensors use8PARUS AUV are the Inertial Measurement
Unit (IMU) and the Doppler Velocity Log (DVL) to nasure navigation data, while a down looking
camera is used to gather data from the environnidrg. IMU and the DVL do not give absolute
localization, therefore if the vehicle is wrongbchlized, nor the IMU neither the DVL will provide
useful information to recover the right position. &ddition, as the positioning is relative to past
information, the localization problem is biased ahd measurement noise produces drift. On the
other hand, the detection of salient features ia é@mvironment is a complex task, since camera
images are noisy. Noise together with lack of otievigation aids makes the task of mapping and
localization a difficult challenge.

A solution to the lack of GPS signal and the presesf noise are the Simultaneous Localization and
Mapping (SLAM) algorithms. SLAM algorithms aim taitd an approximate map of the area and
calculate the approximate position of the vehicithiv this map. In order to do so, SLAM algorithms
combine the information coming from all sensors.r GBLAM approach, called the selective
submapping SLAM, uses navigation readings to imgnehicle localization, and the map through its
correlation with the vehicle position. To have aA8L algorithm working properly, we need to select
robust landmarks, i.e. objects, rocks and othéersa¢lements. These robust landmarks must be easy
to observe when seen for a second time, and easgdociate with previous observations. This
procedure is important to close a loop, i.e. révigi an area, because closing a loop means a
reduction on the uncertainty and a more consigiieait map.

In what follows, a background on underwater SLAMplementations is first given in Section 2.
Afterwards, a summary on existing SLAM algorithmerking with submaps is presented. Section 3
describes the implementation of our approach on BBPA Section 4 presents the experimental
validation, while Section 5 gives the conclusions.

2. Background
This section surveys main existing SLAM implemeiotas for underwater applications, focusing on
the filtering technique used to handle noise ariftl wincertainty, the main sensor used to gathea dat

from the scenario, and the type of feature useduittl the map. Afterwards, submapping SLAM
approaches are summarized.
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2.1. Underwater SLAM

Several approaches tackle the localization proldanminown scenarios. Some approaches use GPS-
aided localizationCaiti et al. (2005), Erol et al. (200,/put the attenuation of electromagnetic waves
through the medium of water limits the applicati@nGPS to near surface activities, or otherwise
forces the vehicle to visit often the surface tookeer its position. A standard for bounded xyz
navigational position measurements for underwasdioles is the Long-BaselLine (LBL) acoustic
transponder systerflunt et al. (1974), Olson et al. (2006)

The equivalents to GPS underwater are the acotratisponders, such as LBL or Short-BaseLine
(SBL). These positioning systems have limited ramgeuracy and an associated cost of deployment.
LBL operates on the principle of time-of-flight aitds been proven to operate up to a range of 10
km, Whitcomb et al. (1999)The main drawback of LBL is that it requires twp more acoustic
transponder beacons to be tethered to the sea 8&tr systems provide more accurate positioning
information, but suffer from the same drawbacksttize LBL. Recently, several AUVs use Ultra
Short-Baseline (USBL) technology, which consistaafansceiver, usually placed on the surface, on
a pole under the vessel, and a transponder mowntede AUV. This technology is more accurate
than LBL and SBL. Another set of approaches avbaluse of external devices by using computer
algorithms. For instance, the use of particlefdtfor AUV localization presented Maurelli et al.
(2008) This approach is shown to work with high perfonece However, it only works when the
map is known a-priori.

When the map is unknown, SLAM is conducted. Undéewacenarios are still one of the most
challenging scenarios for SLAM because of reducedsary possibilities. Underwater SLAM
approaches have many problems due to the unstedchature of the seabed and the difficulty to
identify reliable features. Many underwater feasuage scale dependant, sensitive to viewing angle
and scale. A SLAM proposal tackles the problem guginint featuresWilliams et al. (2004)This
approach proposed to fuse information from the alelsi on-board sonar and vision systems. They
use EKF based SLAM combined with sonar and vistooldtain 3D structure and texture (see Fig. 3).

Leonard et al. (2001andNewman et al. (2003Iso used point features. The former implemertied t
decoupled stochastic mapping and performed testa wrater tank, while the later proposed the
constant time SLAM and used LBL information to heip the localization. On the other hand, non-
feature based approaches to SLAM using bathymgtficmation were presented lBarkby et al.
(2009)andRoman et al. (2007)

Fig.3: Terrain madels built by projecting the tenetwf the visual images onto a surface model
generated by sonar dawjlliams (2004)
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A particle filter is used to handle the uncertaiimythe navigation solution provided by the vehicle
Fairfield et al. (2008) This approach was successful in minimizing thégetion error during a deep
sea mapping mission. The method was capable ofdingvreal-time localization, with comparable
results to the ones given by SBL and USBL. A vidi@sed localization approach for an underwater
robot in a structured environment was presentdéchimeras et al. (2003)The system was based on a
coded pattern placed on the bottom of a water tamk an on-board down-looking camera. The
system provided three-dimensional position andnteigon of the vehicle along with its velocity.
Another vision-based algorithriustice et al. (2008)used inertial sensors together with the typical
low overlap imagery constraints of underwater inmpg@&heir strategy consisted on solving a sparse
system of linear equations in order to maintain sigtent covariance bound within a SLAM
information filter. The main limitation on visioraBed techniques is that they are limited to netd fi
vision (1-5m), and also deep water mission will uieg higher amounts of energy for lighting
purposes. In a previous workiSustice et al. (2005and Eustice et al. (2006)they presented the
reconstruction of the RMS Titanic from a set of gea and using IF. Using Sparse Extended
Information filter (SEIF) and forward-looking sonawalter et al. (2008)presented a SLAM
approach to inspect ship hull.

Instead of vision,Ribas et al. (2008)used mechanically scanned imaging sonar to ofutaine
information about the location of vertical planatrustures present in partially structured
environments. In this approach, the authors exdhtihe features from sonar data, by means of a
robust voting algorithm (see Fig. 4). These linstdiees were used in the EKF base SLAM.

Y(m)

X(m)

Fig.4: Abandoned marina SLAM example, using imagsogar, image extracted froRibas et al.
(2008) Top left plot shows the superposition of imagsunar readings, based on dead reckoning
trajectory. Top right plot is the same superpositiat in this case after filtering the trajectdnyaugh
EKF base SLAM. Bottom picture shows a satellite gmaf the abandoned marina, with the lines
representing the boundary between water and lameltfRjectory of the vehicle is plotted, using dead
reckoning estimates (dashed line) and using SLAddrthms (solid line).
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In Tena-Ruiz et al. (2004)ide-scan sonar was used to sense the environfrtenteturns from the
sonar were used to detect landmarks in the vehisieinity. Observing these landmarks allows
correcting the map and vehicle location; howevéierdong distances the drift is too large to allow
associating landmarks with current observations. this reason, they proposed a method that
combines a forward stochastic map in conjunctioti \&ibackward Rauch-Tung-Striebel (RTS) filter
to smooth the trajectory.

Underwater SLAM implementations have some point€ommon, for instance, imaging sonar is
widely used, the most common filtering techniquehie Extended Kalman Filter (EKF) and point
features are commonly used to represent the mape Spproaches use side-scan sonar or optical
cameras, which seems to become more importantchadi®gy advances. The use of EKF based
SLAM has been shown to handle uncertainties prgpbedwever, the computational cost associated
with EKF grows with the size of the map. In additidinearization errors accumulate in long
missions, increasing the chance of producing inster® mapping solutions.

2.2. Submapping SLAM

The use of submaps has been shown to addressdso#s] linearization errors and computational
costs, at the same time, thereby improving the istarey of EKF based SLAMZastellanos et al.
(2007) An early example of this strategy is the decodiglmchastic mappind,eonard et al. (2001)
which uses non-statistically independent submaps. aA result, correlations are broken and
inconsistency is introduced into the map. The amisime SLAM,Newman et al. (2003uses multi
overlapping local submaps with the frame referentmedne of the features in the submap. This
technique maintains a single active map and cormspatgartial solution, independently. However in
non-linear cases the consistency is not proven.

Different techniques, such as the constrained Ilsehmap filterWilliams et al. (2004 pr the local
map joining, Tardés et al. (2002) produce efficient global maps by consistently borimg
completely independent local maps. The main iddanblethis approach is to build maps of limited
size and then, once completed, merge these smph waa global one. The so called atlas SLAM,
Bosse et al. (2004xonsists of a hierarchical strategy that achiefésient mapping of large-scale
environments. They used a graph of coordinate feamvéh each vertex in the graph representing a
local frame, and each edge representing the tranatmn between adjacent frames. In each frame,
they build a map that captures the local envirortnaerd the current robot pose along with the
associated uncertainties. The divide and conque&M;LPaz et al. (2008)uses the divide and
conquer strategy from fundamental graph theory. fieearchical SLAM,Estrada et al. (2005)
consists on a lower (or local) map level, whiclksamposed of a set of local maps that are guaranteed
to be statistically independent, and the upperg(obal) level, which is an adjacency graph whose
arcs are labeled with the relative location betwleeal maps. An estimate of these relative location
is maintained at this level in a relative stoclastap. Every time the vehicle closes a loop a dloba
level optimization is performed, producing a betestimate of the whole map. Conditionally
independent SLAMPiniés et al. (2008)is based on sharing information between consezuti
submaps so that, a new local map is initializedh \aHpriori knowledge.

3. Implementation on SPARUS AUV

SPARUS is equipped with several sensing deviceppl2o velocity log (DVL), inertial measurement
unit (IMU), down-looking camera, forward-lookingroara, imaging sonar and GPS (see Fig. 5). In
this work, only DVL, IMU and down-looking cameraeamused, producing information about
velocities, orientations and about the sea flodre BLAM approach used here is the so called
selective submap joining algorithrAulinas et al. (2010)The main idea of this approach is to use
EKF based SLAM to build local mapsi,(P;), wherex; is the state vector describing vehicle’s pose,
vehicle’s velocities and the map, whiteis its associated uncertainty. The size of thesal Imaps is
bounded by the total number of features and byldlel of uncertainty. The relative topological
relationship between consecutive local maps isdtor a global level maxé, Ps). The global level
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is used to search for loop closute &), i.e. the vehicle is revisiting a region. The poolosing
strategy involves a decision on whether to fusellooaps depending on the amount of found
correspondences between submaps. The whole priscpsasented iAlgorithm |, and detailed in
Aulinas et al. (2010

GPS

. . 11U
l1maging sonar IMU

down-looking
camera

thrusters

forward-looking camera

DVL
Fig.5: SPARUS 3D model with its sensors.

The main novelity in this implementation as complaieethe one presented Awlinas et al (2010j)s

the use of an optical system as the main envirohs®msor unit. Therefore, the observation model is
redefined in order to match with a camera modethia case, the inverse depth parametrization is
used,Civera et al. (2008)

Algorithm I: Selective Submap Joining SLAM

begin mission
while navigating do
X;,P; = EKF SLAM() «— (Build submap M)
Xe,Po = build global map(X;, Py
HLoop = check possible loops(Xc. Po)
for j = Hr.o0p do
refer M; and M; to a common base reference
Hi; = data association(i;,ij._ﬂ,ﬁj}
if Hi; > threshold then
‘igd,-,'ﬂ-j = map fusion(X;, P.. X;. ‘13}_ Hij)
Xe, P = update global map{’iij._ﬂj)
endif
endfor

endwhile

4. Experimental validation

Experimental validation was done through the dagu@med by SPARUS during a survey mission.

The mission consisted of navigating an area of 8B0mx20m, in a grid of 5Smx5m. Vehicle's depth

was almost constant around 17 meters. The totagaen time was about 17 minutes. The vehicle
carried a down-looking camera that acquired a tofaB199 images, Fig. 6. Experimental results

obtained with SLAM show that there is a significanprovement on trajectory estimate as compared
to dead reckoning, Fig. 7.
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Fig.6: Working principle for the SPARUS down-loolicamera

x(m}

y(m)
Fig.7: 3D view of vehicle's trajectory. Drift dugmmission with ending point far from the starting
point (left) and drift corrected by using SLAM (hig

In order to test the performance of SLAM using saps a subset of random 2D points where
extracted from a mosaic of the sceB@aycia et al. (2006) These 2D points where then back referred
to the image they belonged. This subset of poirds wsed, instead of automatically detecting
features. The performance of our SLAM implementatising this set of points is shown in Fig. 8.
This figure shows a sequence of 5 frames contaifisgone landmark, and later on two landmarks.
In addition, the uncertainty projected on the imptgae is drawn, decreasing consistently afterdein
observed for the second time. Fig. 9 presents aatmpa frontal view of the resulting map and
trajectory. In these views, one can see vehictajedtory corrected with SLAM and the landmark
location, as well as its associated uncertaineglly, Fig. 10 shows a 3D plot of these results.

Fig.8: Sequence of down-looking camera frames. Neservations and their associated measurement
uncertainties are drawn, together with the prealictf a landmark that was already in the map, and
the projection of its associated uncertainty of® image plane. One can observe a reduction on
uncertainty with new observations.
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Fig.9: Different views of the results produced blyA$1. On the top, presents a top view of the
execution, while on the bottom a frontal view ieggnted. On the left, landmark uncertainties are
drawn, while on the right, only landmarks are sholmrall plots, vehicle trajectory is drawn.

5. Conclusions

The main contribution of this paper is a SLAM implentation for an underwater vehicle, SPARUS
AUV. First, the most representative underwater SLiMblementations were surveyed, reaching the
conclusion that Extended Kalman filter is widelyedsfor this sort of applications. However,
Extended Kalman filter suffers several limitatidhat can be addressed by using submaps. For this
reason, a summary of the state-of-the-art on supimgpapproaches was presented. A SLAM
algorithm is then briefly introduced, and adaptedits use on the SPARUS AUV. Experiments done
with real data show a bounded effect of the liresdidn error, a precise trajectory estimates, and a
three-dimensional map reconstruction. Besides,ottgervation model for a down-looking optical
camera was introduced. This model was based orrsavdepth parameterization. Experiments
conducted in a real unstructured environment detmates! that SLAM improves vehicle trajectory in
comparison to dead reckoning. Moreover, SLAM coreliwith inverse depth parameterization was
capable of producing a consistent map.
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Fig.10: 3D plot of the SLAM solution
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