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Chapter 1

Introduction

In this introductory chapter the motivations of this Master Thesis are explained,
followed by three application domains that have been used as experimental
domains. Next a brief explanation of the proposed methodology that will be
applied is done, and finally, the outline of this Master Thesis is presented.

1.1 Problem statement

With the increase of the dependency degree of modern society in systems (ve-
hicles, planes, trains, etc.) and complex technological systems (distribution
networks and energy production, water, etc.), their availability and correct per-
formance have become strategical points. Their wrong operation can cause fi-
nancial losses, danger situations for the operators, users inconveniences, among
others [1]. Because all of that, the control of those process is one of the most
important tasks nowadays.

A process is classified as out of control whenever a fault appears. A fault
is whenever a non-allowed deviation of part of the system appears, what causes
the system to not accomplish the original function it was originally designed
for [1]. Fault detection and diagnosis (usually addressed as Fault Detection and
Isolation (FDI)) is strongly dependant of the a priori knowledge available [2]. A
priori knowledge needed for fault diagnosis consists of a description of Normal
Operation Conditions (NOC) and additionally information related to abnormal
operation conditions. Depending on available knowledge to describe NOC, the
fault diagnosis techniques can be divided in two groups: model-based method-
ologies [3] and process history, also known as data driven methods or model
free methods. At the same time, the model-based approach can be divided into
qualitative and quantitative. Qualitative models are high level models that de-
scribe the influence among variables (casualty). For example, they can describe
functional and / or structural properties of the systems. On the other hand, the
quantitative models rely on mathematical relationships, typically mathemati-
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cal equations describing the process from first principles. Ordinary Differential
Equations (ODE) and Algebraic relationships are typically used to describe
physical behaviours and mass or energy blains. Figure 1.1 represents this classi-
fication, and different approaches are included. For a brief introduction to each
approach and further references refer to [2], [4] and [5].

Figure 1.1: Classification of diagnosis methodologies according to a priori knowl-
edge strategy

Statistical techniques have been used for process monitoring from the ear-
lies 20’s. A set of tools known as Statistical Process Control (SPC) has been
developed for this purpose. This methodology was firstly introduced by Walter
Shewhart in the 1920s and was based on the usage of SPC control charts to
adapt the management processes [6]. This would allow the creation of prof-
itable situations for both consumers and producers. As time passed, the usage
of the SPC was more than only the application of control charts and eventually
became used in the manufacturing process. This evolution was also reflected in
the change of the original idea of basing the control limits in economic limits
to use the process history to compute statistical control limits based on the
probability of group variations.

This Master Thesis will be centred in the history data based approach for
monitoring finite duration processes. More exactly, in the usage of a Principal
Component Analysis (PCA) variation for model creation and fault detection to
take into account the correlation among variables at different time instants [7].
After that, a Case-Based Reasoning approach will be used for fault diagnosis
based on the new variables obtained from the previous model.
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1.2 Motivation and application fields

The motivation of this Master Thesis comes from one of the research lines of
the eXiT group: statistical process control of industrial processes using multi-
variate techniques. The methodology this Master Thesis will expose consists in
basically two steps. Firstly a PCA model is created to capture and model the
data structure constrained by the Normal Operation of the process. Then, the
properties of this model are exploited to define a case based diagnosis strategy
in the projection space. This methodology is explained in detail in Section 1.3.

There exist two antecedents of this methodology: a doctoral thesis ([8]) and
a master thesis ([9]) directed in the same research group, eXiT of the UdG.
In this work a new implementation of the method has been done and several
improvements on the neighbourhood in the projection space is proposed as re-
trieval mechanism. Three application domains (wastewater treatment plants,
power quality monitoring and monitoring of injection moulds) have been se-
lected to test and validate the methodology and study the behaviour of PCA
models and similarity criteria. Those application fields are included in three dif-
ferent projects: DPI2005-08922 includes the wastewater field, DPI2006-09370
includes the power quality monitoring field and COLL-CT-2006-030339 defines
the moulding process field. Now, a brief introduction to each of the application
fields is presented.

1.2.1 Wastewater Treatment Plants (WWTP)

All communities produce solid and liquid wastes daily. When liquid wastes come
after of residential, industrial or commercial usage is called wastewater. The ac-
cumulation and stagnation of it can cause bad-smelling gases, as well as human
harmful microorganisms. Another important point is that wastewater contains
nutrients that accelerate the growth of plants with toxic compounds. In order
to avoid these situations, wastewater treatment plants have become one of the
most important environmental topics. Moreover, due to the sparsely distribu-
tion of rains nowadays all procedures that help the reduction and reuse of water
are key topics. To harmonise urban wastewater treatment, the European Union
(EU) has approved a more protective legislation with the environment. This
legislation requires the introduction of new technologies to control and super-
vise the treatment phase to intervene before any problem occurs.

In the past, control of these processes was delivered to some human opera-
tors. But the increase in the signals to be controlled and the huge amount of
information that the operators receive at every instant has led to a necessity for
an automatic control procedure. The high complexity of biological processes and
relations is one of the most important handicaps to overcome. Because of that,
process historical data based techniques are increasingly being used in the model
creation step of biological processes. For instance, the usage of PCA in WWTP
was firstly introduced in [10], where the applicability of statistical procedures
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for detection of process disturbances was demonstrated with a comparison be-
tween PCA and Partial Least Squares (PLS). Using PCA as a previous step or
as a part with other techniques is not a new idea. In [11], PCA was combined
with a Credibilistic Fuzzy-C-Mean (CFCM) and Takagi-Sugeno-Kang (TSK)
fuzzy model to predict the important variables output in a full-scale WWTP.
Also, in [12], a Multi-Layer Neural Network, k-Means clustering and PCA were
integrated to estimate process quality and efficiency in Saint Cyprien WWTP
(France). And as a last example, in [13] a Cluster Analysis (CA), Discriminant
Analysis (DA), PCA and PLS are presented to study wastewater composition.

In this scenario, the methodology explained in Section 1.3 will be used in a
first step for Normal Operation Conditions (NOC) determination according to
historical data, and later, for fault detection and diagnosis of known Abnormal
Operation Conditions (AOC).

1.2.2 Power Quality Monitoring

The aim of power quality monitoring is to automatically evaluate disturbances
registered by power monitors installed in power distribution substations. Utility
companies have increased the number of power quality monitors installed in the
distribution substations and are very interested in developing reliable methods
to efficiently exploit the information contained in these registers. In this ex-
ample domain, the relative location of disturbances known as voltage sags in
order to determine its origin up or downstream of the measuring point is studied.

According to the IEEE Standard [14], a voltage sag is the reduction of the
nominal voltage of one phase between 10 % to 90 % and with a duration time
from 200 ms to 1 minute (Figure 1.2). This kind of disturbances is the most
common in the actual electrical sector and utility companies are investing a
great amount of money in order to locate its origin rapidly and effectively.

Determining whether sags have occurred in the distribution or transmission
networks precedes the localisation and mitigation stages [15]. Typical classifi-
cation according to the origin consists in discriminating between transmission
(or high voltage) and distribution (or medium voltage) origins. For this pur-
pose, phase analysis and an unsupervised method were compared in [16] by
extracting some temporal descriptors from the RMS representation of sags and
using a Learning Algorithm for Multivariate Data Analysis (LAMDA). Recent
research has also identified similarities among sags using the variability in the
information contained in the waveform in statistical analyses based on Princi-
pal Component Analysis (PCA), which allows dimensionality reduction before
similarity criteria are applied to sags, assigning them to different classes. In
[16] sags are categorised into three classes using certain features run through a
fuzzy system. A more recent method for locating the origin of a voltage sags
in a power distribution system using the polarity of the real current component
relative to the monitoring point has been introduced in [15].
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Figure 1.2: Example of voltage sag

The usage of statistical techniques in this field is a very rare approach, finding
few references. For instance, a first proposal to work with the SPC methodol-
ogy was presented in [17], where the PLS methodology was combined with a
Neural Network for the relative allocation of voltage sags. And finally, in [18]
and [19] the model obtained from the multivariate statistics is used directly for
classification.

In this case, the methodology will be used as a classification tool to relatively
locate the origin of voltage sag using directly the voltage and current values,
avoiding the definition of data-derived descriptors and additional computations.

1.2.3 Plastic injection moulding processes

Injection moulding is one of the most important polymer processing operations
in the plastic industry nowadays. Due to its ability to produce complex-shape
plastic parts with good dimensional accuracy and very short cycle times, the
injection moulding has become one of the processes that are greatly preferred
in manufacturing industry [20].

The injection moulding process is a cyclic process that can be divided in four
main parts: filling, packing, cooling and ejection. The filling stage consists in
filling the mould with hot polymer met at injection temperature. In the packing
stage, new polymer melt is packed into the mould at a higher pressure in order
to compensate the shrinkage produced by the polymer solidification. In the
cooling stage the mould is cooled until its content is rigid enough to be ejected.
Finally, in the ejection stage the mould is open, the part is ejected and closed
another time, waiting for the beginning of the next cycle. In Figure 1.3 an
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example of an injection machine (a) as well as the characteristic pressure curve
measured in this processes during the whole injection cycle (b) are presented.

Figure 1.3: Example of an injection mould machine (a) and the characteristic
pressure curve during all injection cycle

In the literature exist two studied fields related to the moulding process: the
study of the moulding machine and the control of the moulding process. Related
to the first one, there are several topics of interest, such as determining the best
strategy for the monitoring process [21] or its benefits [22], which are the effects
of the variations of the parameters during the process [23][24], the conceptual
design of the process [25][26], automatic selection of the best parameters setting
[27][28][29], or optimisation of the scheduling and performance [30][31].

On the other hand, the application of artificial intelligence techniques is com-
monly used in the process control step. For example Neural Networks are used
for quality assurance [32], fault detection [33], process control [34][35]. Exclud-
ing Neural Networks, other techniques like Support Vector Machines [36] and
pattern discovery [37] have been also tried in this context. At the same time,
more common statistical procedure for process monitoring have been treated,
such as Statistical Process Control (SPC) [23]. Finally, an Independent Com-
ponent Analysis (ICA) approach as a previous step to be used with a Neural
Network is presented in [38].

The utilisation of the multivariate statistics for process control in this sce-
nario is a new contribution and will be used in first instance to create a model
of the NOC region, and then use the CBR principles to identify fault sensors
occurrence.

1.3 Proposed Methodology

The methodology proposed in this Master Thesis, and that has been tested in
the above application fields, consists in:
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1. Create the NOC region model of the process using PCA to define control
charts based on T 2 and Q statistics.

2. Refine the model obtained in the previous step according to the statistical
control limits and determine the out of control situations.

3. Use a CBR through historical data projected in the principal component
space, and using multivariate statistics from the model as attributes.

In order to achieve these main steps the following tasks has been conducted:

1. Study of the previous work done in the research group for every application
fields to deeply understand the methodology basis and characteristics, as
well as find some solutions to the initial limitations or handicaps.

2. Analyse the original data organisation to select the treatment required to
apply the methodology.

3. Implement a first version of the methodology over the application domains
and compute and analyse its results.

4. From the conclusions obtained in the previous task and the process under-
standing, generate a more accurate scenario to test and compare results.

5. Expose the constraints to apply the methodology. Also determine the
benefits and limitations of each of the composing methodologies (PCA
and CBR), as well as their interaction.

6. Proposal of future actions to overcome the limitations and new investi-
gation fields, like new techniques (Support Vector Machines (SVM) for
classification, Dynamic Principal Component Analysis (DPCA) for time
dependency determination) or paradigms (Multiphase Principal Compo-
nent Analysis (MPPCA) to study each phase independently) to complete
the PhD.

1.4 Outline

Now, the outline this Master Thesis will be exposed to clarify its organisation,
as also a brief description of what can be found in each chapter.

In this first chapter (Chapter 1), a brief introduction of the main motivation
of this Master Thesis, the application domains and previous work taken as ref-
erence have been explained.

In Chapter 2, the main basis of PCA and a variation to work with finite du-
ration processes will be explained. Then, how these techniques can be used for
process monitoring, and finally, its main benefits and limitations will be exposed.
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A case-based approach to work in the PCA space is introduced in Chapter
3. First, the CBR fundamentals are presented. Then the adaptations needed to
work in the PCA space are exposed. And at the end, the conclusions extracted
from this combination are detailed.

Chapter 4 presents the methodology used for validation and the results ob-
tained. The validation can be divided in 2 main parts: the first one will present
the steps required before the application of the procedure to represent the in-
herent process behaviour. The other one will concern the steps taken during
the methodology application for performance evaluation. After that, a brief
introduction of the domain and its results will be carried.

The main conclusions and contributions of this Master Thesis are presented
in Chapter 5, as also the future tasks to complement this work.

Finally, some bibliographic references that have been consulted during the
writing of this document are presented.
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Chapter 2

Process Monitoring based
on latent structures. The
Multiway Principal
Component Analysis
(MPCA) case

In this chapter it will be introduced a variation of the original PCA technique to
deal with finite duration processes: Multiway Principal Components (MPCA).
First, the basis of PCA will be explained. Then, the previous steps, also known
as pre-process tasks, to apply MPCA will be described. Next, how this proce-
dure reduces the dimensionality, this is, how to select the number of principal
components to keep. In the next 2 sections how the model obtained can be used
for fault detection and diagnosis is detailed. Finally, the main advantages and
drawbacks of this methodology will be exposed.

2.1 Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is a technique for data compression and
information extraction. PCA is used to find combinations of variables or fac-
tors that describe major trends in a data set [39]. That is, PCA is concerned
to explain the variance-covariance structure through a few linear combinations
of the original variables. It is commonly used as a reduction technique and for
interpretation of data structure [40].

Processes involving a large number of variables can be monitored using this
technique. Observations during normal operation conditions are used to build a
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data model. Further it is used to assess the behaviour of the process by check-
ing new observations against this model in the principal component space (fault
detection). In case of detecting an abnormal situation it is possible to identify
(fault location, diagnosis) the variables, in the original space, responsible for
that [40].

2.1.1 Mathematical Formulation

Multivariate data (observations during normal operation conditions) is expected
to be organised in a matrix structure, X, with m variables and n observations.
Variables are assumed to be centred (zero mean) and standardised (unit vari-
ance).

X =


x1,1 x1,2 · · · x1,m

x2,1 x2,2 ... x2,m

...
...

. . .
...

xn,1 xn,2 · · · xn,m

 (2.1)

The sample covariance matrix (S) can be computed with the following ex-
pression:

S =
1

n− 1
XTX (2.2)

And solving an eigenvalue decomposition of the sample covariance matrix S,
the loading vectors for this sample can be obtained:

S =
1

n− 1
XTX = V ΛV T (2.3)

The orthonormal column vectors in the matrix V are commonly known as
loading vectors, and the variance of the training set projected along the direc-
tion described by the i − th column of V , i.e. σi, corresponds to the root
square of the i − th element of the diagonal matrix Λ. That is, the diagonal
matrix Λ contains the non-negative real eigenvalues of decreasing magnitude
(λ1 > λ2 > · · · > λm ≥ 0) with (λi = σ2

i ).

This is equivalent to solve the stationary points of the following optimisation
problem:

max
v 6=0

(
vTXTXv

vT v

)
(2.4)

Where v ∈ Rm are the loading vectors.
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2.1.2 Projection

The most important characteristic when applying PCA is the dimensionality
reduction in the number of variables. This reduction is attained by selecting
the first r columns of the loading matrix to build the matrix P ∈ Rm×r; i.e. the
loading vectors eigenvectors) associated with the first r eigenvalues (r < m).
The projections of the observations in X onto the lower dimensional space are
contained in the score matrix, T , computed as follows:

T = XP (2.5)

And the projection of scores, T , back onto the m-dimensional observation
space can be computed with:

X̂ = TPT (2.6)

The difference between X and X̂ is the residual matrix E, [41]. It contains
a vector for each observation orthogonal to the principal components (scores)
and resumes the variance not captured for the r components selected in the new
space (see Equation 2.7). The principal components represent the selection of a
new coordinate system obtained by rotating the variables after pre-processing
(Subsection 2.2.1 and 2.2.2) and projecting them onto the reduced space defined
by the first r few principal components, where the data are described adequately
and in a simpler and more meaningful way. The principal components are
ordered such that the first one describes the largest amount of variation in the
data, the second one the second largest amount of variation, and so on [42]. By
retaining only the first r principal components, the X matrix is approximated
by Equation 2.7 [43]. Thus, the complete PCA model can be mathematically
expressed as follows [44]:

X =
r∑
j=1

tip
T
j + E (2.7)

Where r is the number of principal components selected following some cri-
teria and grouped in the score vector T = t1, .., tr presented in Equation 2.6.
For example the analysis of cumulative variance captured for the considered
principal components can be used:

r∑
i=1

σ2
i =

r∑
i=1

λi (2.8)

2.2 Multiway Principal Component Analysis

The PCA methodology presented before can be directly applied on two-dimensional
matrices (observations× variables). Finite duration processes are usually rep-
resented by time series of variables representing the execution of the process.
Consequently, a three dimensional matrix is needed to represent the data set
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(observations × variables × time) as shown in Figure 2.1. This added com-
plexity implies to perform a two steps pre-processing before applying the PCA
methodology: unfolding and scaling.

Figure 2.1: 3D data matrix associated with finite duration processes

2.2.1 Unfolding the data

From the six feasible unfolding directions, only 2 of them are meaningful for
monitoring: unfold in the process direction (batch-wise or Nomikos-MacGregor
approach [42]) and unfold in the variable direction (variable-wise or Wold ap-
proach [45]).

The batch-wise approach (Figure 2.2) fixes the processes axis (kept as rows)
and collapse as columns the product of variables × time. So, a row will be
representing each of the processes, and a column represents a time instant of a
given variable for each process. This approach can only be applied whenever all
data of the process is available, what is, when the process has finished, since a
whole row has to be projected. However, in [46] are proposed 3 ways to solve
this problem maintaining the unfolding:

• The remaining values are considered to be the mean trajectory of the
processes.

• All future values have the same deviation than the last sample.

• All future values are predicted from the observed values.

On the other hand, when the normalisation step is carried with this ap-
proach, variations observed in the unfolded matrix represent variation with re-
spect the mean trajectory [47].

The variable-wise approach (Figure 2.3) fixes the variables axis (kept as
columns) and the product processes × time are the rows. In this case, one row
will represent a time instant of a given process and the columns are the values
of one variable for all processes at every time instant. This approach does not
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Figure 2.2: Batch-wise unfolding of the original 3D matrix

require any prediction to be applied at every time instant, but has the draw-
back of leaving the non-linear time variations in the normalised data matrix [47].

Figure 2.3: Variable-wise unfolding of the original 3D matrix

2.2.2 Scaling of the data

The PCA methodology requires the data to be mean-centred, that is, the axis
origin of the new projection space will be the mean value. But there are cases
where some variables present different value range or deviations. In this case,
the data not only has to be centred, it also has to be scaled. In this subsection
the 3 main normalisation procedures when dealing with finite duration processes
will be presented.

Continuous scaling (CS)

The continuous scaling procedure assumes that variables in the data matrix
share the same distribution. So, it will compute 1 mean and 1 standard deviation
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for each of the original variables (J) the following way:

µj =
∑I
i

∑K
k xijk

I ×K
σj =

∑I
i

∑K
k (xijk − µj)
I ×K

(2.9)

This type of normalisation is not usually used because during the process
is not mandatory that variables follow the same distribution, especially if the
process can be divided in phases. Another point to note is that this procedure
does not remove the mean trajectory of the variables along time (the same
drawback that the variable-wise unfolding), what can end in a bad performance
of the monitoring model.

Group scaling (GS)

Group scaling tries to overcome this problem by computing one mean for each
variable for all time instants, so the mean trajectory is eliminated. However, it
still maintains one standard deviation per variable, what results in J × K means
and J standard deviations, computed as follows:

µjk =
∑I
i xijk
I

σj =
∑I
i

∑K
k (xijk − µjk)
I ×K

(2.10)

Computing only 1 standard deviation per variable, it is supposed that the
variability is kept along time in the whole process.

Auto scaling (AS)

When variability changes during the process, it is necessary to compute one
standard deviation at every time instant. This is the basis of auto scaling, so
there will be J × K means and standard deviations, computed:

µjk =
∑I
i xijk

I
σjk =

∑I
i (xijk − µjk)

I
(2.11)

Finally, Table 2.1 shows the number of means and standard deviations com-
puted for each normalisation.

Procedure Number of means (µ) Number of standard deviations (σ)
Continuous scaling J J

Group scaling J × K J
Auto scaling J × K J × K

Table 2.1: Number of means and standard deviation for each normalisation
technique
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2.3 Dimensionality reduction and MPCA mod-
elling

One of the most important points in the MPCA model generation is the num-
ber of principal components to retain, since the two control statistics available
are sensitive to it, due to noise in sensor measurements, the no representation
of some sensors or the redundancy of information related to one sensor. The
combination of the previous situations can lead to miss detections (non detected
fault occurrence). Moreover, fault isolation depends on the correct selection of
the principal components to retain [48].

Several are the techniques in the literature to decide the number of principal
components to keep in the model. Most of them rely on the analysis of the
eigenvalues of the covariance matrix, and are based on analytical and graphical
strategies [49].

2.3.1 Percent Variance Explained

This procedure is based in the percentage of variance explained by the eigen-
values obtained from the covariance matrix (Equation 2.12) [48]. The main
assumption is that until a fixed value of percentage the information retained is
from the variations within the process, and the rest is considered to be noise.

pvfi =

∑i
j=1 λj∑J
k=1 λk

× 100 (2.12)

Where pvfi stands for the percentage of variability explained by factor i,
λ refers to the eigenvalues of the covariance matrix and J is the number of
original variables. Although it is a very simple methodology, it is not very often
considered since each process presents a different variation and normally it is
an unknown value.

2.3.2 Kaiser-Guttman Criterion

This method was presented by Kaiser in 1960 and Guttman in 1954, and is
based on keeping only those principal components with an associated eigen-
value greater than one, because it has no interest to maintain a variable that
brings less information that the original standardised variable [49]. An example
of the application of the methodology is presented in Figure 2.4.

The main drawback of this method is that leads to a rather arbitrary decision
like throw away a factor with an associated eigenvalue of 0.99 and keep another
one with a 1.01 value. Another point to take into account is that this method
tends to overestimate the number of principal components.
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Figure 2.4: Example of the Kaiser-Guttman criterion

2.3.3 Cattell’s Scree Test

This method was developed by Cattell after observing that plots of eigenvalues
versus their respective principal component number presented a characteristic
shape (Figure 2.5). Eigenvalues tend to drop off quickly at the beginning, with
a continuous decreasing up to a curve. After that, the remaining eigenvalues
present a quasi-linear fall. The curve change represents the separation between
the process variation and noise and linear relationships between variables [48].

The main counterpart of this procedure is its subjectivity, since there is no
formal definition for the cut-off point. Contrary to what happened with the
Kaiser-Guttman methodology, this procedure tends to overestimate the number
of principal components to keep.

2.3.4 Representation of original variables

This approach is based on keep principal components until all variables of the
process, or al least the most important ones, are represented. A graphical ex-
ample for representation of a variable is shown in Figure 2.6.

In this Master Thesis, it will be used a consensus among Kaiser-Guttman,
Cattell’s Scree Test and the representation of the original variables.
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Figure 2.5: Example of the Cattell’s criterion

Figure 2.6: Example of the some variables considered represented

2.4 Fault detection : T 2 and Q

Two complementary control charts are usually used for multivariate process
monitoring using PCA. The purpose is to assess new observations against the
PCA model built during normal operation conditions. T 2 and Q statistics are
used to build them. Control charts based on T 2 can be plotted based on the
first r principal components as follows [43]:
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T 2 =
r∑
j=1

tj
2

σ2
j

=
r∑
j=1

tj
2

λj
(2.13)

Where T 2 can be computed for each observation by adding the square of
the r components tj2 weighted by their variances σ2

j (eigenvalues). This results
in a measure of distance (Mahalanobis distance) of each observation to the
centre of the model. A graph or control chart, built with this data is useful
to detect variations in the plane of the principal components (r) greater than
common-cause variations but preserving the structure gathered by the PCA
model. Nevertheless, when a new event, x, in the process produces a large
variation out of the hyperplane described by the r principal components this
implies that the data structure has been broken. This type of event are detected
by computing the Q-statistic or Squared Prediction Error (SPE) of the residual
of each assessed observations defined as ([42], [50]):

Q =
m∑
j=1

(xj − x̂j)2 = (x− x̂)T (x− x̂) (2.14)

Where x̂ = (x̂1, · · · , x̂j , · · · , x̂r) is computed from the reference PCA model
using Equation 2.6. Q-statistic is much more sensitive than T 2 to changes in
the process structure. This is because Q during normal operation conditions
is very small (typically associated to noise) and therefore any minor change in
the process will affect the correlation structure of observed data. T 2 represents
a greater variance and therefore it is less sensible to small variations in the
process. Figure 2.7 represents the NOC region where T 2 and Q thresholds are
defined.

Figure 2.7: Graphical representation of Q and T 2 statistic

2.5 Fault diagnosis: contribution analysis

The role of the contribution plots to fault isolation is to indicate which of the
variables are related to the fault rather than to reveal the actual cause of it [51].
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Once a faulty situation has been detected, the contribution of each variable
in the original space to the individual scores can be analysed and quantified
following these steps if the fault was detected using the T 2 statistic:

1. For a faulty observation x, check the normalised scores (ti/σ2
i ) and deter-

mine the s ≤ r scores responsible for the fault situation (or out-of control
status in terms of statistical process control). For instance, those scores
with: (

ti
σi

)2

>
(
θ2α
) 1

r (2.15)

(ti is the score of the observation projected onto the i− th loading vector,
σ2
i is the corresponding singular value, r is the number of principal com-

ponents used in the representation, θ2α is the T 2 fault detection threshold)

2. Calculate the contribution of each variable xj (in the original space) to
the s out of control scores ti:

conti,j =
ti
σ2
i

pi,j(xj − µj) (2.16)

(pi,j is the element (i, j)−th of the loading matrix P (see subsection 2.1.2);
µj is the mean value of xj)

3. For each process variable xj calculate the total contribution, taking into
account only the positive contributions (conti,j has to be set equal to
zero):

CONTj =
s∑
i=1

conti,j (2.17)

4. Select the variables responsible to the faulty situations from a representa-
tion of all CONTj .

If the statistic that detected the fault was Q, the contribution of the variable
that caused the fault is directly extracted from:

contj,new = (xnew − x̂new)2 (2.18)

Where xnew are the measured variables of a new case and x̂new is the recon-
struction of the values using Equation 2.6 with the retained components.

This contribution computation is centred on the analysis of the data of every
new case. Another feasible approach could be using a comparison. For instance,
all NOC region processes can be used to compute the average and control limits
of the contributions, as in [9]. Another possibility is compare two consecutive
batches (a and b) in order to detect trends in the scores ([52]). This can be done
conducting the following steps:
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1. Compute the contribution of each component by:

conti,j =
J∑
j=1

pi,j × (xb,j − xa,j) (2.19)

2. Assign contti = 0 if the contribution was negative. With this, the de-
tectably becomes higher.

3. Compute the total contribution as in Equation 2.17:

2.6 Conclusions: advantages and drawbacks

As has been shown up to the moment, MPCA is a powerful tool that compresses
information such a way that the variability of the original set is not modified.
Another interesting point of the methodology is that the dimensionality reduc-
tion does not imply to lose the data, actually, the data can be projected back
to the original space by using Equation 2.6. Also, this methodology is based
on a graphical representation of the data, what makes easier the process un-
derstanding and explanation to external people, as also provides some control
statistics for process monitoring. Something to take into account is that the
methodology return variables that are independent among them (orthogonal),
invariant to scaling because the original data has been mean-centred, and with
optimal dimension reduction using the first r principal components, what is, the
minimum reconstruction error is granted.

Although all these great advantages, it has some drawbacks that have to be
considered. First of all, this methodology requires a great amount of data in
order to construct a reliable model. Another initially important requirement
was that the data matrix had to present continuous variables. This is not a
strict requirement nowadays since research in this area is focused on finding
methods to compute the covariance matrix with categorical variables, like in
[53].
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Chapter 3

Case-Based Diagnosis in the
principal component space

In this chapter it will be explained how Case-Based Reasoning (CBR) has been
applied in order to solve some of the drawbacks of the MPCA procedure and
how CBR takes advantage of some of the characteristics of the MPCA space.
First, the basic methodology of the CBR will be explained. Next, cases and case
base definition will be exposed, following with the definition of the similarity
functions and neighbourhoods in the principal component space. Finally, the
conclusions, advantages and drawbacks of the combination of both approaches
will be commented.

3.1 Case-Based Reasoning: the 4R-Cycle

Case-Based Reasoning (CBR) is a reasoning approach to problem solving ca-
pable of using the knowledge acquired by previous experiences [54]. It has
demonstrated to be a good option for solving problems in several domains (di-
agnosis, prediction, control, planning, etc.)[55]. Like in many machine learning
algorithms, the independence of attributes involved in the retrieval of cases is
usually assumed, i.e. when the Euclidean distance is used to defined the neigh-
bourhood. As it is exposed in [56], attribute independence also lets a classifier
to collect the evidence for a class from individual attributes separately. So, the
contribution of an attribute to a class can be determined independently from the
other attributes. This requirement, not only simplifies the learning algorithms
but it also results in a robust performance and simpler models.

The basic functions that all CBR present are known as the 4-Rs [55], and
can be organised in a cycle as depicted in Figure 3.1:

1. RETRIEVE the most similar cases of the new case.

2. REUSE the information in these cases to solve the new problem.
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3. REVISE the proposed solution.

4. RETAIN the new information of the new experience in order to solve new
similar problems.

To solve a new problem, the most similar cases are retrieved from the expe-
riences previously stored. The information contained in these retrieved cases is
then reused to propose a possible solution. Once the solution is evaluated, the
case is retained, if necessary, for further classifications.

Figure 3.1: The CBR cycle

In this Master Thesis the retain function will not be implemented, and the
revise procedure will be commented in Chapter 4 in Section 4.1, since it involves
several steps.

3.2 Case and Case Base definition in the projec-
tion space

The basis of Case-Based Reasoning is the case definition. A case is the minimum
representation of a past experience and its solution [57]. When several cases are
available, they can be grouped in a Case Base.

A basic case structure composed of original observations, scores and the
basic statistics is proposed:

c = {x1, ..., xm, t1, ..., tr, T 2, Q, l}
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Where x1 to xm stands for the m original variables, t1 to tr are the retained
r first principal components (scores). They are obtained with the loadings
(projection operator) obtained with previous observations of the process dur-
ing normal operation conditions. T 2 and Q are the statistical indices used to
measure the adequacy of each observation to the projection model (normal op-
eration conditions) as it has been explained in a previous section. Finally, l
refers to a diagnostic of the observation. In this formulation, for simplicity, l
can be associated with a label reducing the diagnose problem to a classification
one.

3.3 Case-Based reasoning in the principal com-
ponent space

Using the principal components as the descriptors used in the CBR adds the
following interesting features:

• Independence of the new variables, since each component is orthogonal to
the previous one.

• One of the most important aspects in CBR is deciding the importance
degree of each attribute or descriptor. However, when using the scores as
attributes, this task becomes trivial, since the associated eigenvalues of the
retained principal components relates the percentage of global variation
explained, what is the relative weight of each principal component.

• The principal components are inherently ordered, since they are found in
a decreasing order that assure the minimum reconstruction error of the
original data set.

When combining both approaches some benefits should be noted. It can
be seen that the CBR methodology relaxes the number of past experiences
needed for the model generation using the MPCA methodology, because its
inherent capacity to learn from past experiences, that can be used to improve
the original model quality. Another important point is that MPCA provides
two control statistics that separate cases within the NOC region (not important
for monitoring) and cases in the AOC region, that are the ones to be detected.
Thanks to that, the CBR will be used to specify the type of fault, and as a
support to classify those cases near the statistical control limits. So, it can be
seen that the utilisation of MPCA as a previous step of the CBR simplifies and
complements it.

3.4 Similarity based methods for diagnosis in
the principal component space

According to CBR methodology, case reuse will be based on the nearest neigh-
bours criterion. Consequently, neighbourhood based on distance or similarity
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criteria has to be defined. In the following section several similarity criteria
in the principal component space are defined and interpreted for monitoring
purposes. Then, in the following subsection they are combined to identify ap-
propriate neighbourhoods.

3.4.1 Distance criteria in the projection space

Three basic similarity criteria are proposed. The first one is simply an Euclidean
distance in the principal component space whereas the second and third are
basically the comparison of Q and T 2 statistics between observations.

Euclidean Distance between observations in the principal component
space

Taking advantage that the application of PCA results in new r independent
components. The space defined by scores will be appropriate to compute an
Euclidean distance between observations projected on it:

dt(ca, cb) =

√√√√ r∑
i=1

(tca,i − tcb,i)2 (3.1)

Nevertheless, remember that Principal Components are ordered according to
the variance captured in each direction (eigenvalue). Consequently, it is better
to weight each score according to the root square of its eigenvalue, or what is
the same:

dt(ca, cb) =

√√√√ r∑
i=1

(tca,i − tcb,i)2

λi
(3.2)

Where r stands for the number of retained principal components, tca,i is the
i−th score of a case ca, for example a new observation, and tcb,i could represents
the same for an observation in the case base. A geometrical interpretation of
this distance is shown in Figure 3.2. This similarity criterion does not take into
account the adequacy of projections to the model.

Q Similarity

As exposed in Section 2.4, the Q statistic index is related to the projection
error. Consequently, observations with a low value of Q are consistent with the
projection model (obtained with observations gathered during normal opera-
tion conditions) and they will close to the hyperplane defined by the r retained
principal components. On the other hand, observations with a large Q are ex-
pected to be inconsistent with the model structure and consequently they are
candidates to faulty situations.
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Figure 3.2: Similarity based on the Euclidean distance with two principal com-
ponents

Therefore, observations with a similar Q can be used to identify similar
operation conditions (normal or abnormal). A simple difference can be used to
compute this similarity:

dQ(ca, cb) = |(Qca
−Qcb

| (3.3)

A possible geometrical interpretation of this distance is showed in Figure 3.3.

Figure 3.3: Similarity based on the Q statistic distance

T 2 Similarity

In Section 2.4 the statistic T 2 has been presented as a measure of the distance
(Mahalanobis distance) of an observation to the centroid of the model. In fact,
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it is a square distance and represents the dispersion from the mean of the model
since the scores are normalised (unit variance) previous to compute the T 2 index.

Low values of T 2 represent observations close to mean whereas high values of
T 2, over the control limits, are evidences of an abnormal behaviour; although it
does not necessary implies that the correlation structure has been broken (this
will depend on Q).

Similarity according to the statistic T 2 will be computed as follows:

dT 2(ca, cb) =
∣∣T 2
ca
− T 2

cb

∣∣ (3.4)

And a possible geometric interpretation is shown in Figure 3.4.

Figure 3.4: Retrieval space using the T 2 statistic

3.4.2 Neighbourhood in the monitoring space

The neighbourhood of an observation ca computed with a distance d can be
designed by the observations closer than a threshold θ as the following relation
suggests:

Nd(ca, θ) = {ci/d(ca, ci) ≤ θ} (3.5)

Based on this definition several combinations can be defined to retrieve a set
of observations useful for process monitoring. For example the neighbourhood of
observations of normal operation conditions (NOC) are expected to be around
the origin in the principal component space. Therefore, they would be retrieved
as the neighbours of a representative theoretical case located in the origin of
coordinates, c0, with a confidence level α by selecting an appropriate value for
the thresholds (θT 2 = T 2

α and θQ = Qα).

NNOC = NdT2 (c0, T 2
α) ∩NdQ

(c0, Qα) (3.6)
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Operating in a similar way is possible to select the nearest observations with
a similar deviation with respect to the projection model, in terms of Q or T 2

using the following relations. Once an observation ca has been projected and
the resulting Q evidences that it is not consistent with the model structure, then
a focalised search among neighbours with the same dissimilarity can be useful
for diagnosis purposes.

NQ∧t(ca) = Ndt
(ca, θt) ∩NdQ

(ca, θQ) (3.7)

The intersection is proposed as a refinement of the neighbourhoods when
specific search are required. In a similar way, neighbourhood can be restricted
to the observations in the hyperplane defined by scores and with a similar value
of the index T 2 using the following sentence (Figure 3.5):

NT 2∧t(ca) = Ndt(ca, θt) ∩NdT2 (ca, θT 2) (3.8)

Figure 3.5: Neighbourhood of a new case based on similarity in the T 2 hyper-
plane

Other useful neighbourhoods can be those defied to retrieve the most similar
cases of ca inside the region defined as normal operation conditions (Figure 3.6).

NNOC∧t(ca) = NNOC ∩Ndt(ca, θt) (3.9)

Or in case of focusing on the observations out of the NOC region:

N¬NOC∧t(ca) = Ndt(ca, θt)−NNOC∧t(ca) (3.10)

3.5 Conclusions: advantages and drawbacks

In this chapter the usage of a CBR methodology has been presented. As was
mentioned in the previous chapter, the application of the MPCA procedure pro-
duces new variables that are independent among them, a key point when apply-
ing any machine learning algorithm. With the combination of both techniques
the necessity of a great number of processes to generate a model is relaxed, since
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Figure 3.6: Neighbourhood of a new case included in the NOC region

the case base will complement the MPCA model. Another interesting feature
obtained with the combination of both approaches is that the operator does not
require a deep knowledge of the process to interpret the fault occurrence. For
instance, when only using the MPCA contribution plots, the interpretations of
the graphics were dependant to the knowledge of the operator in charge. With
the utilisation of the CBR engine, the explanation of the errors can be in a more
natural way, by specifying with comprehensive explanations the faults, although
both approaches are complementary.

But the combination of both techniques also presents some drawbacks. The
first one, and most significant is that past situations and its solutions (existence
of an initial case base) correctly classified to apply the methodology. Related
with the case base, the resulting combined model will be capable of classify
the fault occurrence in the present typologies in the case base, as well as the
information that can be extracted depends exclusively to the one contained in
the cases. To solve this problem, novelty discovery techniques could be applied
once a fault can be labelled with a unique class. And a common disadvantage
to all supervised learning techniques is that when a new case arrives, it is not
possible to know whether the classification was correct or not. Actually, one
of the methodologies used to validate the classification can be used to compute
the ratio of well classification as well as how behaves the model when wrongly
classify cases, that is, computing the Confusion Matrix explained in the following
chapter.
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Chapter 4

Application domains,
examples and validation

In this chapter, first the methodology to validate the classification performance
of the methodology will be explained, followed for the results obtained in the
tested fields.

4.1 Validation

In this section it will be presented the methodology to evaluate the performance
of the classification in an objective way, or the so-called revise CBR functionality.

4.1.1 n-Fold Cross Validation

In n-Fold Cross Validation, the available data is divided into n folders contain-
ing approximately the same number of examples. The stratified version of this
technique takes into account the several ratios among classes present in the orig-
inal set. Once the data is divided, one of the n folds of samples is retained for
validation of the model formed by the remaining n−1 data fold. This process is
repeated n times (once for each fold) [58]. Figure 4.1 presents this methodology
in a graphical way.

4.1.2 Confusion Matrix and performance indices

In order to evaluate the classification performance, the confusion matrix is used.
A confusion matrix is a form of contingency table showing the differences be-
tween the true and predicted classes for a set of labelled examples, as is shown
in Table 4.1 [59].

Where TP stands for True Positive (cases correctly predicted from the ref-
erence class), FP for False Positives (cases classified of the reference class with
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Figure 4.1: n-Fold Cross Validation graphical procedure

Real Class
Ref No Ref

Predicted
Class

Ref TP FP
No Ref FN TN

Table 4.1: Confusion Matrix elements

its real class being non reference), FN for False Negative (cases classified as
non reference class and its real class being of the reference class) and TN for
True Negative (cases correctly classified as non reference class). Using this in-
formation, some statistics can be computed, for example:

Accuracy

Accuracy measure the proportion of correctly classified cases among all the cases
used for testing, and is computed as:

Accuracy(ACC) =
TP + TN

TP + TN + FP + FN
(4.1)

Precision

Precision measure the proportion of correctly classified cases from the reference
class from all cases that were predicted as the reference one, and is computed
by:
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Precision(PRE) =
TP

TP + FP
(4.2)

Sensitivity

Sensitivity measures the ratio between cases correctly classified as the reference
class among all cases that have been predicted as the reference class, and is
computed by:

Sensitivity(SEN) =
TP

TP + FN
(4.3)

Specificity

Specificity measures the ratio between cases correctly classified as non reference
class among all cases that have been predicted as non reference class, and is
computed by:

Specificity(SPC) =
TN

TN + FP
(4.4)

In this Master Thesis, the relation with FP and FN will be used to estimate
the trust of a classifier when the real class is not known.

4.1.3 Receiver Operating Characteristic (ROC) curve

The ROC curve representation is a two-dimensional graph where the y-axis rep-
resents sensitivity and x-axis represents the False Positive Rate (FPR), or what
is the same, 1- Specificity. Observe that the lower left point (0,0) represents a
classifier that never classifies correctly the cases of the model. The upper left
point (0,1) represents the perfect classifier (it never misses to classify the cases
of the model, and also determine correctly the cases that are not represented by
the model) and the upper right point (1,1) represents a classifiers that always
classifies correctly cases fitting the model, but always classifies incorrectly cases
different from the model [60]. Figure 4.2 presents a ROC curve constructed the
way described in this section.

4.1.4 Area Under the ROC Curve (AUC)

Because in some operating points sensitivity can be increased with a minor loses
in specificity and in others this is not possible, a non-ambiguous possible com-
parison of performance can be achieved by computing the Area Under the ROC
Curve (AUC). A simple way of computing this value is using the trapezoidal
integration method described in [59].
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Figure 4.2: Example of ROC curve

AUC =
∑
i

{(1− βi ×∆α) +
1
2

[∆(1− β)×∆α]} (4.5)

∆(1− β) = (1− βi)− (1− βi−1) (4.6)
∆α = α− αi−1 (4.7)

Where βi represents the specificity value of the actual point (i), βi−1 repre-
sents the specificity value of the previous point (i−1), α represents the sensitivity
value of the actual point (i) and αi−1 represents the sensitivity value of the pre-
vious point (i− 1). This value will be used to select the best classifier, since it
measures the overall classification ability of the classifier.

4.1.5 Detection of outliers

Once the number of principal components has been fixed, the last step to con-
duct when constructing the model, is to remove the cases too far from the centre
of the model to adjust the control limit. When the covariance matrix is used,
the limit to consider one case as an outlier can be computed with the following
equation:

T 2
α =

(n− 1)2(m/(n−m− 1))Fα(m,n−m− 1)
n(1 + (m/(n−m− 1)))Fα(m,n−m− 1)

(4.8)

However, in this Master Thesis this equation will not be used since the limits
found in each field were too narrow resulting in a high FP ratio. In fact, and
taking advantage of the CBR methodology to correct cases that could lead to
wrong classifications, the following outlier detection limit is proposed:
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OUTLIER(ci) = {T 2
i ≥ 3× T 2 lim ∨Qi ≥ 3×Q lim} (4.9)

Where ci is the case being studied, T 2
i and Qi are the respective control

statistics values and T 2 lim and Q lim are the control limits based on a confi-
dence level computed as was explained in Chapter 2. In this case, the confidence
level used was 95 %. Whenever outlier cases are found, a new model removing
those cases has to be calculated and the methodology to decide the number of
components has to be applied. This procedure is repeated until no outliers are
found using this criterion. A graphical example of this criterion is presented in
Figure 4.3.

Figure 4.3: Example of two outliers found using the proposed outlier detection
limits

4.2 Wastewater Treatment Plants

In this section the results obtained in a Sequencing Batch Reactor (SBR) for
the wastewater treatment are presented. In order to do so, first a brief introduc-
tion to the process studied will be presented. Then the pre-treatment done to
the original data will be exposed, followed by how the MPCA model has been
created, as also the additional steps carried to best adequate it. Finally, some
results obtained for faulty situation assessment will be presented.
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4.2.1 Case study: Sequencing Batch Reactors (SBR) in
LEQUIA research group

The main characteristic of a SBR is that the whole process occurs in the same
reactor, following a sequence of phases, while in a continuous wastewater process
plant, each phase occurs in different reactors. The SBR process is an effective
alternative to treat wastewater from domestic and industrial waste [8]. This
cycle consists of 4 main phases that are:

1. Fill: The influent wastewater is pumped into the reactor to be treated.

2. Reaction: Aerobic and anoxic conditions are combined to consume the
substrate from the influent wastewater.

3. Settle: This phase occurs once all reaction phases have been done. In this
phase, the excess sludge is drained.

4. Draw: This is the last phase and happens once the process finishes. The
treated water is drawn from the reactor and waits until new water has to
be treated.

The SBR plant of the LEQUIA group can be configured in several ways. The
methodology this Master Thesis is based on will be applied only in a specific
configuration that lasts 8 hours: 2 repetitions of the fill and reaction phases and
1 settle and draw phases combined as shown in Figure 4.4 . This decision is
based in that this configuration presents the best characteristics for class sepa-
ration, as explained in [9].

Figure 4.4: Configuration of the SBR of LEQUIA group used in this section

4.2.2 Pre-treatment of the data

The data given by LEQUIA consist of measurement of 4 variables (DO, pH,
ORP and Temperature) sampled every 5 seconds. As mentioned before, the
length of each process is of 8 hours, what makes a total number of time instants
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measured 5760.

Since compute this huge amount of data would carry a very high computa-
tional cost, and taking into account that reactions in biological processes are
very slow, the number of samples will be reduced to one for minute, consider-
ing the different phases that conform the wastewater cycle. This will be done
according the following methodology:

1. Each batch is divided in its respective phases. Then, the data referred
to the settling, drawing and wastage are discarded, since no biological
information is contained in this phases [8].

2. For each remaining phase, at every 12 instances (1 real time minute) the
minimum and maximum value are eliminated.

3. The mean (x̄) of the remaining values (xi) is computed, using the following
equation:

x̄ =
∑10
i=1 xi
10

(4.10)

4. x̄ is the value stored and that will be used to apply the MPCA method-
ology.

The original (Figure 4.5 a)) and resulting (Figure 4.5 b)) of resampling the
original data are nearly the same, so by this pre-processing step results won’t
be altered.

4.2.3 MPCA model creation

The unfolding procedure used in this scenario is the batch-wise, since the goal
is to classify the whole process. 3 main classes were labelled by the LEQUIA
experts and are presented in Table 4.2. Something to note in this scenario is that
52 processes couldn’t be assigned a known class since didn’t get an associated
quality variable and were discarded. Finally, and as was explained in Chapter
2, the type of processes used in the model creation step are the NOC ones, that
in this scenario is associated with the good quality batch.

Class Shape of Quality Control Variables Number of processes
Good Correct 98

Regular Correct but present a gain 74
Bad Not correct 62

Unknown – 52

Table 4.2: Subdivisions of the SBR plant data and related information
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Figure 4.5: Comparison of the original data (up) with the resampled data
(down)

After comparing the resulting models of both batch-wise and variable-wise.
the scaling procedure chosen is the group scaling. Although both models pre-
sented a similar performance, the usage of the group scaling ended in better
classification results. The remaining task to create the model is selecting the
number of principal components to keep. Although only one principal com-
ponent presents an associated eigenvalue greater than 1, adding the Cattell’s
criterion and representation of the original variables, the number of principal
components chosen is 4, as shown in Figure 4.6. The loading vectors associated
to each principal component are shown in Figure 4.7, with a red ellipsoid over
the represented variables in the loadings. The resulting model explains a 74.6
% of the global variability.

Finally, the last task to perform is check for the presence of outliers. Using
the proposed methodology (Equation 4.9). 5 cases have been labelled as out-
liers, presenting a completely different shape of those cases considered to be in
the NOC region. So, in this case and according to Table 4.2, outliers will be
associated to bad quality batches. An example of a case labelled as outlier in
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Figure 4.6: Graphical representation of all criteria used to decide the number
of principal components

this scope and the mean shape of NOC region cases are presented in Figure 4.8.

4.2.4 Results

In this scenario, 234 cases are available. The number in which the case base will
be divided using the Stratified n-Fold Cross Validation will be 4. According to
the principle used in statistics to determine whether a set of numbers follow a
random distribution, its number has to be at least 50. So, three of the fold will
have 57 cases (with the same ratio as the whole case base) and the last one will
have 59. The distribution of cases is shown in Figure 4.9, and in Figure 4.10 is
presented how this cases are distributed in the Q and T 2 statistics in Fold 1.

As it can be seen, all folds present a similar distribution in the principal
components space. So, it is expected that all folds present similar performance
indices. The distance criteria used for testing will be all the ones exposed
in Chapter 3: distance in the principal components space (Equation 3.2), Q-
similarity (Equation 3.3) and T 2 similarity (Equation 3.4). On the other hand,
three more distance criterion are proposed, and result from the combination of
the previous ones. Those three distance criteria are also related to the neigh-
bourhoods exposed in Chapter 3. From the ones exposed there, the following
modifications have been done:
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Figure 4.7: Loadings of the 4 principal components retained with the variables
represented in each one

Figure 4.8: Outlier case (left) and mean shape of the NOC processes (right) of
the SBR plant

• Distance in the NOC region. First, the Q distance for every new case using
Equation 3.3. From all cases in the case base, only will be retained the
k1 cases with lesser distance. From the remaining cases, the T 2 similarity
will be computed using Equation 3.4. Finally, only the k2 cases with a
lower value using this distance will be used to predict the class of the new
case.

• Similarity in the Q region. This distance criterion consists in computing
the Q distances using Equation 3.3 and then, retain those k1 cases with
a minimum distance of the new case. Next, the distance in the principal
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Figure 4.9: Distribution in the PC space of all the folds the case base has been
divided the SBR data

components of the remaining cases is computed using Equation 3.2. Fi-
nally, the k2 most similar cases will be used to predict the class of the new
case.

• Similarity in the T 2 zone. First, the distance to the centre of the model is
computed using Equation 3.4. Then the k1 nearest cases are selected, and
its similarity to the new case is computed using Equation 3.2. Finally, the
k2 nearest cases will be used to determine the class of the new case.

When comparing all the results obtained with each distance criterion, it
was observed that all where the same. Those results are presented in Table
4.3, where k1 stands for the number of neighbours kept in the first step of the
combined distances, k2 is the number of neighbours kept in the second level
of the combined distances. TP are the True Positive classification, FN stands
for the False Negative cases, FP are the False Positive ones and TN are the
True Negative classifications that were presented in Subsection 4.1.2. ACC,
SEN, PRE and SPC are respectively the accuracy, sensitivity, precision and
specificity that were presented in Subsection 4.1.2. Finally, AUC is the Area
Under the ROC curve computation that was presented in Subsection 4.1.4.

If the same results are obtained with several distance criteria, it means that
the number of neighbours kept is more important than the distance itself. Two
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(k1, k2) TP FN FP TN ACC SEN PRE SPC AUC
(20,5) 85 5 8 131 0.943 0.913 0.946 0.964 0.9840
(20,3) 88 4 5 132 0.960 0.946 0.958 0.970 0.9870
(20,1) 92 2 1 134 0.987 0.989 0.980 0.985 0.9874
(15,5) 83 6 10 130 0.930 0.891 0.932 0.956 0.9647
(15,3) 84 6 9 130 0.934 0.903 0.935 0.956 0.9613
(15,1) 88 2 5 134 0.969 0.945 0.978 0.985 0.9656

Table 4.3: Classification results over the SBR plant

main options can be the cause this situation: the groups in the classification
space are clearly separated or the method to determine the class of a new case
has produced this effect. The distribution of the Q and T 2 values has studied
to find if classes were clearly separated. The distribution of the first fold is pre-
sented in Figure 4.10. In here, it can be seen that exists intersections between
the different classes, what means that the cause of the similarity of the results
is due to the reuse function.

Figure 4.10: Distribution of cases grouping by Q and T 2 values in the training
and test sets

Analysing the results obtained, the best classifier is the one with the great-
est AUC (in this case the configuration k1 = 20, k2 = 1). It also presents the
best classification indices, although this is not mandatory. This can be observed
graphically when representing the ROC curves of all tested classifiers in Figure
4.11, because this classifier is the nearest classifier to the point (0,1) at all points.
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Figure 4.11: ROC curves of all tested classifiers in the WWTP field

Name t1 t2 t3 t4 Q T 2 l d
SBRs1502200671 (MC) -0.309 0.542 -0.210 -5.026 0.778 0.528 2 –
SBRs1502200663 (NN) 0.190 0.604 -0.448 -4.990 0.610 0.525 1 0.558
SBRs1201200561 (MC) -0.957 -0.409 1.215 0.501 0.804 0.197 3 –
SBR1201200563 (NN) -0.789 0.112 0.261 0.474 0.659 0.092 1 1.105
SBRs1502200626 (MC) -0.087 0.148 4.168 -0.877 2.433 0.610 1 –
SBR1201200554 (NN) -0.909 -0.577 3.339 0.729 2.259 0.536 3 2.114

Table 4.4: Information of the wrong classified cases and its nearest neighbour

Miss classified cases for this classifier are detailed in Table 4.4, where MC
stands for miss classified case, NN for nearest neighbour, from t1 to t4 are the
four retained principal components values of each, Q and T 2 are the statistical
control limits of those cases, l is the associated class label of the case and d
stands for the distance between the miss classified case and its nearest neighbour.
Finally, when using the basic distances, the number of neighbour retained is the
minimum value between k1 and k2.

As can be seen, the main cause of the erroneous classification of the cases
is that the nearest neighbour is from another class. The main cause of this
situation is that only one analytical result was available per test day, and since
in one day there were 3 processes of 8 hours, it was decided to assume the same
quality for all the processes of the same day. Figure 4.12 is presented the first
miss classified case in this field. It can be seen that their shapes are practically
the same, but if both shapes are compared with the mean shape of the NOC
region cases presented in Figure 4.8, it can be seen that the nearest neighbour
class should be consulted with an expert to decide whether is correctly labelled
or not. The same criterion can be applied for the other two miss classified cases.
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Figure 4.12: Comparison of the first case wrong classified in the SBR process
with its nearest neighbour

4.3 Power Quality Monitoring

In this scenario, the methodology is used to determine the origin of voltage sags
(upstream or downstream) registered in 25 kV substations of the catalan power
network. A voltage sag is the reduction of voltage (10 % and 90 %) during a
short time (between 0.5 periods and 1 second). MPCA has been used to model
waveforms of voltage and currents of those sags registered by power quality
monitors. This allows an enormous reduction of the dimensionality and at the
same time the temporal dependency of data is avoided in the projection space.

4.3.1 Relative location of voltage sag in a real power dis-
tribution network

The goal in this scenario has been focused on the discrimination between sags
originating in the transmission (HV) and distribution (MV) networks. With this
aim, sags registered in three 25kV distribution substations have been used as
case base. Additionally, the utility has provided information related to the rel-
ative origin, upstream (HV) or downstream (MV) from the transformer. More
concretely, the classification method is based on the definition of similarity cri-
terion in the projection space obtained when the PCA is applied to sags wave-
forms. The method proposes the exploitation of the whole information contained
in the voltage and current waveforms instead of obtaining features from them.
With this goal PCA is used to cope with the dimensionality problem at the
same time that it provides statistical indices to assess the quality of projected
data in terms of adequacy to the projection model. A graphical representation
on this scenario is presented in Figure 4.13, as well as the characteristic shape
of the HV and MV voltage sag.
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Figure 4.13: Graphical representation of relative location of voltage sags from
a measure point, and characteristic shape of the HV and MV voltage sags

4.3.2 Data pre-treatment

The registers of the voltage sags used in this scenario were supplied by the Power
Quality Department of ENDESA Distribución. They consist of 221 voltage sags
captured during 2004 in a subset of 3 catalan substations, with 140 HV and 81
MV voltage sags. The information contained in those archives is the instanta-
neous simple and compound voltage and current measures. Due to voltage sags
are defined over the RMS values, a Short Fourier Transform (SFT) has been
used to calculate the RMS. A one cycle sliding window has been used for this
purpose. Figure 4.14 depicts this computation of the RMS value.

After computing the RMS, the number of cases of each class was reduced to
100 HV and 73 MV voltage sags, since there were registers that not presented
a pre-fault stage, what would cause misalignment among cases and resulting in
a noisy model. An example of a register without pre-fault stage is presented in
Figure 4.15.

4.3.3 MPCA model creation

The normalisation procedure used in this scenario is the group scaling, since
it rendered the least control limits values and principal component range when
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Figure 4.14: Graphical effect of computing the RMS value from the instanta-
neous ones

Figure 4.15: Voltage sag without a pre-fault stage

comparing with the auto scaling. In this scenario the HV class will be used to
generate the MPCA model, since it presents the least variability of the voltage
sags gathered from the 3 substations. Moreover, when comparing the models
obtained with a single class with another one created with two classes, the first
performs better because the bigger discriminant capability. A comparison be-
tween those two models is shown in Figure 4.16.

An example of an outlier case removed in this scenario is presented in Figure
4.17. After removing those cases, 2 principal components have been retained
(Figure 4.18 a)). The associated loading vectors are shown in Figure 4.18 b)
and c). Although the first principal component explains all the variables, it has
been decided to keep an additional principal component by consensus with the
other 2 criteria.

53



Figure 4.16: Comparison between a MPCA model created with a single class
and a model with both classes

Figure 4.17: Example of an outlier case in the Power Quality Monitoring

4.3.4 Results

In this scenario, after removing all outlier cases and those voltage sags that not
have a pre-fault phase, 169 cases are available. The criterion used to decide
the number of folds in this field will be that all folds present at least 50 cases.
So, the case base will be divided in 3 parts. The distribution in the principal
component space is presented in Figure 4.19. As it can be seen, the distribution
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Figure 4.18: Sedimentation plot with the selection of principal components
criteria and the associated loading vectors of the retained factors

of the cases and the classes is practically the same.

The distance criteria that have been used for testing the methodology are
all distance computations explained in Chapter 3 (distance in the principal
components space using Equation 3.2, Q similarity using Equation 3.3 and T 2

similarity using Equation 3.4). Also, the three following combinations of these
basic distances will be used:

• Distance in the NOC region. First, the Q distance for every new case using
Equation 3.3. From all cases in the case base, only will be retained the
k1 cases with lesser distance. From the remaining cases, the T 2 similarity
will be computed using Equation 3.4. Finally, only the k2 cases with a
lower value using this distance will be used to predict the class of the new
case.

• Similarity in the Q region. This distance criterion consists in computing
the Q distances using Equation 3.3 and then, retain those k1 cases with
a minimum distance of the new case. Next, the distance in the principal
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Figure 4.19: Distribution in the PC space of all the folds the case base has been
divided

components of the remaining cases is computed using Equation 3.2. Fi-
nally, the k2 most similar cases will be used to predict the class of the new
case.

• Similarity in the T 2 zone. First, the distance to the centre of the model is
computed using Equation 3.4. Then the k1 nearest cases are selected, and
its similarity to the new case is computed using Equation 3.2. Finally, the
k2 nearest cases will be used to determine the class of the new case.

The results obtained using all these distances were the same and are pre-
sented in Table 4.5, where k1 is the number of neighbours kept in the first
level, k2 is the number of cases retained in the second level of the composed
distances. TP, FN, FP and TN stands respectively for True Positive, False
Negatives, False Positives and True Negative that were presented in Subsec-
tion 4.1.2. ACC, SEN, PRE and SPC are the related performance indices of
a Confusion Matrix presented in Subsection 4.1.2 and that stand for accuracy,
sensitivity, precision and specificity. Finally, AUC refers to the Area Under the
ROC Curve that was explained in Subsection 4.1.4.

The best classifier is the one with the highest value of AUC. In this case,
this classifier is (k1 = 15, k2 = 5), although it didn’t present the best individual
performance indices in all measures. However, in Figure 4.20 is analysed, it can
be seen that this classifier presents a more regular classification performance.
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(k1, k2) TP FN FP TN ACC SEN PRE SPC AUC
(20,1) 93 5 3 68 0.952 0.968 0.950 0.932 0.950
(20,3) 93 4 3 69 0.958 0.968 0.960 0.946 0.974
(20,5) 93 5 3 68 0.952 0.968 0.949 0.932 0.981
(15,1) 92 4 4 69 0.952 0.958 0.959 0.945 0.951
(15,3) 91 2 5 71 0.958 0.947 0.979 0.972 0.978
(15,5) 93 3 3 70 0.964 0.968 0.968 0.958 0.990

Table 4.5: Classification results of the Power Quality Monitoring scenario

On the other hand, the classifier that presents the better individual classifica-
tion is (k1 = 15, k2 = 3) because has the nearest point to (0,1) in the ROC
space. As a general note, it can be also observed that all tested classifications
present a good and similar performance because the majority of points are close
to the perfect classification zone (0,1).

Figure 4.20: ROC curves of all tested configurations of the classifiers in the
Power Quality Monitoring

Misclassified MV cases that have been labelled as False Positive are asso-
ciated to a typology of electrical fault (transformer energising) that presents a
similar shape than an HV cases in the voltage waveform, although they present
an increase in the current waveform. An example of one of those misclassified
cases associated is presented in Figure 4.21.

On the other hand, HV cases misclassified as MV (False Negative) are those
cases that present a similar distance between HV neighbours and MV neigh-
bours. As an example, the distances to one of these misclassified cases is pre-
sented in Table 4.6, where NN stands for the position among the nearest neigh-
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Figure 4.21: Example of a MV case that has been misclassified as an HV one

bours, Distance is the distance between the neighbour and the misclassified case
and Class is the relative location of the voltage sag (HV or MV).

NN Distance Class
1 0,263 HV
2 0,436 HV
3 0,478 MV
4 0,552 HV
5 0,566 MV

Table 4.6: Nearest Neighbours of an HV misclassified case

A visual interpretation of this situation is presented in Figure 4.22, where
the neighbourhood of the misclassified case in the Q-T 2 space is presented.

In this case, if a voting computation had been used, those cases would be
classified correctly. Another possibility maintaining the actual method would
be change the threshold value, but as can be seen in Figure 4.20 none of the
classifiers presented a point with all cases classified correctly.

Finally, the last point to check is the reason because all distance criteria gave
the same results. Two can be the main causes: classes are clearly separated or
the class determination procedure. It can be seen that in Figure 4.23, actually
there is intersection in the grouping of Q and T 2 values of both classes, so the
responsible of obtaining the same results using all distances is the reuse function
of the CBR.
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Figure 4.22: Distribution of a misclassified HV case in the Q-T 2 space and its
nearest neighbours

Figure 4.23: Distribution of cases grouping by Q and T 2 values in the training
and test sets

4.4 Plastic injection moulding process

In this scenario, the methodology will be used in order to detect and diagnose
fault occurrence of an injection moulding. First, a brief introduction about
injection and moulding is done. Then the data pre-treatment applied to the
original data set will be explained, followed by the steps carried to create the
MPCA model used for fault diagnosis. Finally, some results in this scenario will
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be explained.

4.4.1 Fault detection and diagnosis of a plastic injection
moulding machine

This scenario is included in the EMOLD project (COLL-CT-2006-030339). The
aim of this project is to propose a new concept for the plastic injection mould-
ing industry: make moulds a networked element that can be accessed in real
time to correct any deviations using embedded knowledge. This knowledge will
be based on the information captured from the injection process sensors and
experts. The main advantages of this project are mainly related with the im-
provement of the life cycle of the process.

More concretely, the injection moulding machine studied is presented in
Figure 4.24. This process has 24 sensors that collect information of several tem-
peratures, pressures and cylinder positions that will be used to determine the
correct evolution of the injection.

Figure 4.24: Plastic injection process studied

Four different faults have been defined in sensors:

• Gain error in sensors (T1).

• Saturations (T2).

• Loss of signal (T3).

• Blass error in sensor (T4).

Those misbehaviours have been created artificially by modifying some reg-
isters associated to real injections during normal operation.

The normal operation condition cases have been used to create the MPCA
model. Whereas the modified ones are used in the test phase. The goal is to
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observe regions in the projection space associated with specific misbehaviours
that make feasible the use of neighbourhoods for fault detection and diagnosis.

After studying each combination of variable and fault type, it can be dis-
criminated 4 regions of detectability:

• Non detectable faults (ND). Neither the principal components, the Q-
residual nor the Hottelling’s T 2 does not present a major trend for those
faulty sensors.

• Faults detectable with Hottelling’s T 2 (DT 2). As its name state, those
faults present a higher value of T 2 for those injections with faulty sensors
considered not in the NOC region.

• Q-statistic detectable faults (DQ). As the previous one, Q-statistic presents
higher values for the faulty sensors.

• Full detectable faults (D). This typology not only presents variations
on both control statistics, it also presents a major trend in a subset of
principal components.

4.4.2 Data organisation

The original data set was formatted by a two dimensional matrix where rows
represent all time instants registered in the file, multiple injections, and columns
represent all measured variables. The dimensions of this data matrix are 32190
rows and 24 columns. Variable names will be labelled from V1 for the first vari-
able to V24 for the last variable. In order to obtain a model for the injections
it is needed to identify the beginning and end of each injection and build the
3-D matrix. Special interest in this step is because the need of data perfectly
aligned (correspondence among significant instants of different injections) when
building the 3-D matrix. One of the most critical variables of the process, tem-
perature sprew, represented by V16, has been used to identify the beginning of
each injection and the duration. The resulting division of the original data is
presented in Figure 4.25. The resulting dimensions of the 3D matrix are 38 time
instants per injection, 24 variables and 838 injections, or what is the same (38
× 24 × 838).

Since all variables presented an important variability after dividing the origi-
nal data into injections, those with the lowest variation in the y-axis were erased
after verifying their low information gain when building the statistical model.
The remaining variables that will be used in the MPCA methodology can be
seen in Figure 4.26. The total number of variables retained is 15, that will be
labelled from X1 to X15 and the new 3D matrix will be of the following dimen-
sions: 38 time instants × 15 variables × 838 injections.
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Figure 4.25: Division of the data in injections using V16

Figure 4.26: Variable retained for the MPCA model creation

4.4.3 MPCA model creation

The unfolding procedure that will be applied in this scenario because no quali-
tative data is available about the process will be the batch-wise.

The cases that will be used to create the MPCA model will be the whole
set of available cases, and the statistical control limits will be used to detect
undesired behaviours in the model. Because temperature and pressure present
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different value ranges and variability, a normalisation step is needed. In this
scenario, the auto scaling and the group scaling procedures gave different solu-
tions as can be seen in Figure 4.27. In fact, the group scaling procedure couldn’t
eliminate the non-linear behaviour of the variables, reflected in a first principal
component with a great amount of variability (Table 4.7) and at the same time,
in the second principal component an inverted U distribution of cases can be
observed [61]. So the auto scaling procedure will be the one used in this scenario.

Figure 4.27: Comparison of the models obtained with the auto scaling and group
scaling procedures

PC λ % Global Variance explained % Global Variance accumulated
1 7.20 48.03 48.03
2 5.05 33.67 81.70
3 0.69 4.66 86.37
4 0.52 3.51 89.89
5 0.44 2.95 92.84

Table 4.7: Group scaling information related to the first 5 principal components
in the plastic injection scenario

Once the normalisation step has been fixed, the next step is to find all outlier
cases, that in this case will be associated to the AOC region. In this scenario,
two of the injections labelled as outliers were too short injections where detected
using the T 2 statistic as it is shown in Figure 4.28.

The values of these too short injections (Processes 128 and 838) are pre-
sented in Figure 4.29. The rest of outlier cases are the misaligned cases that
could be observed in Figure 4.26.
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Figure 4.28: Detection of the too short injections in the Q-T 2 space

Figure 4.29: Two processes too short that were detected using the statistical
control limits

When outliers have been removed from the training set, the last task is to
decide the number of principal components to retain. In this case, the number

64



has been fixed to 3. According to Figure 4.30 b), most of the variables are
explained in the first principal component. However, until loading vector 3, the
remaining variables are not explained. The graphical representation to select
the number of principal components is shown in Figure 4.30 and the loading
vectors of the retained principal components are presented from 4.30 b) to d).
The global variation explained by the model is 45.72 %. The residual percentage
of this model can be divided in more information of the sensors (the procedure
to select the number of components stops when all variables are represented)
and noise in the processes.

Figure 4.30: Graphical representation of the criterion used to select the number
of principal components and the respective retained loading vectors

4.4.4 Results

After removing all outlier cases, 830 injections are available to evaluate the
methodology in this scenario. As it was mentioned previously, 50 faulty cases
for each combination of typology and type of sensor has been created and stud-
ied. In this section, and since the great number of combination that exists (15
variables × 4 fault typologies = 60 types of faults) only a subset will be studied
using all types of faults presented previously:

• Fault in sensor 5 is full detectable (FD) whence the typology T1 and T3
are given, while for T2 it is non detectable (ND) and for T4 it is only
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detectable using the Q statistic (DQ).

• Fault in sensor 6 is full detectable (FD) when T3 happens, it is detectable
by Q (DQ) in T4 and T1 and it is non-detectable (ND) by T2.

• Fault in sensor 8 is detectable by the Q statistic (DQ) in all types of fault.

• Fault in sensor 12 is detectable using the Q statistic (DQ) in all types of
faults, although in type T4 it also is detectable by T 2 (DT 2).

• Fault in sensor 15 is non-detectable (ND) for types T1 and T2, it is
detectable using the Q statistic (DQ) when occurs type T3 and it is full
detectable (FD) on type T4.

Table 4.8 presents the detection type (FD, ND, DQ, DT 2) for every com-
bination of type of fault (T1, T2, T3 and T4) and sensor faults.

Faulty sensor T1 T2 T3 T4
1 FD ND FD DQ
2 FD ND FD DQ
3 FD ND FD DQ
4 FD ND FD DQ
5 FD ND FD DQ
6 DQ ND FD DQ
7 FD ND FD DQ
8 DQ DQ DQ DQ
9 ND DQ DQ ND
10 ND ND DQ ND
11 ND DQ DQ ND
12 ND ND DQ DQ + DT2
13 ND ND DQ ND
14 ND ND DQ DQ
15 ND ND DQ FD

Table 4.8: Type of detection of each faulty situation grouped by type of fault
in the moulding injection process

In order to test the methodology proposed in this Master Thesis, 3 tests with
three different case bases will be conducted. At every test, the full application
of the validation methodology will be carried. The resulting cases bases will be
projected to the same NOC region model explained before. The case bases used
for testing are:

• Combination of all typologies (T1, T2, T3 and T4), sensors faults (fault
in sensor 5, 6, 8, 12 and 15) and all NOC region cases (CB1).

• Combination of all typologies of faults (T1, T2, T3 and T4) for a given
sensor fault. In this case, fault in sensor 15 has been selected because
presents the most variability of detection types (FD, ND , DQ and DT 2)
(CB2).
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• Combination of all sensor faults (fault in sensor 5, 6, 8, 12 and 15) for a
determined typology. The selected typology has been fixed to T4 because
it presents all possible detection typologies (FD, ND, DQ, DT 2) (CB3).

In this scenario, since a large number of cases are available, each of the
case bases will be divided in 10 folds (n = 10) to study the performance of the
classifier. The distance criteria that will be used to test each case base will be all
the basic distances exposed in Chapter 3: distance in the principal components
space (Equation 3.2), Q similarity (Equation 3.3) and T 2 similarity (Equation
3.4). Also, three additional distances will be used, resulting of the combination
of theses basic distances:

• Distance in the NOC region. First, the Q distance for every new case using
Equation 3.3. From all cases in the case base, only will be retained the
k1 cases with lesser distance. From the remaining cases, the T 2 similarity
will be computed using Equation 3.4. Finally, only the k2 cases with a
lower value using this distance will be used to predict the class of the new
case.

• Similarity in the Q region. This distance criterion consists in computing
the Q distances using Equation 3.3 and then, retain those k1 cases with
a minimum distance of the new case. Next, the distance in the principal
components of the remaining cases is computed using Equation 3.2. Fi-
nally, the k2 most similar cases will be used to predict the class of the new
case.

• Similarity in the T 2 zone. First, the distance to the centre of the model is
computed using Equation 3.4. Then the k1 nearest cases are selected, and
its similarity to the new case is computed using Equation 3.2. Finally, the
k2 nearest cases will be used to determine the class of the new case.

Table 4.9 presents the results obtained with CB1, where k1 stands for the
neighbours retained in the first level of the composed distances and k2 the
neighbours retained in the second level of the compound distances. TP, FN,
FP and TN are respectively True Positives, False Negatives, False Positives
and True Negative and were presented in Subsection 4.1.2. ACC, SEN, PRE
and SPC are the confusion matrix presented in 4.1.2 and stand for accuracy,
sensitivity, precision and specificity. Finally, AUC is the Area Under the ROC
curve computed as it was presented in Subsection 4.1.4. The same abbreviations
will be used for all three case bases, and when computing the basic distances,
the minimum values between k1 and k2 is the number of neighbours to keep.

The first thing to point in CB1 is that the number of cases in the AOC re-
gion (all faulty situations) is greater than the number of cases within the NOC
region. This has led to a classifier that is better predicting faulty cases than
the ones in the NOC region. This can be observed since specificity is always
greater than sensitivity. When observing the different values of AUC, it can be
observed that the greater the value of k2, the better the classification is. At
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(k1, k2) TP FN FP TN ACC SEN PRE SPC AUC
(20,1) 610 192 220 1008 0.797 0.734 0.760 0.84 0.787
(20,3) 625 192 205 1008 0.804 0.753 0.765 0.84 0.870
(20,5) 645 168 185 1032 0.826 0.771 0.794 0.86 0.891
(15,1) 605 187 225 1013 0.797 0.728 0.763 0.844 0.786
(15,3) 642 193 188 1007 0.812 0.773 0.770 0.839 0.873
(15,5) 643 168 187 1032 0.825 0.774 0.793 0.86 0.896

Table 4.9: Classification of CB1 in the injection moulding process

the same time, the lower k1 is, the better results in classification are attained.
This combination of events can only be observed in the compound distances.
However, the same results where obtained with all distance criteria. The best
classifier using this case base is (k1 = 15, k2 = 5), but it didn’t had the best
values in all performance indices. This can be observed visually in Figure 4.31,
where it can be seen that this is the most regular classifier, but the classifier (k1

= 20, k2 = 5) has the point nearest to the point (0,1).

Figure 4.31: ROC curves of the CB1 case base tested classifiers

Table 4.10 presents the results obtained over the case base CB2. The abbre-
viations used in this table are the same that where presented for CB1. In this
case, results obtained with all the distance criteria ended in the same values.

In this case base, the situation in CB1 has been reverted: there are more
cases in the NOC region than in the AOC region. So, these classifiers will tend
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(k1, k2) TP FN FP TN ACC SEN PRE SPC AUC
(20,1) 769 61 61 139 0.881 0.926 0.928 0.695 0.8107
(20,3) 773 64 57 136 0.882 0.931 0.923 0.68 0.8527
(20,5) 789 57 41 143 0.904 0.950 0.932 0.715 0.8785
(15,1) 764 57 66 143 0.880 0.920 0.930 0.715 0.8177
(15,3) 785 59 45 141 0.899 0.945 0.930 0.705 0.8604
(15,5) 792 54 38 146 0.910 0.954 0.936 0.73 0.8781

Table 4.10: Classification of CB2 in the injection moulding process

to classify correctly NOC cases than AOC cases. This can be seen in that sen-
sitivity is greater than the specificity. Also it can be observed that the overall
classification ratio has increased, because accuracy and AUC values are greater
than before. In this case base the best classifier is (k1 = 20, k2 = 5), although
(k1 = 15, k2 = 5) presents almost the similar AUC values but higher individ-
ual performance indices. In Figure 4.32 it can be seen that both classifiers are
very close, but at some points (k1 = 15, k2 = 5) it is slightly nearer to point (0,1).

Figure 4.32: ROC curves of the CB2 case base tested classifiers

Finally, Table 4.11 presents the classification results of CB3. The abbrevia-
tions used in this table are the same than the tables of the other two cases bases
(CB1 and CB2). The same results were obtained using all distance criteria
(basic and composed).
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(k1, k2) TP FN FP TN ACC SEN PRE SPC AUC
(20,1) 811 11 19 289 0.973 0.977 0.986 0.963 0.970
(20,3) 801 13 29 287 0.962 0.965 0.984 0.958 0.986
(20,5) 801 7 29 293 0.968 0.965 0.991 0.976 0.987
(15,1) 811 12 29 288 0.972 0.977 0.985 0.96 0.968
(15,3) 802 10 28 290 0.966 0.966 0.987 0.966 0.986
(15,5) 799 8 31 292 0.965 0.962 0.990 0.973 0.989

Table 4.11: Classification of CB3 in the injection moulding process

In this last case base, the number of NOC is greater than the AOC cases,
as happened in CB2. Also, AUC values of this case base are greater that the
ones obtained in CB1 and CB2. Also it can be observed that in this cases,
the classifier identifies correctly most of the NOC cases and AOC. This can be
observed in that sensitivity and specificity are quite similar in all cases. The
best classifier in this case base is (k1 = 15, k2 = 5) because it has the highest
AUC value, although it does not have the best individual scores. In Figure 4.33
it can be observed that all classifiers are very close to point (0,1) with only little
differences. As a main conclusion it can be said that its easier to distinguish
between fault sensors given a fault typology (T4 in this case), that try to iden-
tify the type of fault that a sensor presents.

Figure 4.33: ROC curves of the CB3 case base tested classifiers

The last point to check is why all distance criteria gave the same results.
Two are the main possibilities: classes are clearly separated, or it is because of

70



the way the new class is predicted. According to Figure 4.34, the distribution
values of the Q statistic are not clearly separated, so the main cause of all dis-
tance criteria gave the same results is the reuse function of the CBR.

Figure 4.34: Distribution of the Case Base values of Q grouped by their class
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Chapter 5

Conclusions and further
work

In this final chapter the main conclusions, contributions and some related pub-
lications of this Master Thesis are exposed firstly, followed by the future tasks
to improve the methodology exposed in this document will be stated.

5.1 Conclusions

The increasing overload of information actual processes throw away makes im-
possible to deal by means of well known but antiquate control techniques. The
multivariate control of industrial processes is becoming one of the main attrac-
tions nowadays because its capacity to show the information of the monitored
process in a graphical and simplified way. In fact, one of the most important
handicaps of classical monitoring techniques (redundancy and dependency of
information) is used to find and understand the latent variables that governs
the process, that are not intuitively detectable.

Multivariate techniques are capable of detecting abnormal situations without
the intervention of an expert in the process with the only necessity of historical
data captured from the process, specially when this data comes from variables
controlling the process in spite of the ones that control the final quality of
the product. This information will be used to compute some control statistics
that will detect processes that would generate an out of specifications product.
Whenever a process is labelled as AOC, the procedure provides control charts
that will show the variables related to the cause of this situation. Once the
variable responsible of the problem are pointed, the help of an expert in the
process will be needed in order to solve the problem, as well as to specify the
root cause of the problem.

Taking into account this limitations and also that sometimes only few past
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situations are available, the completion of the multivariate control of process
with a CBR approach is proposed and taken to several implementation fields.
The main advantage of applying a CBR in the projection space given for the
MPCA methodology is that independence between of the new attributes is
granted. This is the key point for all machine learning algorithms, since models
obtained with this requirement present a better performance and are simpler.
Another important advantage of this combination is that CBR can be dedicated
exclusively to determine the type of fault that occurred, since NOC region cases
can be detected using the statistical control limits of the MPCA model. More-
over, the CBR can complement the MPCA model in the borderline cases that
can be easily misclassified because the proximity of a majority in the outskirts
of faulty situations.

The results obtained in this work, as well as previous ones conducted in the
research group eXiT, encourages the exploitation of this combined methodol-
ogy to control finite duration processes, showing a constant behaviour of the
methodology. Actually, despite the fact that in the Power Quality and WWTP
the number of cases was not too large, the correct classification ratio was above
0.95 of AUC, which means the classifier tends to correct classify the majority
of cases. The main modifications done to the original methodology presented
in [8] are:

• The usage of the Stratified n-Fold Cross Validation over the complete set
of cases to measure more accurately the behaviour of the classifier.

• The computation of the Confusion Matrix and its associated statistics to
evaluate how the models misclassifies cases.

• The utilisation of the AUC as an objective evaluation method of tested
classifiers.

• The modification of the reuse function to classify new cases arrived. How-
ever, this change has provoked that the number of nearest neighbour has
became much more important than the distance criterion employed.

The published papers related to the methodology explained in this Master
Thesis are:

• J. Meléndez, X. Berjaga, S. Herraiz, J. Sánchez and M. Castro. Clas-
sification of Voltage Sags based on k-NN in the Principal Component
Space. International Conference in Renewal Energies and Power Quality
(ICREPQ). Santander, Spain. 12-14 March, 2008.

• J. Meléndez, X. Berjaga, S. Herraiz, V. Barrera, J. Sánchez and M. Cas-
tro. Classification of sags according to their origin based on the waveform
similarity. IEEE PES Transmission and Delivery Latin America, Trans-
mission and Distribution Conference and Exposition. Bogotá, Colombia,
13-15 August, 2008.
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• X. Berjaga, J. Meléndez and A. Pallarés. Statistical Monitoring of Injec-
tion Moulds. Congrés Català d’Intelligència Artificial (CCIA). St. Mart́ı
d’Empúries, Girona, Spain. 22-24 October, 2008.

A collaboration in a lateral publication can be found in:

• X. Berjaga, J. Meléndez and A. Pallarés. A Case-Based Centred Ap-
proach for Rapid Manufacturing: Definitions. Hybrid Intelligent Systems
(HIS). Barcelona, Spain. 10-12 September, 2008.

And another paper related to the work done in the Power Quality Monitoring
submitted and pending of acceptance is:

• V. Barrera, X. Berjaga, J. Melendez, S. Herraiz. Two New Methods for
Voltage Sag Source Location. 13th International Conference on Harmonics
and Quality of Power (ICHQP), Australia. 28th September 1st October,
2008.

5.2 Further work

The methodology explained in this Master Thesis has obtained good results
in all the application fields it has been tested, specially in the Power Quality
Monitoring (PQM) and plastic injection field. Therefore, this encourages the
improvement of the combined approach of MPCA and CBR. Since this method-
ology is divided in two steps (first a statistical model is created and then the
CBR is applied for fault diagnosis and as a complement for fault detection), the
future tasks to conduct in both methodologies are presented separately.

5.2.1 Future improvements for the statistical model cre-
ation

In the WWTP and PQM scenarios the availability of the so-called quality vari-
ables, that is, the evaluation of the final state of the process that can only be
computed once the process has ended, as can be seen in Figure 5.1. In the
WWTP scenario, this quality variable are related to the analytical results of
the batches used to test the scenario, and in the PQM scenario it is the relative
location of the voltage sag. This information has been considered in the CBR
step, more concretely, as the attributes used to dived the original space of all
processes in different classes. PCA is a technique for dimensionality reduction
that maintains the majors trends in the original data space (as commented in
Chapter 2), but it is not oriented for classification purposes. In fact, there are
some methodologies based on the principal components decomposition that take
into account some discriminant variables (in this case the quality variables) to
find the best composition of the original variables to separate between classes,
like Partial Least Squares (PLS) and Principal Components Regression (PCR)
among others. So, a future task would be study and compare the utilisation of
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those techniques for fault detection and diagnosis, as well as its interaction with
the CBR approach.

Figure 5.1: Representation of the difference of sample time for process variables
and quality variables (Y)

Related with techniques oriented to classification, but this time without
using the principal components decomposition procedure, Support Vector Ma-
chines (SVM) can be analysed. SVM only takes into account the marginal
points, what is, the furthest points from its respective classes that are at min-
imum distance between them. A graphical example of those cases is shown in
Figure 5.2.

Figure 5.2: Example of marginal points used as a base for SVM

Another thing to point is that all statistical methods for model construction
depends on the original data set was used to generate them. Since all processes
evolve in time, two main points should be studied. The first one is evaluate how
the classification performance is changing to decide if the original model is still
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available for the data arriving at a certain moment.

As a last point to focus the future work in this part of the methodology, and
taking into account the nature of the different fields (all application fields can be
divided in phases and not necessarily all time instants must be used if its gain of
information is insignificant), some other approaches can be revised. For exam-
ple, to deal with processes that are conformed by some phases, the Multi-Phase
Principal Component Analysis (MPPCA) can be used, and to determine time
dependencies within the same process, Dynamic Principal Component Analysis
(DPCA) can be applied.

5.2.2 CBR

As was firstly mentioned in Chapter 3, in this Master Thesis the Retain function
has not been implemented, so this is a must in order to analyse the learning
degree of the classifier in the applied fields and it is also related with the trust
in the actual model. Another point is to study how results change using other
approaches for the reuse step, since is the main bottleneck when analysing the
results. Using the actual method has reduced the classification of cases to
a binary classification. Related with this point, the analysis of the extended
confusion matrix (when more than 2 cases have to be chosen from) should be
conducted, as also the way to compute the related performance indices.
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