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Vehicle operations in underwater environments are often compromised by poor visibility conditions. For in-
stance, the perception range of optical devices is heavily constrained in turbid waters, thus complicating
navigation and mapping tasks in environments such as harbors, bays, or rivers. A new generation of high-
definition forward-looking sonars providing acoustic imagery at high frame rates has recently emerged as a
promising alternative for working under these challenging conditions. However, the characteristics of the sonar
data introduce difficulties in image registration, a key step in mosaicing and motion estimation applications. In
this work, we propose the use of a Fourier-based registration technique capable of handling the low resolution,
noise, and artifacts associated with sonar image formation. When compared to a state-of-the art region-based
technique, our approach shows superior performance in the alignment of both consecutive and nonconsecutive
views as well as higher robustness in featureless environments. The method is used to compute pose constraints
between sonar frames that, integrated inside a global alignment framework, enable the rendering of consis-
tent acoustic mosaics with high detail and increased resolution. An extensive experimental section is reported
showing results in relevant field applications, such as ship hull inspection and harbor mapping. © 2014 Wiley

Periodicals, Inc.

1. INTRODUCTION

Over the past few years, underwater vehicles have greatly
improved as a tool for undersea exploration. In partic-
ular, autonomous navigation, localization, and mapping
through optical imaging have become topics of interest for
researchers in both underwater robotics and marine sci-
ence communities. Underwater imagery has been used to
construct image photomosaics with applications in harbor
security (Negahdaripour & Firoozfam, 2006), environmen-
tal monitoring (Elibol et al., 2011), and damage assessment
(Lirman et al., 2010), being a key tool to locate areas or ob-

jects of interest, detect changes, or plan subsequent missions
in an area. Likewise, underwater navigation has benefited
from visual processing methods such as visual odometry
and visual simultaneous localization and mapping (SLAM)
(Eustice, Pizarro, & Singh, 2008; Gracias, Van Der Zwaan,
Bernardino, & Santos-Victor, 2003) to provide drift-free nav-
igation using onboard cameras.

However, a significant number of surveying and map-
ping tasks in underwater scenarios are carried out in turbid
waters and murky environments where vehicles equipped
only with optical systems (i.e., cameras or lasers) are con-
strained by their limited visibility range. Knowing the
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limitations of optical devices, underwater operations have
long relied on sonar technology for obstacle avoidance,
navigation, localization, and mapping (Fairfield, Jonak,
Kantor, & Wettergreen, 2007; Kinsey, Eustice, & Whitcomb,
2006; Leonard, Bennett, Smith, & Feder, 1998, Roman &
Singh, 2005; Tena, Reed, Petillot, Bell, & Lane, 2003) by
employing different types of sonar (e.g., profiling sonar,
multibeam echosounders, scanning imaging sonar, side-
scan sonar). Recently, a new generation of sonars, namely
the two-dimensional forward-looking sonars (2D FLS), have
emerged as a strong alternative for those environments
with reduced visibility given their capabilities of delivering
high-definition acoustic images at a near-video frame rate
(BlueView Technologies Inc., 2013; Soundmetrics Corp.,
2013; Tritech Gemini, 2013).

Several researchers have drawn attention to the use
of these high-frequency sonars either as a substitute or
as a complementary device for optical cameras (Negah-
daripour, Sekkati, & Pirsiavash, 2009). FLS imagery has
been employed in benthic habitat mapping (Negahdaripour
et al., 2011), monitoring of fish populations (Baumgart-
ner & Wales, 2006), detection of targets on the seafloor
(Galceran, Djapic, Carreras, & Williams, 2012), and inspec-
tion of ship hulls (Hover et al., 2012). The integration of FLS
in a visual SLAM framework to constrain the navigation
drift of autonomous underwater vehicles (AUVs) has also
been a topic of interest (Johannsson, Kaess, Englot, Hover,
& Leonard, 2010; Walter, 2008).

The processing of FLS data when performing most
of these tasks requires addressing a previous and funda-
mental step, namely the registration of the sonar images.
Although registration is a broadly studied field in other
modalities, notably the optical one (Zitova & Flusser, 2003),
it is still a premature field with regard to sonar data. The
particularities of FLS imagery, such as low resolution, low
signal-to-noise ratio (SNR), and intensity alterations due to
viewpoint changes, pose serious challenges to the feature-
based registration techniques that have proved very effec-
tive at aligning optical images.

The need to find a registration technique suited to
FLS images has led researchers to investigate the prob-
lem through different approaches. Most of the existing
work adopts a feature-based pipeline where feature detec-
tion is performed either by using detectors at pixel scale
(Kim, Intrator, & Neretti, 2004; Negahdaripour, Firoozfam,
& Sabzmeydani, 2005) or by looking for more stable fea-
tures extracted at region level (Aykin & Negahdaripour,
2012; Johannsson et al., 2010). Leaving aside the ability of
these methods to cope with the noise and artifacts in sonar
images, it is clear that they require the presence of promi-
nent features in the environment that can be unequivocally
matched. In general, the fewer the features, the lower the
possibility of establishing successful registrations, thus im-
pacting the effectiveness of subsequent processing. More-
over, the difficulties in accurately extracting and matching

stable features are exacerbated when dealing with spatially
or temporally distant sonar images found in loop closure
situations. This is a key issue since the registration of re-
visited locations is crucial to bound the error accumulated
over time and achieve global consistency in mosaicing or
motion estimation applications.

In this work, we propose using a Fourier-based tech-
nique to perform 2D FLS registration (Hurtés, Culfi, Petillot,
& Salvi, 2012). Instead of making use of sparse feature in-
formation, we propose to use a global method that takes
into account the whole image content, thus contributing
to the minimization of ambiguities in the registration. The
method is, by design, robust to noise and inhomogeneous
insonification, and it handles well the challenging nature of
sonar images, achieving a high degree of success in regis-
tering not only consecutive frames but also revisited frames
in loop closure situations. Without requiring the extraction
of explicit features, the method is independent of the type
and number of features present in the environment and can
be robustly applied to a wide variety of applications rang-
ing from surveying natural terrain to inspecting manmade
scenarios.

Our purpose is to exploit this registration methodology
as a robust way to map underwater environments under
low-visibility conditions by using autonomous or remotely
operated vehicles (ROVs). Our first focus is the genera-
tion of 2D acoustic mosaics of underwater areas of interest.
Possibly due to the recent introduction of high-resolution
FLS devices, the specific problem of FLS mosaicing has
only been tackled by a few researchers (Kim et al., 2005;
Negahdaripour et al., 2005, 2011) together with some re-
lated work dealing specifically with FLS image registra-
tion (Aykin & Negahdaripour, 2012; Johannsson et al,,
2010). Nevertheless, the existing mosaicing approaches
have shown very limited results in terms of scale and com-
plexity, as most of the reported mosaics are restricted to
only a few frames gathered in a single straight trackline
while imaging feature-rich scenarios. Here we propose a
complete mosaicing pipeline that enables the creation of
consistent mosaics extending along various vehicle track-
lines undergoing both translational and rotational 2D mo-
tions, and applicable in a wide variety of environments,
including those with a scarcity of features.

Toward that end, we utilize the proposed registration
technique to compute pairwise constraints between sonar
frames that are later embedded in a pose-based graph for-
mulation to enforce global alignment. This enables the ren-
dering of consistent 2D acoustic mosaics of high detail that
not only offer a global overview of the surveyed area, but
provide a significant improvement of the SNR and resolu-
tion with respect to the individual images.

By following the same scheme, the registration tech-
nique can be used to extract 2D vehicle motion estimates
from the sonar imagery. Although we present herein an of-
fline framework in which the estimation of the trajectory is
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computed a posteriori, we believe that the proposed method
is amenable to being integrated in an online SLAM frame-
work (Kaess, Ranganathan, & Dellaert, 2008) to perform
sonar-aided navigation.

The remainder of this paper is organized as follows.
Section 2 provides a background on FLS imaging, analyz-
ing the geometry model and the challenges encountered
when working with sonar images. In Section 3, the pro-
posed registration method is presented and its performance
is analyzed against a state-of-the-art technique. Section 4
covers the global alignment stage performed by means of a
pose-based graph optimization. Section 5 deals with the in-
sights of the sonar mosaic composition. Experiments with
real datasets including relevant field applications such as
ship hull inspection and harbor mapping are described in
Section 6 together with the corresponding results. The fi-
nal section concludes the paper and points out future work
prospects.

2. BACKGROUND ON FORWARD-LOOKING
SONAR IMAGING

To address the registration of FLS data, it is necessary to
understand the image formation process and find a suitable
model to describe the imaging geometry of the sonar. The
following is a description of the mode of operation of FLS, a
review of the FLS geometry models used in the related state
of the art, and a discussion on our model choice together
with its limitations. We also provide a summary of the main
challenges to be faced when dealing with FLS imagery to
better understand how they effect the registration process.

2.1. FLS Operation

2D FLSs, sometimes also referred to as acoustic cameras,
are a novel category of sonars that provide high-definition
acoustic imagery at a fast refresh rate. Although the specifi-
cations regarding operating frequency, acousticbeamwidth,
frame rate, and the internal beamforming technology de-
pend on the specific sonar model and manufacturer, the
principle of operation is the same for all. First, the sonar in-
sonifies the scene with an acoustic wave, spanning its field
of view (FoV) in the azimuth () and elevation (¢) direc-
tions, and then the acoustic return is sampled by an array
of transducers as a function of range and bearing (Figure 1).
Because of the sonar construction, it is not possible to dis-
ambiguate the elevation angle of the acoustic return origi-
nating at a particular range and bearing. In other words, the
reflected echo could have originated anywhere along the
corresponding elevation arc. Hence, the 3D information is
lost in the projection into a 2D image.

2.2. Imaging Geometry Model

According to the described principle of operation, a 3D
point P with spherical coordinates (r,0,¢) can be de-
fined in the sensor frame {S} by the following Cartesian
coordinates:

X 7 cos 0 cos ¢
P=|Y, | =|rsinfcos¢ |. @D
Zy rsin¢

Figure 1.

The sonar emits an acoustic wave spanning its beam width in the azimuth (9) and elevation (¢) directions. Returned

sound energy is sampled as a function of (r, #) and can be interpreted as the mapping of 3D points onto the zero elevation plane

(shown in red).
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Figure 2. The sonar projection geometry maps a 3D point P(r, 6, ¢) into a point p on the image plane along the arc defined by the
elevation angle. Considering an orthographic approximation, the point P is mapped into p, which is equivalently to considering

that all scene points rest on the plane XY (in red).

This 3D point P is projected in a point p = (x,, y;) on
the image plane (XY,) following a nonlinear model:

B [xs] B |:r cos9:| 1 [XY:| @
P= s | |rsing| cos¢ | Y5 |

As can be seen in Eq. (2), the projection is introduced
as a function of the elevation angle. Depending on the treat-
ment of this projection, we can distinguish two different
ways of approaching FLS geometry.

Given the narrow elevation angle that typically char-
acterizes FLS devices (around 6°-10°), the nonlinear com-
ponent defined by ¢ is tightly bound. Approximating this
narrow elevation to the limit (i.e., considering only the
zero-elevation plane), we end up with a linear model in
which the sonar can be seen as an orthographic camera
(Walter, 2008). Hence, the projection p of a 3D point P is
approximated by the orthogonal projection p as shown in
Figure 2.

Analogously to the parallax problem in optical views,
this approximation holds as long as the scene’s relief in the
elevation direction is negligible compared to the range, as
the error introduced by the projection approximation is a
function of the distance in the XY, plane and the vertical
distance to the point (Johannsson et al., 2010). The imaging
geometry under a typical operation scenario falls within
this consideration since the sonar device is normally tilted
to a small grazing angle to cover a large portion of the scene.
On the other hand, the projection preserves the change in
azimuth angles, i.e., if the sonar rotates with respect to its
vertical axis, the projection on the image rotates by the same
angle. Rotation around pitch, usually not present or con-
trolled by a tilt unit, affects the limits of the imaged area
and its reflected intensities but does not introduce a change
in the projection of the points. Changes in roll would affect
the y-axis of the projections, but we consider it negligible

due to the usual stability of underwater vehicles in this de-
gree of freedom.

Therefore, by using this model, a point in the space rep-
resented by p and p’ in two different images can be related
through a global affine homography H. This homography
describes the 2D motion from one position to the next in
terms of a 2D rigid transformation comprising the x and y
translations (z,,f,) and the plane rotation ():

cos(f) —sin(0) t,
p =Hp=|sin(®) cos®®) ¢ |p. 3)
0 0 1

Other approaches (Aykin & Negahdaripour, 2012;
Sekkati & Negahdaripour, 2007) work on the exact model,
without considering the narrow elevation approximation.
Then, the homography H relating two image points p and p’
becomes an affine homography whose elements vary across
the image depending on the range and the unknown eleva-
tion angles (Negahdaripour, 2012b):

agqu aqi Bqis
p=Hp=|agn agn Bgs|p. 4
0 0 1

where o = cos¢/cos¢’, B =rsin¢/cos¢’, and g;; denotes
thei, j components of amatrix Q = R — tn” thatis therigid-
body motion transformation for features lying on a plane
with normal n. Hence, the imaging model is a nonuni-
form function of the image coordinates and the surface
normal of the assumed underlying plane, with H encod-
ing all the information about the 3D sonar motion and sur-
face parameters. The differential version of this model, deal-
ing with rotational and translational velocity components
(Negahdaripour, 2012a), has also been used in the context
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of 3D sonar motion estimation (Aykin & Negahdaripour,
2013). In theory, it allows handling all six degrees of free-
dom (DoF) of the sonar motion, while in practice the pitch-
and-roll motion components are not estimated due to sensi-
tivity to various sources of error and noise in the sonar data
(Negahdaripour, 2012a).

However, using these models requires knowledge of
the elevation angles at every image location, which is not
provided by the sonar. Neghadaripour has shown that an
elevation map of the imaged plane can be determined from
its surface normal. An estimation of the surface normal can
be computed from the sonar range settings and the imaging
configuration relative to the scene (Negahdaripour, 2012a).
Moreover, the elevation map can be defined with higher ac-
curacy by incorporating the elevation angles of prominent
features. Aykin and Negahdaripour make use of object-
shadow pairs extracted from detected blob regions to es-
timate the elevation angle of 3D features.

The advantages these models offer when compared to
the simplified 2D model are the estimation of the sonar mo-
tion in the vertical direction (z) and a more accurate registra-
tion as a result of accounting for the elevation angles at each
location. On the one hand, estimation of the sonar motion
in the z direction is not required for 2D mapping purposes.
If the sonar motion were to be estimated, the translations in
the vertical direction could be reliably obtained from pres-
sure sensors. It is thus sufficient to estimate the x,y transla-
tions and yaw rotation, which are the measures affected by
drift and bias, respectively. On the other hand, the incorpo-
ration of the elevation angles in the registration process re-
duces the errors introduced by the orthographic approxima-
tion and has proved to enhance the local image alignment
(Negahdaripour, 2012a). Nevertheless, this is subject to the
ability of robustly estimating the elevation angles on the
imaged surface, which may not be a trivial procedure de-
pending on the imaging configuration or the type of features
present in the environment.

Therefore, in this work, we chose to adopt the simpli-
fied 2D model. Although itis an approximation, it is suitable
to describe the image formation process and set the basis for
the subsequent registration process. Using a model of only
3 DoF allows us to consider global-area registration tech-
niques that resolve only fixed transformations applied to
the entire image.

It is worth emphasizing that the main limitation of this
model, namely the assumption of the imaged scene being
nearly planar, can be relaxed thanks to the range length
of the FLS devices, which can vary from 10 to 50 m de-
pending on the sonar. These ranges offer the flexibility of
adopting a more appropriate imaging configuration so that
the assumption of the projections lying on a plane becomes
more realistic, i.e., imaging from a farther distance or at a
narrower grazing angle while still achieving an acceptable
resolution. Note that in the optical case, this flexibility is
constrained by the light attenuation and the short visibility
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ranges of underwater cameras. Besides, the use of a pan and
tilt unit together with sensors that can provide an estimation
of the underlying plane (e.g., profiling sonars or multibeam
systems) can be considered to accommodate the imaging
configuration so as to match the horizontal assumption as
closely as possible.

2.3. Challenges in FLS Imagery

Acoustic images offer the ability to see through turbid en-
vironments at the expense of dealing with a much more
challenging type of data. There are some particularities
closely related to the nature of sonar image formation that
increase the difficulty of their registration, especially when
compared to optical images.

® Low resolution:
Although they are considered high-definition sonars,
2D-FLS image resolution is far from the resolution of
today’s standard cameras that make use of 2D array sen-
sors with millions of pixels. For instance, the ARIS sonar
(Sound Metrics ARIS, 2013) samples the acoustic returns
with an array of 128 transducers with a 0.3° beamwidth.
BlueView P900-130 (BlueView Technologies Inc., 2013)
has 768 beams with 1° of beamwidth each. Moreover, as
a consequence of the sensor’s polar nature, measurement
sparseness increases with the range when represented in
a Cartesian space. This results in a nonuniform resolution
that degrades the image’s visual appearance.

® Low signal-to-noise ratio:
As with other coherent imaging systems such as radar or
ultrasound imaging, 2D FLS suffers from low SNR. This is
mainly due to the presence of speckle noise introduced by
the mutual interference of the sampled acoustic returns.

® Inhomogeneous insonification:
FLS is commonly affected by inhomogeneous intensity
patterns due to differing sensitivity of the lens or trans-
ducers according to their position in the sonar’s field of
view (Negahdaripour et al., 2005). These intensity pat-
terns can effect the registration, causing the images to
align on them instead of the real image content. How-
ever, this can be corrected by means of a preprocessing
step that estimates the inhomogeneous intensity pattern
from the averaging of a sufficient number of images.

® Changes in viewpoint:
Intensity variations due to a change in the sonar’s view-
point are inherent in the image formation process.
Imaging the same scene from two different vantage
points can cause the movement of shadows in the im-
ages, occlusions, and, in general, significant alterations
in the visual appearance of the content that complicate
the registration process. To minimize these effects, it is
preferable to image the area always from the same sonar
point of view, though this might not be always feasible.
Hence, it is desirable that the registration algorithm can
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cope with alterations caused by substantial viewpoint
changes.
® Other artifacts:

Under some circumstances, spurious content can appear
in the sonar images causing ambiguity in the registration:
reverberation artifacts, acoustic returns from the water
surface, or cross-talk between beams that generates mul-
tiple replicas of a target. However, these artifacts can gen-
erally be minimized by adopting a proper configuration
and imaging setup.

3. PAIRWISE REGISTRATIONS OF FLS

The computer vision community has proposed numer-
ous registration methods over the past few decades
(Zitova & Flusser, 2003). Among the most popular are the
feature-based methods that rely on the detection of a lim-
ited set of well-localized individually distinguishable points
(Tuytelaars & Mikolajczyk, 2008). The traditional pipeline
for feature-based registration of images consists, first, of the
detection of local features followed by a feature extraction
process. The extraction is usually performed by computing
descriptors, i.e., a compact representation of the neighbor-
hood of a feature. Afterward, there is a matching step in
which the point-to-point correspondences from the two im-
ages are established, and, finally, this information is used
to estimate the transformation that relates one image to the
other, usually by taking into account an outlier rejection
scheme such as RANSAC (Fischler & Bolles, 1981).

Some of these feature-based approaches have been ap-
plied to the registration of FLS images. In general, reported
results come from small and feature-rich datasets, and reg-
istrations are performed only between consecutive frames.
In Negahdaripour et al. (2005), a few image pairs from a
DIDSON sonar are registered using a Harris corner detec-
tor and matched by searching over small local windows.
Similarly, in Kim et al. (2005), Harris features extracted
at the third and fourth level of a Gaussian pyramid scale
are matched with cross-correlation and used in a mosaic-
ing algorithm. Each frame is registered sequentially with a
window of neighboring frames, and results show only the
registration from translational sonar displacements. Negah-
daripour et al. highlight the complexities of mosaicing ben-
thic habitats with FLS images (Negahdaripour et al., 2011)
and show the difficulty of registering DIDSON frames from
a natural environment by using the popular SIFT detector
(Lowe, 2004). Results report a very low percentage of inliers
in the detection step (about 8%), and only small displace-
ments could be effectively matched.

In general, due to the inherent characteristics of sonar
data, pixel-level features extracted in sonar images suffer
from low repeatability rates (Hurtés, Nagappa, Cufi, Petil-
lot, & Salvi, 2013b). Consequently, they lack stability and
are prone to yielding wrong transformation estimations.

This fact has not gone unnoticed by other researchers,
who have proposed alternatives involving features at re-
gion level rather than at pixel scale. Johannsson et al. (2010)
proposed the extraction of features in local regions located
on sharp transitions (i.e., changes from strong to low signal
returns as in the boundaries of object-shadow transitions).
The sonar images are first smoothed with a median filter,
then their gradients are computed, and points exceeding a
given threshold are finally clustered in features. These fea-
tures are presumably more stable than those computed at
pixellevel. Feature alignment is formulated as an optimiza-
tion problem based on the normal distribution transform
(NDT) algorithm (Biber & Strafier, 2003). The NDT adjusts
the clustered regions in grid cells, removing the need to
get exact correspondences between points, thus allowing
for possible intensity variations. However, the registration
accuracy becomes strongly dependent on the selected grid
resolution.

A similar approach has been recently presented by
Aykin & Negahdaripour (2012). Instead of thresholding on
the gradient domain, the highest intensity values in the im-
ages (assumed to be objects or structures on the ground
surface) are clustered in blob features. As an alternative to
the NDT algorithm, Aykin and Negahdaripour propose the
use of an adaptive scheme in which a Gaussian distribution
is fitted to each blob feature. Afterward, an optimization is
formulated to seek the motion that best fits the blob projec-
tions from one Gaussian map to the other.

Taking it a step further, it seems natural to explore area-
based methods that, instead of using sparse feature infor-
mation, make use of the entire image content. By incor-
porating more information in the registration process, we
are able to handle more changes in the visual appearance
of the image and minimize the ambiguities in the registra-
tion. The common shortcoming of area-based techniques
is that they cannot handle complex transformations, being
limited to the estimation of similarity transforms. However,
and according to the simplified FLS geometry model that
we adopted, the registration of two FLS images falls in-
side its scope of applicability, thus turning the area-based
methods into a candidate solution for FLS image alignment.
From all the different area-based approaches, we propose
the use of Fourier-based techniques. The particularities of
these methods suggest that they might be appropriate for
the registration of FLS imagery since, by design, they offer
robustness to noise, illumination changes, and occlusions
(Foroosh, Zerubia, & Berthod, 2002). In this section, we will
describe insights into the proposed Fourier-based registra-
tion technique, and then we will compare its performance
with a state-of-the-art region-based methodology.

3.1. Fourier-based Registrations for FLS

Fourier-based methods, in particular the phase correlation
algorithm (De Castro & Morandi, 1987; Reddy & Chatterji,
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1996), have been successfully employed in several image
processing tasks, such as image registration, pattern recog-
nition, motion compensation, and video coding, to name a
few. These techniques allow registrations up to similarity
transformations with a high computational efficiency due
to the implementation of the fast Fourier transform (FFT)
algorithm. In a similar problem to the one we tackle in this
work, phase correlation has been applied to register under-
water optical images in order to build photomosaics (Biilow,
Birk, & Unnithan, 2009; Eustice, Pizarro, Singh, & Howland,
2002). However, when dealing with video images, feature-
based methods are generally more popular since their high
resolution and SNR allow us to extract stable features easily
and estimate more general transformations such as projec-
tive homographies.

On the other hand, the literature regarding the appli-
cation of Fourier-based methods on sonar imagery is not
extensive. Some authors have pointed out the phase cor-
relation method as potentially useful in the registration of
side-scan sonar images (Chailloux, 2005; Vandrish, Vardy,
Walker, & Dobre, 2011), while other researchers employed
it in the registration of 2D and 3D sonar range scans (Biillow
& Birk, 2011; Biilow, Pfingsthorn, & Birk, 2010).

According to the Fourier shift property, a shift between
two functions (e.g., images) is transformed in the Fourier
domain into a linear phase shift.

Let f(x,y) and g(x, y) be two images related by a 2D
shift (z,, t,), namely

fG,y)=gx —t.,y—1t). )

Then their 2D Fourier transforms, denoted by F(u, v)
and G(u, v), are related via

F(u, v) = G(u, v)e (), (6)
Their normalized cross power spectrum is given by

F(u,v)G*(u,v)

— —i(uty+vty) 7
Fu o) G ()] ¢ @

C(u,v) =
where G* denotes the complex conjugate of G. The nor-
malizing denominator in this equation is equivalent to a
prewhitening of the signals, making the phase correlation
method inherently robust to noise that is correlated with the
images, such as uniform variations of illumination or offsets
in average intensity (Foroosh et al., 2002). The most common
way to solve Eq. (7) for (t,, t,) is to apply the inverse Fourier
transform to C(u, v), obtaining the phase correlation matrix
(PCM). In the ideal case, this matrix corresponds to a 2D im-
pulse (Dirac function) centered on (t,, ,) that directly leads
to the identification of the integer displacements. In the pres-
ence of noise or other image perturbations, the Dirac pulse
of the phase correlation matrix deteriorates, but as long as it
contains a dominant peak, the offsets can be retrieved. More-
over, after determining the maximum correlation peak with
integer accuracy, subpixel displacements can be estimated
(Foroosh et al., 2002; Ren, Jiang, & Vlachos, 2010).
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A different group of approaches try to recover the off-
sets in Eq. (7) by working only in the frequency domain. The
shifts are then computed as the slopes of a plane fitted to the
phase difference data (Hoge, 2003). Balci & Foroosh (2006)
have shown that the phase difference matrix of two images
is a 2D sawtooth signal whose cycles determine the shift
parameters. Therefore, it is only necessary to robustly count
the number of cycles along each frequency axis to retrieve
the translational offsets. While there are multiple publica-
tions reporting successful results with optical images (Balci
& Foroosh, 2006, Hoge, 2003), the implementation of the
Balci and Foroosh method does not seem feasible with FLS
images. Figure 3 shows an example of the phase difference
matrices obtained from two optical images [Figure 3(a)] and
two FLS images [Figure 3(b)]. While it is possible to com-
pute reliably the length of a sawtooth cycle in the optical
case, the cycles are hardly distinguishable in the FLS exam-
ple. Even after attempting filtering operations, the robust
estimation of the offsets from the phase difference cycles is
unfeasible. In our experience, working directly in the fre-
quency domain offers a much higher sensitivity to noise
compared to computing the inverse transform of the cross
power spectrum and finding the peak in the spatial do-
main, the reason for which we developed in the standard
approach.

There are a number of factors that may introduce arbi-
trary peaks in the PCM, thus reducing the ability to detect
a clear dominant peak. The challenges described in Section
2.3, such as low SNR or intensity alterations due to differ-
ent vantage points, are likely to give rise to multiple local
maxima in the PCM and reduce the amplitude of the true
registration peak. A similar effect occurs as a consequence of
the content of nonoverlapping image areas or due to errors
introduced by the approximations of the adopted geometry
model.

It is common practice to apply some filtering opera-
tions to the image’s spectra in order to attenuate unwanted
frequencies that can lead to a noisy phase correlation ma-
trix (Reddy & Chatterji, 1996). However, determining these
filters can be critical as there is a risk of attenuating not
only the unwanted components but also the discriminating
phase components. We seek to capture both low-frequency
characteristics, such as the change of reflectivity from a
sandy area to vegetation, and high-frequency components
that arise from object edges or protruding seabed features.
Therefore, we decided not to apply any filtering prior to the
computation of the phase correlation matrix. Once back in
the spatial domain, a small smoothing filter is applied to
reduce the noise and enhance the robustness of the peak
detection.

Additionally, there are some factors not linked to the
image nature itself that can lead to failure in detecting the
correlation peak if not handled properly. The most critical
are the so-called edge effects. The phase correlation the-
ory described previously holds for periodic signals and
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Figure 3. Example of the Balci and Foroosh method. (a) Phase difference matrix corresponding to a pair of shifted optical images.
(b) Phase difference matrix corresponding to a pair of shifted sonar images. (c),(d) One row of (a) and (b), respectively. Notice the
difficulty of detecting the cycles and, therefore, the shifts in the sonar case.

continuous Fourier transforms. In the discrete case, the FFT
is used to approach the infinite Fourier transform, impos-
ing a cyclic repetition of finite-length images. The abrupt
transitions generated between the edges when the images
are tiled result in high-frequency components appearing
in the Fourier spectrum, which may alter the subsequent
computation of the phase correlation matrix. In a simi-
lar manner, the fan-shaped boundaries of the FLS images
in Cartesian coordinates introduce high-frequency compo-
nents that do not depend on the image content. That causes
a strong false peak around the origin of the phase corre-
lation matrix that can hide the location of the true peak.
To minimize these effects, it is typical to perform a win-
dowing operation before the FFT computation. In our case,
a mask that tapers the boundaries of the FLS images in
Cartesian coordinates is applied to the images prior to the
FFT computation.

Up to this point, we have referred to the estimation of
linear shifts from the sonar images. However, the recovery

of rotations must also be addressed. The inherent nature of
sonar images suggests that mapping an area while main-
taining the same viewpoint orientation increases the num-
ber of successful registrations between sonar frames. This
way, a lawn mower pattern in which the transition from
track to track is performed by sway displacement instead
of rotation would be a good mapping strategy. However,
this approach might not always be feasible, either because
the vehicle does not allow for the sway degree of freedom,
or simply because the area to cover does not follow a rect-
angular layout and requires some orientation changes in
order to be efficiently covered. Moreover, if we think not
only about autonomous surveys but inspections carried out
with remotely operated vehicles as well, the pilot will most
likely undertake a great number of rotational movements.
Hence, it is important to find a robust solution to estimate
the rotation between pairs of FLS images so as to enable
the use of sonar mapping in more diverse situations and
environments.
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In a previous work (Hurtés, Cufi, & Salvi, 2014), we
evaluated the performance of several global-area methods
for rotation estimation on real FLS images. The general out-
come is summarized here, and the reader is referred to
Hurtés et al. (2014) for further details.

One of the most popular methods dealing with the
estimation of rotational alignments is based on the polar
magnitude of the Fourier transform, often referred to as
the Fourier-Mellin transform (Chen, Defrise, & Deconinck,
1994; Reddy & Chatterji, 1996). According to the Fourier
shift property, translational displacements affect only the
phase spectrum, while the magnitude is invariant to them.
Therefore, since a rotation is mapped as a linear shift in the
angular direction of the polar domain, it can be recovered
in a manner invariant to the translation by using the polar
magnitude of the Fourier transform. The rotation estima-
tion problem is then converted to a shift estimation where
the input images are the polar representations of the Fourier
transform magnitudes. This shift estimation can be solved
by standard phase correlation, and leads to two possible
solutions (f and 6 + m) that can be disambiguated by trying
to solve for the translation in each case and keeping the one
that leads to the highest correlation peak. This technique,
widely popular in optical images (Biilow et al., 2009; Schw-
ertfeger, Biilow, & Birk, 2010), is not as robust in the case of
FLS imagery. Applying phase correlation to the polar rep-
resentation of the magnitude spectrum leads to erroneous
results since it has a low structural nature (which is even
lower in the case of sonar modality) and suffers from inac-
curacies introduced by the interpolation process to the polar
domain.

Likewise, other popular techniques are deemed unfea-
sible when applied to FLS imagery, either because they
are targeted for images with high resolution and high
SNR (Keller, Shkolnisky, & Averbuch, 2005; Lucchese &
Cortelazzo, 2000) or because they become expensive time-
wise when aiming for a certain level of accuracy and robust-
ness (Costello, 2008; Li et al., 2007).

In view of all this, we considered the option of esti-
mating the rotation as a shift displacement directly on the
polar images rather than working with the magnitude of its
Fourier transformation. In this way, the estimation is per-
formed on the raw data delivered by the sensor, thus avoid-
ing any interpolation or the need to work with represen-
tations of the Fourier transform. However, when working
with the polar images, rotation is not decoupled from trans-
lational displacements, and shifts in Cartesian space create
distortions in the polar domain. If the translational displace-
ments are relatively small compared to the image’s size in
each direction, the induced distortions in the polar image
still allow for the recovery of the rotation by computing the
shift in the angular direction. The high frame rate of FLS
devices facilitates large overlaps and therefore small trans-
lations between consecutive and near-consecutive frames,
thus not affecting the rotation estimation under this scheme.
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Moreover, there are cases in which rotations are not com-
bined with translations (the vehicle stops, rotates, and then
continues), yielding a pure translation in the polar domain.
The major drawback is then in loop-closing situations, when
attempting to match temporally distant frames that present
significant shifts. In these cases, the proposed strategy for
rotation estimation is prone to introducing inaccuracies in
the estimated angle. This, in turn, affects the number of en-
countered loop closures, as the loop closures that involve
more overlap (i.e., smaller translations) and smaller orien-
tation changes are more likely to be successfully registered.
Nevertheless, as will be seen in Section 4.2, these inaccurate
estimations can be identified with the help of a measure that
quantifies the uncertainty of the registration, and therefore
we can prevent them from having a negative effect in sub-
sequent processing.

Itisimportant to note that, by construction, this method
does not allow for the estimation of an angle difference
higher than the FoV of the sonar. This limit becomes even
more restricted if we take into account that a minimum
overlap is required in order to establish the correlation.
For instance, in cases of pure rotation and aiming for a
minimum overlap of 50%, the limits of the rotations that
can be estimated are within [—% : %] degrees. If trans-
lations are also involved, the overlap will decrease, thus
reducing even more the possibilities of estimating the rota-
tion correctly. This is a fairly strong restriction, especially in
sonars with narrow fields of view. However, due to the high
frame rate of FLS devices, sequential and near-sequential
images typically undergo small rotations easily falling in-
side those limits, and, therefore, guaranteeing the establish-
ment of local constraints under the presence of rotations.
In loop closure situations, it is more difficult to conform to
that restriction. However, it is to our advantage to choose
a mapping strategy that allows revisiting locations with
orientations comprised within these limits. Furthermore, if
information of the path topology is known in advance, we
can determine beforehand if the images belong to tracks
with reciprocal headings. When this is the case, the polar
frames are flipped before performing the phase correlation,
thus leading to the estimation of rotations comprised within
[—% + 180 : 180 + %] degrees.

Despite these limitations, this rotation estimation
method outperforms the rest of the mentioned techniques
in terms of robustness and accuracy (Hurtés et al., 2014) and
is the one employed in our registration pipeline. In the next
section, its performance will be compared to the traditional
Fourier-Mellin approach that estimates rotation by using
phase correlation on the polar magnitude of the image’s
FTs.

The flowchart of Figure 4 outlines the general pro-
cedure to register two sonar images. The sonar frames
in polar coordinates (f,, g,) are first masked by a cosine
window to avoid edge effects arising from the image’s
boundaries. Using the transforms of these images as
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Figure 4. Overall registration pipeline.

input, phase correlation is applied following Eq. (7). The
shift detected in the x direction provides an estimate of the
rotation angle 6 between the images in Cartesian coordi-
nates (f., g.). After masking both images with the corre-
sponding Cartesian mask, phase correlation is performed
between f, and the rotation-compensated version of g. to
finally obtain the translations in the x and y directions that
align them.

3.2. Comparison with Region-based Registration

In this section, the performance of the proposed Fourier-
based method is compared against a state-of-the art FLS reg-
istration technique. Comparison with feature-based meth-
ods at pixel level has been discarded, since, as explained
in Section 3, its poor performance with FLS images is
well-known and has been reported (Hurtés et al., 2013b;
Negahdaripour et al., 2011; Walter, 2008). From the two ex-
isting region-based methods for FLS alignment (Aykin &
Negahdaripour, 2012; Johannsson et al., 2010), we select the
method of Johannsson et al. This selection is motivated by
the geometry model under consideration: Aykin and Ne-
gahdaripour assume a 3D sonar motion model that incor-
porates the unknown elevation angles in the registration
process, while Johannsson et al. work with the same 2D
simplified model that we adopt.

We have implemented the technique of Johannsson
et al. following their steps as described in Hover et al. (2012).
The feature extraction process applies median smoothing
on the image followed by gradient computation. The gradi-
ent is computed as the difference between a value and the
mean of its n previous values along its azimuthal line. Then,
a fixed fraction of points with negative gradient are seg-
mented and clustered in features. The registration of these
features is performed using the NDT algorithm with four
overlapping grids shifted half a cell. The NDT implementa-
tion of the point cloud library (PCL) (Point Cloud Library,
2013) has been used for this step. Following the same pro-
cedure as the authors, the NDT optimization is performed
several times with different initialization points.

To compare both methods, we have used three datasets
in which the ground truth is available. These datasets allow
us to test the registration under different conditions, in-
cluding different sonar models and different motion types.
The first dataset is comprised of 944 sonar frames gathered
with an ARIS sonar (Sound Metrics ARIS, 2013) inside a
harbor. The FLS was mounted on a pole together with a
GPS and attached to a boat. The sequence follows a straight
transect with mainly translational displacements in the x
direction. According to the sonar’s configuration, the range
resolution is 8 mm/pixel and angular resolution is 0.2°. The
second dataset consists of 1,176 sonar frames gathered with
a DIDSON (Sound Metrics DIDSON, 2013) in a dock en-
vironment. The sonar performed a 360° scan with steps of
0.3° mounted on a tripod. These rotational increments corre-
spond to the sonar’s angular resolution, while the range res-
olution is approximately 1.9 cm/pixel. The last dataset was
gathered with a BlueView P900-130 (BlueView Technologies
Inc., 2013) in a harbor environment with an Autonomous
Surface Catamaran (see further details of the dataset in
Section 6.3), performing both rotational and translational
motions. Range and angular resolution are 6 cm/pixel and
0.3°, respectively. Therefore, the estimated translations and
rotations will be compared using as ground truth the GPS
locations in the first and third dataset and the fixed me-
chanical tripod step in the second dataset. It is worth noting
that we make use of a high-precision RTK GPS that also de-
livers an accurate heading by employing a setup with two
antennas. Moreover, a large number of registration results
are averaged in each case. In this way, we consider that the
effect of any possible GPS errors over the reported mean
errors is negligible.

Before carrying out the comparison between the region-
based and the Fourier-based registrations, we employ the
described datasets to compare the proposed rotation estima-
tion method with the traditional Fourier-Mellin approach.
Table I presents the mean and maximum rotation errors
with respect to the ground truth when estimating the rota-
tion between consecutive frames for the different datasets.
The same experiment has been repeated by choosing more
distant frames this time, overlapping about 60% (Table II).
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Table |I. Comparison experiments between rotation
estimation methods when registering consecutive frames.

Fourier-Mellin Directly on polar images

Mean Max Mean Max
error (deg) error (deg) error (deg) error (deg)
Dataset 1 0.92 1.40 0.51 0.61
Dataset 2 0.64 0.83 0.03 0.42
Dataset 3 1.08 7.51 0.54 7.60
Table Il. Comparison experiments between
rotation estimation methods when registering distant
frames.
Fourier-Mellin Directly on polar images
Mean Max Mean Max
error (deg) error (deg) error (deg) error (deg)
Dataset 1 1.46 4.30 1.15 3.91
Dataset 2 2.13 4.07 0.09 5.52
Dataset 3 3.02 21.7 1.72 29.5

In all cases, even when estimating the rotation of dis-
tant frames, the estimation through direct phase correlation
on the polar images leads to better accuracy than perform-
ing the estimation on the polar magnitude of the image’s
FFTs. The differences are especially significant for the sec-
ond dataset, in which clearly the proposed method is highly
accurate due to the presence of pure rotations. Nevertheless,
the mean errors in the other cases are also lower for the pro-
posed method, thus testifying to the fact that the noise and
the low structural nature of sonar images makes the robust
correlation of the polar FFT magnitudes difficult.

Figure 5 shows three images illustrative of each dataset
together with examples of extracted features. For each
dataset, two different tests have been performed. The first
consists of registering each sonar frame with its consecu-
tive in the sequence. The second test aims to compare the
performance of the methods when dealing with spatially
and temporally distant images. Given that not all available
datasets comprise trajectories with loop closures, the test
attempts the registration of a frame with a neighbor frame
in the sequence. The interval between frames is chosen for
each dataset in order to reduce the overlap to approximately
60%. Although the changes induced in the images may not
be as severe as in an actual loop closure situation, they are
sufficient to evaluate the trends of the methods when deal-
ing with distant images.

Before applying the method of Johannsson et al. to each
sequence, several tests have been performed to tune its pa-
rameters according to the dataset’s characteristics and the
image content. Therefore, the value n, the gradient thresh-

Journal of Field Robotics DOI 10.1002/rob

133

old, and the number of extracted points have been adjusted
to achieve a good balance of extracted features. Likewise,
the grid size of the NDT algorithm has been modified ap-
propriately.

Tables III and IV summarize the results of each test,
showing the mean and maximum errors for the rotation
and translations in each dataset.

We start by analyzing the registration of consecutive
frames. In the case of the first two datasets, both methods
present low errors, with a slightly better performance by
the Fourier-based method. The high resolution of the sonar
together with the prominent features in the environment
allow for an accurate estimation of alignments along the
two sequences. The third dataset presents higher errors due
to the lower resolution of the acquisition. The Fourier-based
registration outperforms the region-based technique both in
translation and rotation estimation. In general, the type of
features in this dataset—sparser and weaker—is likely to
generate unstable regions. However, since the images are
spatially close, the error remains reasonably low.

Regarding the second test, in which the registered
frames are more distant, we observe that, as expected, the
results tend to have a higher error rate. In particular, the er-
rors for the region-based method have especially increased
with respect to their counterparts in the first experiment.
When the features are initially far apart and a good initial
prior is not available, the NDT algorithm may converge to a
local minima, giving rise to erroneous estimations. Besides,
in the first two datasets, the smaller overlap and the nar-
row aperture of the sonar in the azimuth direction (14.4°)
cause significant features to drop out of the field of view
eventually, leading to an insufficient number of features to
perform the NDT alignment in a reliable manner. On the
other hand, the content of the overlapping area, although
smaller than in the first test, is sufficient to find the correct
correlation with the Fourier-based method, thus yielding a
lower mean error.

The errors in the third dataset have increased under
both registration methodologies compared to the previous
test. The error of the rotation estimation, which is the mo-
tion most affected by intensity alterations, is especially high.
Note that the feature extraction algorithm targets the tran-
sitions from protruding objects to the shadows or the back-
ground plane. With the change in the sonar’s vantage point,
these transitions can vary substantially, and therefore the
extracted features from both views exhibit different layouts
and cannot be correctly aligned. In our proposed method,
since the information incorporated in the registration pro-
cess is not only limited to the object transitions, other areas
in the image can contribute to the anchoring to the cor-
rect registration point. The lower error of the Fourier-based
technique when compared to the method of Johannsson
et al. testifies to its better performance in these situations.

As all the analyzed sequences presented feature-rich
environments, a different example is introduced to highlight
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(a)

(d) (e) (f)
Figure 5. (a)-(c) Example frames of the datasets used for comparing the Fourier-based and the region-based registrations. (d)—-(f)
Example of extracted features with the method of Johannsson et al.

Table lll. First test: Mean and maximum error of the registration in translation (r,,r,) and rotation (9) for the comparison
experiments between the Fourier-based and region-based registration methods when registering consecutive frames.

Region-based Fourier-based
Mean error Max error Mean error Max error
t(m) t(m) O(deg) n#n(m f(m) O(deg) #H(m f(m) O(deg) #H(m) f(m) 6 (deg)
Dataset 1 0.11 0.06 1.01 291 1.63 9.56 0.09 0.06 0.51 1.29 0.23 0.61
Dataset 2 0.02 0.01 0.50 0.25 0.14 2.46 0.02 0.02 0.03 0.22 0.13 0.42
Dataset 3 0.44 0.42 1.08 13.9 8.33 14.6 0.23 0.15 0.54 3.20 2.25 7.60

the difficulties of region-based techniques in environments
with a scarcity of features. Figure 6 shows two images in a
sequence lacking strong features. The method of Johannsson
et al. is unable to extract any robust features as the thresh-
olded negative gradients cannot be clustered in a sufficient
number of points. On the other hand, the Fourier-based reg-
istration is able to align the views correctly by taking into

account the frequency information embedded in the differ-
ent textures of the image. Although a ground-truth is not
available, a composite overlay of two images in different
color channels allows us to see that the correct alignment
between the images has been found.

Hence, the proposed Fourier-based registration shows
a superior performance in the alignment of both
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Table Iv.

Second test: Mean and maximum error of the registration in translation (z,,¢,) and rotation () for the comparison

experiments between the Fourier-based and region-based registration methods when registering distant frames.

Region-based

Fourier-based

Mean error Max error

Mean error Max error

ty(m) £, (m)  6(deg) 1 (m) 1, (m)

0 (deg)

r(m) #,(m)  6O(deg) 1 (m) 1, (m) 6 (deg)

Dataset 1 0.60 0.26 1.34 5.62 3.63
Dataset 2 0.45 0.21 1.03 1.63 493
Dataset 3 0.81 0.92 2.80 17.9 11.5

12.5 0.35 0.24 1.15 1.05 1.11 391
18.5 0.11 0.23 0.09 0.22 0.13 5.52
27.6 0.34 0.18 1.72 15.0 5.14 29.5

(a) (b)
Figure 6.

(c)

(a),(b) Example frames of a featureless dataset. (c),(d) Registration performed by the Fourier-based method: (c) Overlay

of the two registered images in different color channels. Note the correct alignment in the yellow area. (d) Difference image of the
registered frames. Note that almost all content in the registered area has been subtracted as a consequence of the alignment.

consecutive and nonconsecutive frames and higher robust-
ness in difficult environments. As a result, the possibility of
establishing registration constraints between two views is
increased with the benefits that this implies.

The performance of the methods with regard to the
computational complexity is also worth noting. The most
demanding aspect of our proposed method is the computa-
tions of the Fourier transforms. The FFT algorithm requires
O(2N?logyN) operations for each 2D transform, where N?
is the number of pixels in the image.

The current implementation of the registration algo-
rithm, coded in Python and making use of the ANFFT li-
braries (ANFFT Package, 2013), consumes approximately
60 ms per pairwise registration in an Intel i7 at 3.4 MHz,
considering typical image sizes under 1, 024 x 1, 024 pixels
and a single-threaded execution. On the other hand, our
implementation of the Johannsson et al. technique takes ap-
proximately six times longer, the major part of the time
being consumed by the NDT optimization process.

4. GLOBAL ALIGNMENT

The registration method described so far is intended to com-
pute the relative transformation between pairs of overlap-
ping images. To generate a mosaic, it is necessary to map all
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the images into a common reference frame. This is normally
accomplished by concatenating the transformations of suc-
cessive images so that the transformation between noncon-
secutive views is obtained. However, it is well known that
chaining transformations over long sequences is prone to
cumulative error (Smith & Cheeseman, 1986). With the aim
of obtaining a globally consistent set of transformations,
the problem is reshaped into a pose-based graph optimiza-
tion. A least-squares minimization is formulated to estimate
the maximum-likelihood configuration of the sonar images
based on the pairwise constraints between consecutive and
nonconsecutive registrations. As our main concern here is
the mosaic generation, the problem is approached in an of-
fline fashion. However, if the registration constraints were
to be used in a motion estimation framework, they could
be integrated into online back ends developed to efficiently
optimize pose graphs, such as incremental smoothing and
mapping (iISAM) (Kaess et al., 2008).

Two different situations are considered throughout this
section: working exclusively with FLS imagery or also be-
ing able to incorporate navigation measurements from other
sensor data. The high frame rate of FLS allows us to contem-
plate the case of dealing only with imagery, extending the
applicability of the method to situations in which the sonar
is deployed from vehicles with reduced sensor suites or
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other situations in which acquiring correct navigation data
might be difficult (e.g., using a compass close to magnetic
disturbances).

We first present the general formulation of the pose-
based graph followed by an explanation of how the uncer-
tainty of the registration constraints is estimated. Finally, we
describe the methodology to select which frame links are to
be included in the graph in order to increase the efficiency
of the global alignment step.

4.1 Graph Definition

We define a graph whose vertices represent the posi-
tion of observed sonar images and whose edges are pose
constraints obtained from the pairwise registrations. Let
v=(vq,...,v,)] be a set of vertices, where v; = (x;, y;, 6;)
describes the position and orientation of sonar image i.
When relying solely on image data, the initial positions of
the vertices are estimated using the chained transforma-
tions between consecutive image pairs. If navigation data
are available, the vertices can be initialized using the pose
estimates from the dead-reckoning information.

Let z; ; and Q7 ; be the mean and information matrix,
respectively, of the transformation from image i to image
J obtained from applying the registration algorithm on the
image pair (i, j). Let Z;;(v;, v;) be the expected transforma-
tion given the configuration of v; and v;.

Then, we can define an error function of the following
form:

e(vi,v;, 2, ;) =1z;; © Z;(vi, vj), 8)

where © is the inverse of the usual motion composition
operator in the 2D Euclidean space.

Essentially, the error function measures how well the
position blocks v; and v; satisfy the constraint z; ;. There-
fore, to find the most consistent spatial arrangement for all
the image poses, we seek the configuration of the vertices
v* that minimizes the negative log likelihood of the set of
all existing constraints C:

F(V): Z e(V,',Vj,Z,'\j)TQije(V,‘,Vj,Z,'{j), (9)
(i,j)eC

v* = argmin [F(v)]. (10)

If a good initial guess of the parameters is known, a
numerical solution of Eq. (10) can be obtained using the
popular Levenberg-Marquardt algorithm (Moré, 1978). In
our implementation, this minimization is solved using the
General Framework for Graph Optimization (g20) back end
(Kummerle et al., 2011) .

4.2. Estimation of the Registration Uncertainty

The described pose-graph formulation requires establishing
an information matrix Q° for every registration measure-
ment. To this end, a heuristic is derived from the registra-

400

¥ (pixels)  (pixels)

Figure 7. Representation of the proposed heuristic to compute
the uncertainty of the registration from the phase correlation
matrix values. Ellipse represented using a confidence interval
of 99%.

tion method in order to quantify the degree of confidence
in the alignment. Recalling the description of the method in
Section 3.1, the values of the phase correlation matrix can
be used as a direct measure of the degree of congruence
between two images. The amplitude and extent of values
surrounding the main peak account for localization inaccu-
racies in the registration.

Therefore, the phase correlation surface is thresholded
at a given amplitude, and the standard deviations of the x
and y coordinates of the matrix cells that exceed the thresh-
old are extracted, as depicted in Figure 7. The threshold is
set to half the power of the main peak.

This procedure is applied to the phase correlation ma-
trices obtained from both the rotation and the translation
estimation steps, resulting in three different uncertainties
(01, 0y, 0,). These values, obtained in pixels, are then con-
verted to meters and radians by using the range resolution
of the sonar §, (pixels/m) according to the experiment’s
configuration and the angular resolution of the polar sonar
images 8y (pixels/rad). Finally, the values are reshaped in a
covariance matrix, which is inverted, yielding the informa-
tion matrix Q¢ of the measurement:

-1

©.5)7° 0 0
= 0 (68?2 0 . 1)
0 0 (Ur(Sg )2

A similar heuristic was proposed in earlier work by
Pfingsthorn, Birk, Schwertfeger, Biilow, and Pathak (2010).
Their heuristic fits a 2 x 2 covariance matrix to a window of
size K around the registration result (i.e., the main peak of
the correlation matrix). The heuristic weights the squared
distance to the mean of the values inside the window by
the normalized amplitudes of the phase correlation. The
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Table V. Evaluation of the heuristics to estimate the uncer-
tainty of the registration: average distance errors with respect
to the GPS ground truth of absolute trajectories obtained with
each method.

Average distance

Heuristic error (m)
Proposed 10.2
Pfingsthorn et al., K = 250 27.8
Pfingsthorn et al., K = 500 13.4
Pfingsthorn et al., K =1, 000 12.9

outcome is then strongly dependent on window size K,
although how this value is selected is not shown in their
experiments, nor are the typical values for this parameter
reported. Contrary to this, our strategy readily offers a way
to adapt the values that contribute to the variance computa-
tion by taking into account those values that are above half
power of the main peak (i.e., values within 3 dB below the
peak).

Since we do not have the means of computing the
true uncertainty of a registration, it is difficult to assess
the performance of the proposed heuristic against that of
Pfingsthorn et al. The solution we adopt is to use a dataset
with an available ground truth to evaluate the final trajec-
tory result obtained by using each of the heuristics. To this
aim, we have selected a portion of the Marciana Marina
dataset presented in Section 6.3, in particular from frames
250 to 1,000. We have computed the registrations among
all these frames and we have built two graphs, one using

— « = .Limit with Pfingsthorn et al.
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each heuristic in the computation of the uncertainties. Af-
ter the optimization, the estimated trajectory is compared
with the ground truth path. The error between these two
is indicative of which heuristic leads to a better description
of the graph uncertainties, thus leading to a solution that
converges more closely to the real one. The uncertainties
of the method of Pfingsthorn et al. have been computed for
three different values of K. The values have been selected by
taking into account the dimensions of the phase correlation
matrix, which for the dataset’s images is 1, 526 x 1, 526. In
this way, we have chosen small K = 250, medium K = 500,
and large K = 1, 000 values. Table V summarizes the abso-
lute mean distances for each of the trajectories with respect
to the ground truth, computed by averaging the distance of
all nodes to their corresponding ones in the ground truth
trajectory.

A logical explanation for these results might be found
by considering the implication of the window size param-
eter. If K is too small, the obtained uncertainty measures
might eventually be limited to values that do not repre-
sent the uncertainty of the main peak, leading to too opti-
mistic uncertainty measures [as depicted in the schematic in
Figure 8(a)]. That would explain the high values obtained
with the small K. On the other hand, large K values are a
better strategy, given that covariances are weighted by the
corresponding intensities (which are expected to be low if
the values are far apart from the main peak). In this case,
even if a high number of values take part in the computa-
tion, they would have a low weight in it. However, if the
values located far from the main peak do not have such low
intensities (as may happen in noisy sonar images where the
correlation matrix has a lot of scattered noise peaks), it could
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Figure 8. Schematics illustrating the performance of the proposed heuristic for estimating the registration uncertainty versus the
Pfingsthorn et al. heuristic. (a) Example of a small K value that is not able to represent the uncertainty of the registration peak.
(b) Example of a situation in which Pfingsthorn et al.’s heuristic would provide a pessimistic uncertainty as a consequence of all the
small contributions inside the K window. (c) Scheme of a phase correlation matrix seen from the top view, illustrating a typical case
in which the main peak is spread in one direction as a consequence of the motion direction. The drawn limits represent the values
that would be considered for the variance computation: while our method would consider only the ones over the threshold, thus
adapting to the approximate elliptical shape of the main peak, the method of Pfingsthorn et al. would use the squared window,
and therefore all the values in the gray area would also contribute to increasing the uncertainty in the y direction.
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lead to an overpessimistic computation of the uncertainty
in some cases [as illustrated in the schematic in Figure 8(b)].
Likewise, the fact of considering a squared window may
also lead to overpessimistic estimates [Figure 8(c)]. If the
shape of the main peak has, for instance, an elliptical con-
tour (as is common under one-directional displacements
where the peak is smeared in the motion direction), a large
number of contributions will unnecessarily increase the un-
certainty in the other direction (even though their weight in
the computation is small). This might be the explanation for
the larger errors for K = 500 and 1,000. On the other hand,
our proposed technique takes into account only the peaks
surpassing the half power threshold and that are significant
enough to influence the registration result, independently
of how they are spatially arranged.

Itis worth highlighting that the heuristic of Pfingsthorn
et al. was conceived to estimate the uncertainty of phase
correlation registrations over optical images, which usually
suffer from less noise and fewer artifacts than their sonar
counterparts. In these cases, correlation peaks are narrower
and the heuristic is not affected by the aforementioned is-
sues, thus definitely being a good strategy to estimate the
uncertainty. However, in the case of FLS images, correla-
tion matrices present smeared main peaks and more scat-
tered noise. For this reason, we chose to apply the proposed
heuristic to measure the registration uncertainty.

4.3. Link Candidates

To avoid unnecessary computations, it is essential to at-
tempt registration only with frame pairs that are likely to
overlap. To detect these candidate pairs, and particularly in
the case of nonconsecutive overlapping images, it is neces-
sary to first infer the path topology.

In the absence of other sensor data, the path topology
is inferred by using the registrations of consecutive images.
We compute the registrations of each frame with their suc-
cessive but also with several of their neighboring frames by
establishing a fixed window around the current sequence
position. The size of this window is estimated according
to the range and mean velocity of the sonar so as to select
sequential frames going from the next neighbor down to a
frame with approximately 50% overlap. The computation
of these multiple links helps to increase the local robust-
ness of the initial estimated path. The obtained constraints,
together with their uncertainties, are fed to the graph op-
timization back end and an initial estimation of the path
is obtained. Notice that only the registrations with a low
uncertainty (according to an established threshold) will be
introduced as constraints in the graph. Otherwise, if nav-
igation data are available, the initial path comes readily
from the dead-reckoning estimates. With this initial guess,
putative overlapping pairs can be identified according to
the spatial arrangement of the image’s positions. To check
the overlap between two images, their fan-shaped foot-

prints are projected over a plane according to their posi-
tion and orientation. The ratio of the intersection area over
the total area of the footprint is computed, and two criteria
are imposed for it to be considered a valid candidate pair:
first, the overlap percentage must be above an established
threshold, and second, the orientation difference between
the two frames must fall within the limits [—? : %] or

— 5% 1+ 180 : 180 4 2¥]. In this way, we avoid selecting as
candidate pairs those frames that, even presenting enough
overlap, cannot be registered given the implicit restrictions
of our rotation estimation algorithm. Note that in an on-
line approach, in order to maintain a consistent estimation
throughout the time, the overlap checking would have to
be performed at each new frame (or at each group of n new
frames) in order to identify possible loop closures with the
frames previously incorporated into the graph.

Once the candidate pairs are identified, they are fed
into the registration module described in Section 3.1. Fi-
nally, in order to avoid introducing erroneous constraints
in the graph, a second level of pruning is performed to dis-
card, from all the attempted registrations, those with large
uncertainty. This filtering is performed according to an es-
tablished threshold on the uncertainty measure described
in the previous section for both rotation and translation
estimates.

5. MOSAIC RENDERING

The global alignment provides the position of the sonar im-
ages in a global reference frame, usually the first frame of
the image sequence. We can then build the absolute homo-
graphies that relate every image with respect to the refer-
ence frame and map the sonar images on the mosaic plane.
However, as the content of multiple images will overlap
in a given position, a strategy is required to deal with the

(a) (b)
Figure 9. Example of the denoising effect obtained by mosaic-
ing. (a) Single frame gathered with a DIDSON sonar operating
at its lower frequency (1.1.MHz). (b) Small mosaic composed
of 50 registered frames from the same sequence blended by av-
eraging the overlapping intensities. It can be clearly seen how
the SNR increases and the details pop out.
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combination of the pixel intensities and thus generate a
representation with a smooth and continuous overall ap-
pearance.

Again, we cannot take advantage of traditional blend-
ing techniques designed for video images. Optical blending
generally deals with a low number of images at a given
position by treating only the intersecting boundaries. Some
methods focus on finding the optimal location to place a
seam that minimizes the photometrical and geometrical
changes, whereas others apply a smooth transition over
the intersection area. However, blending an FLS mosaic re-
quires dealing with multiple images due to the high over-
lap percentages. Especially when the images have been ac-
quired in an across-range fashion, high overlap is a must
to achieve good coverage due to the sonar fan-shaped foot-
print. Furthermore, presuming that a correct registration
has been performed, it is of interest to keep as much of the
overlapping images as possible to be able to improve the
SNR of the final mosaic. Therefore, it is necessary to deal
not only with the seam areas, but with the whole image.

A simple but effective strategy is to perform an aver-
age of the intensities that are mapped to the same location.
Averaging the overlapping sonar intensities yields the de-
noising of the final mosaic, achieving an improvement in
terms of SNR compared to a single image frame (see Fig-
ure 9). Ideally, by averaging, the reduction of the noise (and
therefore the improvement of the SNR) is proportional to
the squared number of averaged samples. Then, under the
assumption of additive Gaussian noise, a mosaic would
have an overall SNR improvement of approximately the
mean of the square roots of the overlapped images at each
location. However, we must highlight the fact that averag-
ing reduces only the contributions of random uncorrelated
noise, and therefore the image SNR cannot be increased
indefinitely by averaging more samples as, eventually, the
remaining noise is due to artifacts that may manifest as
correlated noise. In the presence of registration misalign-
ments, the averaging strategy will generate blurred areas of
mixed content. Besides, several photometrical artifacts may
arise, such as noticeable seams due to a nonconstant num-
ber of overlapping images, especially in datasets with dif-
ferent tracklines, rotations, or a nonconstant vehicle speed.
A fade-out of the mosaic content can also occur when av-
eraging images that have blind (i.e., black) areas, typically
as a consequence of nonproper imaging configurations. In
Hurtés et al. (2013a), we have proposed a blending work-
flow that preserves the averaging nature but enables the
correction of these artifacts through different strategies. Al-
though more sophisticated blending techniques are being
investigated, we choose to use here the average blend-
ing as it also serves as a visual indicator of the mosaic’s
consistency.

Apart from the improvements in SNR, the resolution
of the final mosaic can also be enhanced with respect to
the original images. We can take advantage of the multi-
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ple alignment of low-resolution images together with the
subpixel accuracy positions obtained from the global align-
ment step to perform superresolution. Hence, by oversam-
pling the mosaic grid and mapping the images with sub-
pixel transformations, we achieve a higher resolution and
an overall enhancement of the mosaic image.

6. EXPERIMENTS AND RESULTS

This section presents experimental results, validating both
the proposed registration methodology and the global
alignment strategy. We first report on a small test performed
inside a water tank, followed by results on relevant field
applications that take place inside harbor environments
where visibility is often compromised.

For each experiment, we report the details of the input
sonar frames, the computation times, and the resolution and
size of the obtained mosaics (Tables VI, VII, and VIII). All
the computation times are obtained using an Intel i7 3.4
MHz QuadCore CPU. Notice that, even when we run the
experiments in a CPU with multiple cores, the implemen-
tation of our registration algorithm, as stated in Section 3.2,
is running in a single core. A more efficient multithreaded
implementation is under development.

6.1. Tank Test

This experiment was carried out in the water tank at the Uni-
versity of Girona using the Girona-500 AUV (Ribas, Palom-
eras, Ridao, Carreras, & Mallios, 2012), equipped with the
ARIS FLS. Several objects were deployed at the bottom of
the tank and the vehicle was teleoperated over them while
maintaining the same orientation viewpoint throughout the
experiment. Due to the limited size of the tank, the sonar was
configured for small ranges, imaging a window of 1.5 m.
A total of 527 frames were acquired, with the vehicle navi-
gating at a constant altitude of 1.5 m from the bottom and
the sonar tilted at 20° to facilitate good imaging conditions.
Ground truth is not available as the indoor environment of
the experiment did not allow the use of a GPS.

Figure 10(a) shows the vehicle’s dead-reckoning tra-
jectory together with several of the estimated trajectories.
The black dashed line shows the estimated trajectory com-
puted by concatenation of the registration constraints of
consecutive image pairs. The green dashed line shows the
estimated path, including constraints computed within a
window of 20 neighboring frames. It can be seen that with
only the incorporation of these local constraints, the solu-
tion comes much closer to the final global-aligned trajectory
(depicted in red). This green path has been used as the initial
guess for the strategy to find a link hypothesis. Due to the
high overlap of the sequence, the method returned 36,092
potentially overlapping pairs under the requirement of a
50% overlap. From these, 15,473 were considered success-
ful registrations according to strict uncertainty thresholds.
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Table VI. Summary table for the Tank Test Dataset.
TANK TEST Input frame Size (pixels) Resolution (m/pixel) Example
350 x 274 0.0045
Computation times Registration(s) Optimization(s)
2312 27.6
Final mosaic Size (m) Resolution (m/pixel)
23x3 0.0011
Table VIl. Summary table for the ship hull dataset.
SHIP HULL Input frame Size (pixels) Resolution (m/pixel) Example
350 x 453 0.01
Computation times Registration(s) Optimization(s)
2654 31.3
Final mosaic Size (m) Resolution (m/pixel)
19 x 9.5 0.003
Table Vlll. Summary table for the Marina Marciana dataset.
MARCIANA MARINA Input Frame Size (pixels)  Resolution (m/pixel) Example
1,526 x 848 0.057
Computation times Registration (s) Optimization (s)
10316 219
Final mosaic Size (m) Resolution (m/pixel)
512 x 352 0.057

Given the high resolution delivered by the ARIS sonar, i.e.,
an angular resolution of 0.2° and a range resolution of 5
mm/pixel in the experiment configuration, the uncertainty
thresholds for translation and rotation were established at
2 cm and 2.5°, respectively. Figure 10(b) shows the final
constraints included in the graph. Due to the high overlap
of the dataset images, the graph presents a large number
of constraints. While this does not present any difficulties
in an offline framework, better pruning of the candidates
would be necessary to solve the problem in real time.
Figure 10(c) shows the obtained mosaic composed of
527 frames and rendered over an oversampled grid at four
times the original resolution. The mosaic shows high self-
consistence, supporting the accuracy of the method, and it
enables the identification of the small objects present in the
scene: a concrete block, an anchor, and an amphora, as well
as a grill and other details of the tank. Figure 11 shows a

comparison of a detailed area where the SNR improvement
between a single sonar frame [Figure 11(a)] and the mosaic
[Figure 11(b)] can be easily appreciated. Note also the en-
hancement of the image when comparing the oversampled
[Figure 11(c)Jand nonoversampled [Figure 11(b)] versions
of the mosaic.

6.2. Ship Hull Inspection

The second experiment is in the context of ship hull in-
spection. The dataset was acquired with the Hovering
Autonomous Underwater Vehicle (HAUV) (Vaganay et al.,
2005) of Bluefin Robotics (Bluefin Robotics Corp., 2013) and
a DIDSON sonar. The vehicle navigated across the bottom
of a ship hull, maintaining a constant distance to it and cov-
ering an area of about 15 m x 6 m. The sonar was mounted
on a tilt unit and was actuated throughout the experiment

Journal of Field Robotics DOI 10.1002 /rob



Natalia Hurtos et al.: Fourier-based Registration for Robust Forward-looking Sonar Mosaicing o 141

x(m)
x(m)

0.8

o5k 0.6

0.4

-0.5

(c)

Figure 10. (a) Trajectories of the ARIS Tank experiment. Blue: Vehicle’s dead-reckoning trajectory. Black-dashed: Trajectory es-
timation from consecutive image registrations. Green-dashed: Trajectory estimation from the consecutive constraints including a
window of local neighbors. Red: Final estimated trajectory after the global alignment. (b) Final graph constraints of the ARIS Tank
experiment. Black: window constraints. Red: loop-closure constraints. (c) Mosaic composition with the 527 frames from the ARIS
Tank experiment.
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(a) (b) (c)
Figure 11. Detailed comparison of a small area in the tank mosaic. (a) Single frame. (b) Nonoversampled mosaic. (c) Mosaic
oversampled four times the original resolution. Note the improvement of the mosaic SNR with respect to the individual frame and
the enhancement of the oversampled mosaic version.
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Figure 12. Links established by registration constraints in the ship hull dataset. Blue circles represent the vertices of the graph.
Links in black depict the registration of a frame with neighboring frames inside a window. Links in red represent constraints found
in loop-closure situations.
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Figure 13. Trajectories of the ship hull dataset: Navigation trajectory (in blue) and estimated trajectory after the global alignment
(in red).
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()
Figure 14. Ship hull mosaic rendered over different trajectories: (a) Over navigation trajectory. (b) Over the estimated trajectory
before the optimization. (c) Over the final optimized trajectory. Parts (a) and (b) present blurred areas as a consequence of averaging
misaligned images, whereas the final mosaic shows high consistency.
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(a)

()

Figure 15. Detail comparison of a small area in the ship hull mosaic. (a) Single frame. (b) Nonoversampled mosaic. (c) Mosaic
oversampled at three times the original resolution. Note the improvement in the mosaic SNR with respect to the individual frame

and the enhancement of the oversampled mosaic version.

so as to adapt the images to the hull’s surface and facili-
tate better imaging conditions. The final trajectory consists
of five tracklines across the bottom of the hull, compris-
ing a total of 4,420 sonar images collected during 7 min.
The spacing between the tracklines (about 1 m) and the
range configuration of the sonar (up to 4.5 m) guarantees
sufficient overlap between different tracks. Moreover, the
vehicle was moving basically in surge and heave degrees of
freedom, which facilitates the registration between revisited
locations as the vantage point is preserved throughout the
experiment.

Due to the high frame rate of acquisition (six frames
per second), only one out of three images has been consid-
ered, reducing the dataset to 1,473 frames. No navigation in-
formation has been used in the global alignment stage. Fol-
lowing the link candidate strategy, a total of 17,079 pairwise
registrations have been attempted, including frames from
the vicinity of the sequence and frames found in loop clo-
sure situations. From these, 8,148 have been deemed correct
registrations and therefore involved in the generated pose-
based graph. The high number of established constraints
(consecutive and nonconsecutive) allows us to obtain a con-
sistent solution relying solely on the information extracted
from the registrations. The total of performed registrations
were computed in 22 min, which suggests that with a more
restrictive pruning on the attempted frames, the algorithm
can achieve real-time capabilities.

Figure 12 shows the final computed locations of the
sonar images, depicting all the links established between
frames. Figure 13 shows the navigation trajectory (in blue)
referenced at the sonar’s origin and the trajectory computed
with our methodology (inred). Unfortunately, as the ground
truth is not available in this dataset, we cannot provide a
quantitative measure of which trajectory is better. However,
by mapping the sonar frames over the image locations in
both trajectories, one can appreciate that the mosaic over the
estimated trajectory leads to a much more defined image
composition. Figure 14(a) shows the mosaic over the nav-
igation trajectory, while Figure 14(b) displays the mosaic
of the estimated trajectory prior to the optimization step,
and Figure 14(c) shows the final obtained mosaic oversam-

pled by a factor of 3. It can be seen that the composite im-
age in Figure 14(c) presents a consistent overall appearance
and allows the identification of the various features on the
hull’s bottom. Some illumination artifacts are present (espe-
cially in the lower part of the image) due to the tilt imaging
angle.

Figure 15 shows a comparison of a detailed area be-
tween a single sonar frame, the nonoversampled version of
the mosaic, and the mosaic oversampled at three times the
original resolution.

6.3. Marciana Marina Harbor

The third experiment is based on a harbor survey per-
formed during the ANT’11 sea trial organized by the Cen-
tre for Maritime Research and Experimentation (CMRE),
the former NATO Undersea Research Centre, located in La
Spezia (Italy), during which the University of Girona col-
laborated with CMRE. The dataset was obtained using a
Blueview P900-130 FLS mounted on CMRE’s Catamaran
Autonomous Surface Vehicle (a modified vessel made by
Sea Robotics). The employed setup allows us to have pre-
cise differential GPS data and heading from 2 GPS units,
which is used as ground truth. The dataset is composed
of 4,416 sonar frames gathered along a 2.1 km trajectory
comprising both translational and rotational motions. This
dataset is useful to test the proposed methodology under
some different conditions. The data are gathered in a nat-
ural environment containing typical seafloor features (e.g.,
vegetation, rocks) which are sparse and less prominent than
those found in manmade scenarios. The acquisition sonar
also has significant differences in its operating range (up
to 50 m), field-of-view (130°), and resolution (5.8 cm/pixel)
compared to the other reported experiments. Additionally,
the frames present a strong inhomogeneous insonification
pattern that has been corrected in a preprocessing step
(Figure 16).

Although information from the GPS positions is avail-
able, it is not utilized to initialize the vertices of the pose
graph. Given its high accuracy, it would result in an ini-
tial guess too close to the final solution and would prevent

Journal of Field Robotics DOI 10.1002/rob



Natalia Hurtés et al.: Fourier-based Registration for Robust Forward-looking Sonar Mosaicing « 145

(a) (b) (c)
Figure 16. Image correction steps: (a) Frame example affected by inhomogeneous insonification. (b) Estimated illumination
pattern. (c) Corrected frame.
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Figure 17. Absolute mean errors (in x and y orientation) of the registration estimates for consecutive frames in the Marciana
Marina dataset. Overlaid in red: errors of registrations that have been deemed unsuccessful according to the established thresholds
on the uncertainty measure.

us from demonstrating the performance of the constraints secutive frames compared to the ground truth odometry
established by the registration method. The proposed reg-  computed from the GPS positions. The mean errors are low,
istration algorithm is generally successful in aligning the being 0.23 and 0.15 m for the x and y translations and 0.5° de-
sequential image pairs of the dataset. Figure 17 shows the grees for the rotational estimates. Colored in red, we depict
absolute mean errors of the registration estimates for con-  those consecutive registrations that have been identified as
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Figure 18. Error histograms for consecutive frame registrations in the Marciana Marina dataset. Only registrations considered
successful under the established uncertainty threshold are taken into account. The maximum absolute errors are small and the
mean of the error is around 0, indicating that the estimations are not affected by any bias. (a) Error histogram for x-translation. (b)
Error histogram for y-translation. (c) Error histogram for orientation.

unsuccessful according to the thresholds on the uncertainty
measure. Most of the frames with high error have been iden-
tified, and therefore are not introduced in the graph. High
errors are arising mainly at the start of the sequence and
around frames 1,500 and 2,500. Leaving aside the initial dif-
ferences, where we believe the GPS had an issue with the
heading, the last two problematic points correspond to two
turns on the homogeneous areas, as can be seen in the lower
right side of the mosaiced area [see Figure 21(a)]. In these
areas, the images are highly homogeneous, lacking any type
of content or intensity variation that causes the registration
method to fail (for the rotation estimation, and subsequently
for the translation).

Figure 18 shows the error histograms of the registra-
tions that have been identified as successful. As can be seen,
the mean errors are around 0, indicating that the registration
method is not affected by any bias. This is significant, as a
bias in the registration estimates would not be addressed
by the proposed optimization scheme.

The inability to link all consecutive frames prevents the
generation of an initial graph using only the image informa-
tion. In a sonar navigation framework, the dead-reckoning
estimates would allow constraints to be established between
these sonar poses. Here, we introduce in its place con-
straints based on the GPS measurements. Note that these
constraints are only introduced in 64 of the 4,415 pairs of
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Loop closure links detected in the Marciana Marina experiment.
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Figure 20. Trajectories of the Marciana Marina experiment: GPS trajectory (in green) and estimated trajectory after the global

alignment (in red).

consecutive frames. These links, together with local links
from the registrations inside a window of 20 neighboring
frames, are used as an initial guess to determine a hypoth-
esis for overlapping frames. In this experiment, cross-track
registration is difficult since the vehicle navigated on nearly
reciprocal headings, alternating them in consecutive tracks.
That causes the image’s appearance to suffer from signifi-
cant changes and drastically lowers the number of detected
loop closures, yet the registration algorithm is able to align
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a small number of revisited frames crucial to enforce global
consistency (Figure 19).

Figure 20 shows the GPS trajectory (in green) together
with the estimated sonar trajectory (in red). It can be seen
that the trajectory obtained after the graph optimization
closely matches the GPS track, indicating that the registra-
tion constraints lead to a valid solution. There is a differ-
ence as a consequence of several small registration errors
accumulated along the estimated path. These errors are
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(b)
Figure 21. (a) Final mosaic of the Marciana Marina experiment (not oversampled). (b) Orthophotomap of the Marciana Marina
environment. Note the presence of common features that can be appreciated in both representations (indicated by red arrows).

distributed along the trajectory; however, since the esti- using the estimated global positions [shown in Figure 21(a)]
mated trajectory and the GPS track are fixed with respect ~ presents an overall view of the surveyed area with a con-
to the first position, the error might seem larger at the end.  tinuous and uniform appearance. A result of this type is

Notice also that the discrepancy is around 15 m, which is of special interest not only to observe the harbor features
barely 0.7% of the total trajectory. The acoustic mosaic built ~ and their spatial arrangement but also because it enables
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us to perceive features that otherwise would be difficult to
distinguish given the low resolution and SNR of the acqui-
sition sonar.

By georeferencing the mosaic, we can compare it with
an orthophotomap of the harbor environment where the
sonar data were gathered [Figure 21(b)] and correlate the
presence of scene features (isolated rocks in the left part of
the image) in both representations.

7. CONCLUSIONS

This paper has described a registration methodology for
aligning FLS images, proving its utility in mapping un-
derwater environments. The pairwise registration of sonar
frames has been solved by a Fourier-based method that,
unlike feature-based methods, takes into account all the im-
age information in the alignment process. We have tailored
the phase correlation technique for the special case of FLS
image alignment and have compared its performance with
an existing region-based FLS registration method. Our ap-
proach has shown superior performance in the alignment
of both consecutive and nonconsecutive frames, proving
to be robust and accurate despite the complicated nature
of the sonar images. The main restriction of the method
is that it can only register images that differ in small ori-
entations. Although this is not an issue in consecutive or
near-consecutive frame registrations, it should be taken into
account to obtain successful loop closures.

The registration method has been integrated in a mo-
saicing pipeline with global alignment being performed
by means of a pose-based graph optimization. The high
frame rate of the sonar is exploited to achieve local ro-
bustness in the initial guess of the graph, and loop closure
situations are detected and incorporated to enforce global
consistency.

Reported results include mosaics of different charac-
teristics, ranging from small-sized objects to large natural
environments, gathered with different sonar models and il-
lustrated with application environments typically affected
by low-visibility conditions.

Due to the increase in SNR and resolution with respect
to individual frames, the rendered mosaics can serve as an
enhanced basis to perform subsequent processing in other
applications such as object recognition or terrain classifi-
cation. In a parallel work, we have started to exploit the
advantage of mosaiced frames to apply pattern matching
with higher reliability than by using single frames (Hurtés,
Palomeras, & Salvi, 2013c).

It is worth pointing out that although the present work
focuses on the offline generation of acoustic mosaics, the
proposed registration method has the potential of running
in real time. Future work will concentrate on integrating
the method in an online SLAM framework to help con-
strain the dead-reckoning drift and thus enable long-term
autonomous operations in turbid environments.
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