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A Qualitative Review on 3D Coarse Registration Methods

YAGO DÍEZ, FERRAN ROURE, XAVIER LLADÓ, and JOAQUIM SALVI, University of Girona

3D registration or matching is a crucial step in 3D model reconstruction. Registration applications span along
a variety of research fields, including computational geometry, computer vision, and geometric modeling.
This variety of applications produces many diverse approaches to the problem but at the same time yields
divergent notations and a lack of standardized algorithms and guidelines to classify existing methods. In
this article, we review the state of the art of the 3D rigid registration topic (focused on Coarse Matching) and
offer qualitative comparison between the most relevant approaches. Furthermore, we propose a pipeline to
classify the existing methods and define a standard formal notation, offering a global point of view of the
literature.

Our discussion, based on the results presented in the analyzed papers, shows how, although certain aspects
of the registration process still need to be tested further in real application situations, the registration
pipeline as a whole has progressed steadily. As a result of this progress in all registration aspects, it is now
possible to put together algorithms that are able to tackle new and challenging problems with unprecedented
data sizes and meeting strict precision criteria.
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Yago Dı́ez, Ferran Roure, Xavier Lladó, and Joaquim Salvi. 2015. A qualitative review on 3D coarse regis-
tration methods. ACM Comput. Surv. 47, 3, Article 45 (February 2015), 36 pages.
DOI: http://dx.doi.org/10.1145/2692160

1. INTRODUCTION

3D registration1 represents a fundamental problem in a variety of areas, such as
medical imaging, heritage reconstruction, shape retrieval, and industrial applications.
Specific issues include alignment of temporal 3D images for lesion monitoring, modeling
of structures, and the reconstruction of an object giving several views, or the bin picking
problem.

1Note that we understand the words registration, matching, and alignment as synonyms, and we use them
interchangeably throughout the article.
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Registration methods work with different types of input data that we categorize as
(1) synthetic data (totally computer made), (2) processed data (filtered and modified
scanned data), and (3) real data (scanned data without any modification). Current
methods of data acquisition (scanners, structured light, etc.) are able to provide huge
amounts of data corresponding to precise reconstructions. Depth cameras are an emer-
gent acquisition technology, a representative example being Microsoft Kinect [Lui et al.
2012], which is gaining in popularity because it provides good performance at reason-
able prices. However, in these cases, the raw depth data must be processed to obtain
the geometric primitives used in registration algorithms [Khoshelham and Elberink
2012]. The scanned information obtained from any type of scanner can be handled
using a variety of these geometric primitives. Point clouds are the simplest representa-
tion and are widely used in the literature. However, many methods need more complex
structures, such as triangular meshes.

The size of the input data used in most specific applications makes the development
of efficient algorithms a key issue. For example, in object reconstruction, the most pop-
ular strategy is still to get many different views of the model and subsequently register
them onto a common coordinate system. 3D registration allows for full model recon-
struction; however, if a high degree of precision is required, such as a huge number of
points in the cloud, the process requires highly efficient methods to achieve registra-
tion in a reasonable amount of time. Although matching algorithms have seen many
improvements over recent years, there is still no algorithm that can be considered
standard in the sense that it can be used reliably in all situations and with the desired
data sizes.

Due to the high number of application fields of registration, different scientific com-
munities produce contributions related to it. These communities include computer
graphics (Eurographics conference,2 SIGGRAPH conference3), computational geom-
etry (SoCG conference,4 Journal of Computational Geometry5), and computer vision
(Pattern Recognition journal,6 International Journal of Computer Vision,7 IEEE Trans-
actions on Pattern Analysis and Machine Intelligence8), to name a few. This dispersion
of contributions makes the organization of information more difficult. The main prob-
lems are the lack of a common notation, the diversity of interests when approaching
similar problems, and the lack of common evaluation criteria. In this article, we pro-
pose a pipelined classification for the methods involved in the registration process.
Our aims are to relate divergent notations addressing similar issues, review the most
popular methods for each application area, and classify them according to the aspects
of their matching processes.

Although we focus on 3D rigid registration methods, many other registration-related
problems exist, such as nonrigid alignment [Huang et al. 2008; Kumar et al. 2001],
shape morphing [Alexa 2002], deformation transfer, self-similarity detection, or time-
varying surface reconstruction. For further details on these areas, we recommend two
qualitative reviews: Van Kaick et al. [2011] and Tam et al. [2013].

The rest of this article is structured as follows. Section 2 presents an overview of the
state of the art as well as a generic pipelined classification of the different steps used in
point cloud registration. Section 3 defines the problem and presents the formal notation

2http://www.eg.org/.
3http://www.siggraph.org/.
4http://www.uniriotec.br/∼socg2013/.
5http://jocg.org/index.php/jocg.
6http://www.journals.elsevier.com/pattern-recognition/.
7http://link.springer.com/journal/11263.
8http://www.computer.org/portal/web/tpami.
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Fig. 1. Point registration pipeline.

used in this article. Sections 4, 5, 6, and 7 provide details on the four main steps defined
on the aforementioned pipeline and describe the most relevant approaches in every
step. In Section 8, we evaluate the methods studied according to practical criteria
and discuss their performances. Finally, Section 9 focuses on the conclusions of this
review.

2. OVERVIEW

The registration process consists of several steps. We propose a pipelined classification
(Figure 1) to organize existing techniques in each step of the registration process. Meth-
ods are divided into two different categories, according to the initial relative position
of the data: Coarse Matching and Fine Matching. Coarse Matching, on which we focus
in this article, encompasses all techniques that return a rough initial alignment of the
input point clouds placed anywhere, without any initial alignment. In the literature,
we can find these kinds of methods under different terms such as Rough or Coarse
alignment, or Global or Crude registration. On the other hand, Fine Matching includes
methods that start from one such approximation and aim at finding a registration as
accurate as possible. Coarse Matching can be further divided into three different steps:
detection, description, and searching strategies. As we will see throughout this article,
most approaches are focused on only one part of the pipeline. Most frequently, this part
is the detection or description step. In most cases, the rest of the pipeline is completed
using very basic methods or even brute force.

Although the distinction is clearly defined between Coarse and Fine Matching, some
methods within Coarse Matching are difficult to categorize. There are methods encom-
passing different steps, such as detection and description or description and searching
strategies.

Thus, our pipelined classification is structured as follows. First of all, a detection
step is used to reduce the number of points being considered. It consists of detecting a
certain number of key points that are prominent according to a specific criterion. The
sizes of input data make the detection step necessary in many approaches to obtain
computationally manageable datasets. The second step of the pipeline, description,
consists of assigning values to the detected key points according to the properties of the
shape around them. The functions that perform this are called local shape descriptors.
Finally, searching strategies are used to find correspondences between points in the two
point sets. A correspondence between two points from different point clouds reinforces
the assumption that these two points will be the same in the final registered shape.
Descriptor values are used to prioritize the best apparent correspondences. A minimum
of three correspondences are needed to determine the coarse alignment in 3D. The
goal in this case is to avoid exhaustive search of the whole correspondence space.
This exhaustive search would lead to asymptotic costs of O(n6) for 3D registration (n
being the number of points of the sets), because corresponding triplets that determine
the movement are found by checking all point combinations from both shapes. After
achieving coarse alignment, a Refinement step is applied. This step consists of using
iterative methods to align the shapes as accurately as possible. These methods are
usually very fast but cannot be used unless a rough initial alignment is available.
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2.1. Related Work

Rigid problems aside, other types of registration exist. One of the most challenging
problems today is that of nonrigid registration. In this case, the constraints based on
Euclidean distance preservation are not valid. The extrinsic methods commonly used
in rigid registration are unable to solve nonrigid problems. Instead of geometrical prop-
erties that are sensible to nonrigid deformations, these methods often use topological
information and the intrinsic properties of the objects to align the shapes properly.
However, some of these methods also display good performance in rigid registration.
We review some of them in this article.

Some examples of the state of the art in nonrigid registration are heat kernel sig-
nature (HKS) [Sun et al. 2009], which computes the heat diffusion over a surface, and
wave kernel signature (WKS) [Aubry et al. 2011], which calculates the average proba-
bility of measuring a quantum mechanical particle at a specific location. Both methods
can be used in other intrinsic searching strategies, shown in Ovsjanikov et al. [2012],
where the authors presented an approach called Functional Maps. This approach uses
a generalization of the notion of map and looks for correspondences between real-valued
functions rather than points on the shapes. Other examples are a nonrigid improve-
ment of the 3D Shape Context descriptor presented by Kokkinos et al. [2012] and a
nonrigid application of curve skeletons Zheng et al. [2010].

Due to the width of the registration research field, it is necessary to narrow the scope
of this review. For this reason, we focus on rigid registration alone.

3. PROBLEM DEFINITION

The variety of registration applications produces divergent notations throughout the
literature. Similar notions often receive different names, and in some cases, formal
definitions of commonly used concepts are not widely available. To improve the read-
ability of this review and unify related concepts in this section, we introduce a formal
definition of the problem.

3.1. Input Data

Each of the many applications that use registration techniques has its preferred data
type. Essentially, there are three types of input data used in the literature: point
clouds, triangular meshes, and volumetric data. The simplest is the former, which is
a collection of 3D points with no other information. The second is composed of a point
cloud and connectivity information between points, usually presented as a graph. The
most commonly used format is a triangular mesh (i.e., a Delaunay mesh). Volumetric
data is often used in medical imaging (MRI, tomography, etc.) due to the nature of
acquisition. These types of data are considered to be easily processed in parallel. In
this article, we focus on point clouds and meshes.

The input data of the registration problem thus consists of two point clouds A and B,
being A = {a1, . . . , an} with ai = (xai , yai , zai ) and B = {b1, . . . , bm} with bi = (xbi , ybi , zbi ).
Note how, in some cases, such as the reconstruction of an object from several views,
more than two objects might be involved in the registration problem. As these problems
can be reduced to a series of pairwise registration instances, we do not explicitly include
these problems in this section. Whenever the problem requires the use of meshes, we
name them MA and MB. These meshes are graphs MA = (A, EMA ), MB = (B, EMB ),
where EMA , EMB (graph edges) contains relationship information between the points of
the object (graph vertices).

When it comes to the use of meshes, nearly all functions aiming at describing
shape in the vicinity of a point ai are based on the neighbors of ai. These neigh-
bors might be defined in terms of Euclidean distance, requiring range-searching data
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structures for their computation, or in terms of a mesh, where the neighbors of ai
correspond to its adjacent points, connected by EMA . Note how either notions do not
always coincide, especially as meshes might be constructed using a variety of criteria.
Nevertheless, meshes are used often, as they provide fast and convenient access to
neighbors.

3.2. Desired Output

The registration problem aims at finding a rigid transformation9 μ : R
3 −→ R

3 that
brings set A as close as possible to set B in terms of a designated set distance.
A commonly used distance is the root mean squared distance (RMSD) defined as
follows:

RMSD(X, Y ) =
√∑n

i |xi − yi|2
n

. (1)

In applications where only partial matches are expected, it is sometimes desirable to
fix an upper threshold thr for the distance between ai and μ(bj) so that points without
correspondences do not influence the measure. The matching process returns a set of
correspondences C between A and B where correspondences with distance farther than
thr are discarded:

C = {(ai, bj) with ai ∈ A, bj ∈ B
holding ∀bk ∈ B d(ai, bk) ≥ d(ai, bj) and d(ai, bj) < thr}. (2)

Then we redefine the RMSD as

RMSD(A, μ(B)) : ai, bj ∈ C =
√∑

C d(ai, μ(bj))2

|C| , (3)

where μ(bj) is the nearest neighbor point of ai and |C| is the cardinality of set C.

3.3. Detectors and Descriptors

Two very important steps of the registration problem are detection and description. In
the first, the goal is to select those points of the sets that are more distinctive according
to a chosen criterion (in most cases, the shape of the object). Besides, descriptors aim at
encoding the shape around a point in terms of a set of numerical values. Consequently,
although detectors and descriptors are focused on different targets, both are based on
the same key issue: the local shape of the input data. The key points detected from an
input data are selected according to the salience and uniqueness of the descriptor value
at these points. In this review, we present both steps in separate sections (Sections 4
and 5), as most papers focus only on the one aspect. In this section, we highlight that
both topics are very close, because both are based on the study of the shape around a
certain point.

We define this shape function of a certain point ai as f D(ai) : Nai ⊂ R
3 −→ P(R)

being Nai the neighborhood of ai, where the superscript D identifies the method. P(R)
is the power set of R (e.g., the set of all subsets of R). For each point ak in Nai , f D(ai)
outputs a set of real values corresponding to the shape of Nai around ai. Usually, the
same descriptor function is used for the two sets involved in the matching A and B. To
avoid some cumbersome notation, from now on we will obviate this particular set Nai

9Holding d(ai, bj ) = d(μ(ai), μ(bj ))∀ai, bj ∈ R
3, d() being the Euclidean distance.
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and refer to these functions as f D(ai) : R
3 −→ P(R). Some examples of these functions

are as follows:

— f PS(ai) : R
3 −→ R

2 × · · · × R
2 for the Point Signature descriptor [Chua and Jarvis

1997], where f PS(ai) is a list of paired values for each point ai in A.
— f SI(ai) : R

3 −→ 2D histogram for the Spin Image descriptor [Johnson 1997], where
f SI(ai) is a distribution histogram of the points in the neighborhood of ai.

— f HKS(ai) : R
3 −→ R for the HKS descriptor [Sun et al. 2009], where f HKS(ai) is the

value of the heat diffusion function around ai.

In the detection step, the most distinctive points are selected according to f D. A
threshold is often used for this task, and only the points that satisfy this threshold
are kept. We define this subset of selected points as SA ⊂ A that will be used in
the rest of the pipeline. In the description step, we use f D to obtain a value that
represents the shape around the point. We define a Boolean correspondence function
c f D : SA × SB −→ boolean{0, 1} that checks whether or not the descriptor values at two
given points are close enough for the shapes around the points to be considered the
same:

c f D(ai, bj) =
{

TRUE if f D(ai) ≈ f D(bj)
FALSE if f D(ai) 	= f D(bj).

(4)

As an example, we present the correspondence function c f of the Spin Image descriptor:

c f SI(ai, bj) =
{

TRUE if ||αai − αbj || < ε and ||βai − βbj || < ε,

FALSE otherwise (5)

where f SI(ai) = (αai , βai ) and f SI(bj) = (αbj , βbj ).

3.4. The Computation of Output Motions

Throughout the literature, all motions μ considered as candidate outputs for the regis-
tration problem are computed using a number of point correspondences. First, points
in sets A and B (ai, bj) are identified as possibly corresponding points. If a descriptor is
being used, (ai, bj) must hold c f D(ai, bj) = TRUE. Then, once a number of these “corre-
sponding couples” have been identified, a motion is computed following specific criteria.
Usually, the criterion used is the least squares distances between sets. In a typical sce-
nario [Dı́ez et al. 2012], three corresponding couples, (ai1 , bj1 ), (ai2 , bj2 ), (ai3 , bj3 ), are
identified, and μ is usually the rigid transformation holding that the RMSD between
sets {ai1 , ai2 , ai3} and {μ(bj1 ), μ(bj2 ), μ(bj3 )} is the minimum possible. To determine a 3D
rigid transformation, at least three point correspondences are mandatory (although
more might be used [Winkelbach et al. 2006; Aiger et al. 2008]). The number of point
correspondences varies for other types of motions (e.g., only one point correspondence
is needed to determine a 3D translation).

These sets of points used to compute candidate motions are a commonly used concept.
Henceforth, we will refer to this concept as a base.

A base BA = {ai1 , . . . , aik} ⊂ SA of set A stands for the set of k points used to determine
a rigid transformation that is a candidate to be the output of the registration problem.
Each point of BA must have a correspondence point in an analogous BB = {bj1 , . . . , bjk} ⊂
SB holding c f D(ail , bil ) = TRUE.

Note how although only a few points from each set are usually considered when
computing candidate motions, the measure of the proximity of the two sets is computed
using all points in the sets or, at least, all matched points.
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3.5. Problem Statement

A formal summary of this section follows:

—Given two point sets A = {a1, . . . , an} and B = {b1, . . . , bm} and a shape function
f D : R

3 −→ P(R) with correspondence function c f D : SA × SB −→ boolean{0, 1}.
—Let SA ⊂ A and SB ⊂ B be the points that are most distinctive in term of a shape

descriptor function f D : R
3 −→ P(R).

—A solution to the rigid registration problem is a rigid transformation μ holding:
—RMSD(A, μ(B)) is minimum.
—There exist two bases BA = {ai1 , . . . , aik} ⊂ SA, BB = {bj1 , . . . , bjk} ⊂ SB holding that

for all corresponding couples, c f D(ail , bjl ) = TRUE.

4. DETECTORS

To reduce both the computation time and the number of points to be considered, the
most common strategy is to use only those points that can effectively contribute to
finding a good enough solution. In other words, the goal is to obtain a subset of points
that maintain the object shape characteristics as far as possible. This is a rapidly
growing research field, motivated by 3D shape retrieval problems [Shilane et al. 2004;
Tangelder and Veltkamp 2004; Iyer et al. 2005; Bustos et al. 2005; Lian et al. 2012].
This step is also called filtering. Several criteria exist to decide which points should be
kept and which points should be discarded. Note that many methods explained here are
used in combination with a descriptor, usually presented under the same name. In this
section, we introduce the most remarkable methods in the literature according to the
results presented in each paper and in different reviews and benchmarks [Bronstein
et al. 2010; Boyer et al. 2011; Salti et al. 2011; Dutagaci et al. 2012; Yu et al. 2013].

4.1. Normal Space Sampling

Rusinkiewicz and Levoy [2001] reviewed several methods, such as uniform [Turk and
Levoy 1994] or random [Masuda et al. 1996] sampling. The main problem with these
methods is that the selection of points does not depend on surface characteristics.
Dealing with smooth models with small irregularities (e.g., a plane), the process might
result in sampling many points that essentially contain the same information in terms
of normal vectors. For this reason, the authors introduced the Normal Space Sampling
(NSS) method. This strategy consists of (1) grouping points in “buckets” according
to the angles between their normal vectors (considered in the unit sphere) and the
coordinate axes, and (2) sampling uniformly over the resulting buckets, providing a
downsampling of the points with more “frequent” normal vectors.

Dı́ez et al. [2012] presented an improvement of NSS called Hierarchical Normal
Space Sampling (HNSS). This method groups points hierarchically, according to the
distribution of their normal vectors with each level in the hierarchy representing a NSS
instance. The search for correspondences then proceeds hierarchically between points
of the two sets. The huge search space is navigated taking advantage of geometric
information until a solution is found. The authors use a RANSAC-based method inside
the hierarchical structure to find a transformation that roughly aligns the two point
sets. A significant reduction in computation time is observed when compared to pure
RANSAC-based methods.

4.2. Maximally Stable Volumes

The concept of Maximally Stable Volumes (MSVs) [Donoser and Bischof 2006] is a 3D
extension of Maximally Stable Extremal Regions (MSER) [Matas et al. 2004]. MSV
detects the most stable regions in a volume across different binary thresholds. Given
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a volumetric shape, the points inside the regions that remain visible under a set of
binary thresholdings will share good key points for a registration process.

A 3D volume can be interpreted as a weighted graph. Each voxel of the volume rep-
resents one node in the graph, and its value (e.g., the intensity value of MRI data) is
the weight of this node. The connectivity between nodes is given by the spatial neigh-
borhood of the voxels. A level set Lw of a weighted graph contains the set of nodes
with a weight above a given threshold w. The connected nodes within the same level
are grouped in connected components. To find an MSV, the authors propose the use
of a rooted data structure, namely a component tree. A component tree of a weighted
graph is an ordered representation of the graph. The component tree of a 3D volume
has connected volumes Cw

i as a tree nodes. Each level of the component tree contains
the connected volumes of a specific level set Lw at weight w. The MSVs are identified
as the connected volumes with the highest stability along a thresholding process thor-
ough all levels of the component tree. There are different algorithms for computing
the component tree, but the most efficient is the algorithm proposed by Najman and
Couprie [2004] that runs in quasilinear time.

There are different options for the key-point selection, such as a random sampling of
the surface of the MSV or a selection of the center of the ellipsoid contained inside the
MSV as a key point.

In Yu et al. [2013], MSV is tested against other detectors like Harris 3D, SURF,
or MeshDoG, obtaining the best performance results and being robust to noise and
rotation. Compared to the other methods, MSV detects few key points in the input
surface, but the ratio of correspondences between two registered shapes is at least
twice as big as the other detectors. The main drawback is the computation time, as the
search algorithm for stable regions is less efficient in 3D than in 2D.

4.3. Heat Kernel-based Features

As we will see in Section 5, HKS is a point descriptor presented by Sun et al. [2009].
However, the authors use the same concept in the mentioned reference: the heat diffu-
sion in a surface over a temporal domain as a key-point detector.

The nature of this method makes it possible to use the HKS as a shape function f HKS

to detect the parts of the shape with zones that are more salient in terms of descriptors,
like zones with high curvature. High values of f HKS identify the key points of a shape.

HKS is one of the best detectors in the literature due to its high repeatability results
(≈90%). HKS tends to return fewer key points than others detectors but with high
distinctiveness. In the SHREC 2010 benchmark [Bronstein et al. 2010], HKS obtains
the best results, and in Dutagaci et al. [2012], when it is compared with human-
generated ground truth, it performs much better than the other methods—close, in fact,
to human selected key points. Additionally, it can also be used for nonrigid registration.

4.4. MeshDoG

Zaharescu et al. [2009] presented a point detector based on the difference of Gaussians
(DoG) operator (Figure 2). MeshDoG finds the extrema of the Laplacian of a scale-space
representation of any scalar function defined on a discrete manifold.

Assuming a uniformly sampled triangulated mesh MA as input data, the authors
find the key points using the DoG operator. For each point ai ∈ MA, the extrema of the
Laplacian function are found across scales using a one-ring neighborhood Nai . Then,
the feature points are selected as the maxima of the scale space across scales. Finally,
only 5% of feature points are selected to make this detection step more accurate. Only
those feature points exhibiting corner characteristics are considered.

MeshDoG achieves high repeatability results (≈85%) [Boyer et al. 2011], being robust
to rigid transformation and scale modifications.
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Fig. 2. Three steps of MeshDoG algorithm applied on a mesh (a), scale-space extrema detection (b), thresh-
olding (c), and corner detection (d). Image taken from Zaharescu et al. [2009].

4.5. Intrinsic Shape Signatures

Intrinsic Shape Signatures (ISS) [Zhong 2009] is a point descriptor that possesses its
own detection method. As we will see in Section 5, ISS uses the eigendecomposition of
the neighborhood’s covariance matrix of a point to describe it. These values are used to
select the most representative points SA and SB from the point clouds. Key points are
selected as the points with large 3D variations in their neighborhood. These variations
are measured using the smallest eigenvalue of the covariance matrix of its spherical
neighborhood.

ISS demonstrates high repeatablity results (≈70%) with processed data, even in
noisy scenes, identifying few but strong key points. However, with real data, these
results drops to approximately 30%.

Another detector, Key-Point Quality (KPQ) [Mian et al. 2010], is quite similar to
ISS. KPQ also uses the neighborhood’s eigendecomposition of the covariance matrix to
establish a local reference frame (LRF). As a major difference from ISS, KPQ defines a
Key-Point Quality measure of each point based on the principal curvatures of the local
surface within a neighborhood. A smoothed surface S is fitted over the original data.
S is divided in a grid to sample the surface. Principal curvatures k1 and k2 and the
Gaussian curvature K = k1k2 of each sample of S are used to calculate the key-point
quality. The method selects the key points with high quality value and, with processed
data, this method performs worse than ISS. It obtains better results, however, with
real models.

4.6. Harris 3D

Sipiran and Bustos [2011] presented a 3D version of the Harris operator. The idea is
to apply the Harris operator in a 2D projection of the points without losing relevant
information. To find the best projection, where the points exhibit a good spread, the
authors translate and rotate the set of points of A according to the following criterion:
for each point ai ∈ A, a neighborhood Nai is defined. The centroid of Nai is computed
and all points in A are translated so that the centroid coincides with the origin of the
coordinate system. Then, a fitting plane to the translated points is computed. Authors
apply principal component analysis (PCA) to the set of points and choose the eigenvector
with the lowest associated eigenvalue as the normal of the fitting plane. Afterward,
they rotate the set of points until the normal of the plane coincides with the z-axis.
Finally, the resulting xy plane (2D projection) is used to calculate the derivatives. These
derivatives are computed using a six-term quadratic surface (paraboloid) fitted to the
set of transformed points. The Harris operator value in the studied point is calculated
with

f H(ai) = det(E) − k(tr(E))2, (6)
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where E is a matrix calculated from the points using the quadratic surface mentioned
earlier. The vertices with highest Harris values are considered feature points, obtaining
a constant number of vertices.

Due to the simplicity of the algorithm, Harris is faster. However, it is not robust
to noise because the corner detector methods are sensible to the perturbations of the
surface [Bronstein et al. 2010]. Although the method detects many key points, the ratio
of correspondences is small, around 20%, and decreases considerably when the noise
increases.

5. DESCRIPTORS

The shape function f D, also frequently referred to simply as the descriptor of ai, can
be defined as a set of values representing the shape characteristics of object A around
ai. A desirable characteristic for 3D rigid registration is for this representation to be
invariant under translation, rotation, and scaling.

In terms of the number of papers published, descriptors are the most active research
field in the registration pipeline. We classify many existing approaches according to
certain common characteristics. Following the work of Tombari et al. [2010], we arrange
the approaches in signatures and histograms. The former include methods that offer a
numerical result as a descriptor of a given point. The latter compute a histogram.

Another distinguishing factor is the type of the input data. Most methods work with
point clouds without any added structure (A), but some methods need to produce richer
representations, like meshes (MA). A triangulation with good shape properties, such
as the Delaunay triangulation, where the distribution between vertexes, edges, and
faces is approximately regular, comes with a high computational cost (O(n2)). This
cost, however, is incurred only once in a preprocessing step.

Another factor that we use for the discussion in this section are reference frames. In
papers like Zhong [2009] and Tombari et al. [2010], the authors note the importance
of achieving a good LRF to improve the accuracy of the detectors/descriptors. This
accuracy stems mainly from having an unambiguous LRF for every point, allowing for
detailed descriptions of local shapes. As we will see in Section 8, one possible drawback
of this approach lies in its sensibility to noise, especially occlusions. These factors
greatly perturb the local neighborhoods of points and thus affect the computations of
LRF.

Finally, we classify the methods according to their geometrical or topological nature.
Although topological methods are primarily used in nonrigid registration, they are also
used in rigid registration.

To make this classification easier, we present the methods of this section with the
following acronyms:

—S/H: Signature-based or histogram-based method
—P/M: Point cloud or mesh as an input data type
—RF/nRF: A reference frame is used or not
—G/T: Geometrical or topological method.

As mentioned previously, even though nonrigid registration methods are out of the
scope of this review, we include some of them because they obtain successful results
when on rigid problems.

5.1. Principal Curvature [S,P,nRF,T]

Principal Curvature stands for the maximum and the minimum curvature of the sur-
face at a given point. Feldmar and Ayache [1996] proposed using it as a descriptor.
In this approach, key points are described by the principal curvatures (k1, k2), the
normal vector of the point (
n), and the principal directions ( 
e1, 
e2) corresponding to the
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Fig. 3. Representation of a Point Signature. Left: Intersection between the surfaceA and the sphere centered
at ai , giving a curve C. Right: Distances and angles of different points in C projected to C ′.

principal curvatures. To search for correspondences between two point clouds, the algo-
rithm considers an initial point ai on surface A with a descriptor f PC

ai
= (ai, 
e1i, 
e2i, 
ni),

and a set of possible candidates on the second surface B, each one with a descriptor
f PC
bj

= (bj, 
e1 j, 
e2 j, 
nj), similar to f PC
ai

. Two rigid transformations are defined, D and D′,

where D aligns f PC
ai

with f PC
bj

and D′ aligns f PC
ai

with f PC
bj

′ = (bj,− 
e1 j,− 
e2 j, 
nj). Note
that both rigid transformations, D and D′, are computed because there is no way to
choose between them, as the direction of 
ni is ambiguous. Afterward, the transforma-
tion matrix that aligns both views is computed and evaluated. The authors consider
all correspondences between A and B at a distance smaller than a certain threshold.
If not enough correspondences are found, the algorithm chooses another initial point
ai and iterates. Otherwise, the alignment is computed using the available correspon-
dences. This method is also used in nonrigid registration because surface curvatures
are invariant to isometric deformations [Feldmar and Ayache 1996].

The main problem of this algorithm is that only one correspondence is used to com-
pute the rigid transformation. Considering that the algorithm stops when it finds a
good correspondence, other possible correspondences might not be considered. Better
alignments might be missed if the motion found is affected by noise or occlusion [Salvi
et al. 2007].

5.2. Point Signature [S,P,RF,G]

Point Signature is a descriptor introduced by Chua and Jarvis [1997]. For a point ai
on a surface A, a sphere of radius r centered at ai is considered. The intersection
between the surface A and the sphere determines a curve C. This curve is projected
on a plane tangent at ai and perpendicular to 
ni, giving a contour C ′. Then, taking ai
as center of coordinates, the authors define an orientation axis with the normal vector

ni, a reference vector 
n1, and the cross product between them. Each point in C will be
described by a signed distance between itself and its projection on C ′ and the rotation
angle from the reference vector n1. The Point Signature of ai will be expressed as the
set of distances and angles of the points on C. To find correspondences between two
point clouds, Point Signatures of all points are compared following the example seen
in function 5. Figure 3 shows a representation of the descriptor.

Although the matching process is fast, the cost of the intersection between the surface
and the sphere requires the use of range-searching data structures.

5.3. Spin Image [H,M,RF,G]

In 1997, Johnson presented a descriptor based on the position of the neighbors of a given
point [Johnson 1997; Johnson and Hebert 1999]. The authors consider a point ai and its
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Fig. 4. Spin Image representation: an oriented point basis created at a vertex in a surface mesh. The position
of the oriented point is the 3D position of the vertex, and the direction of the oriented point is the surface
normal at the vertex.

associated normal vector 
ni. They define a plane P tangent to ai and perpendicular to

ni. The neighborhood Nai around ai will be registered based on two variables: distance
α between each point and the normal vector 
ni, and the distance β between each point
and the tangent plane P (Figure 4). The following functions are used to calculate both
parameters:

α =
√

||x − ai||2 − ( 
ni(x − ai))2, (7)

β = 
ni(x − ai). (8)

A table called Spin Map is generated with this information, where each point x
around ai is projected according to α on the x-axis and β on the y-axis. Each cell of
the Spin Map contains the number of points belonging to the corresponding region.
The generation of the shape function f SP can be visualized as a rotating sweep over

ni, where all Spin Maps are accumulated. Then, to find the correspondences between
two different shapes, Spin Images are compared counting the points falling in the
corresponding bins of both Spin Images.

This method is invariant to rigid transformations. It is, however, sensitive to symme-
tries and noise. Another problem is that the result of the method depends largely on the
resolution used. Carmichael et al. [1999] proposed an improvement called Face-based
Spin Image to solve these problems, where the numbers of points in each Spin Image
are uniformly assigned.

Spin Image is the base of numerous recent approaches. Two examples are ISS [Zhong
2009] and SHOT [Tombari et al. 2010]. Both methods stress the importance of choosing
a good reference frame. These reference frames are chosen via eigendecomposition of
the covariance matrix from neighboring points. The eigenvectors with higher eigenval-
ues are used as the axes of the reference frame. Then, the authors use this reference
frame to compute a version of Spin Image. ISS makes an occupational histogram of
points inside the supporting sphere neighborhood around the point. SHOT makes a
histogram of differences between the point and the neighbors inside the supporting
sphere. Although both methods obtain satisfactory results with processed data, as we
see in Salti et al. [2011], neither achieves sound results with real data.

ACM Computing Surveys, Vol. 47, No. 3, Article 45, Publication date: February 2015.



A Qualitative Review on 3D Coarse Registration Methods 45:13

Fig. 5. Examples of PCA in 2D (left) and 3D (right) point clouds.

Zhang et al. [2012] presented Improved Spin Image (ISI) using angle information
between the normals of feature points and neighboring points. The β parameter is
replaced by signed angles. This method can be explained as a distribution of the angles
among different rings. The authors claim that their descriptor outperforms both the
classic implementation of Spin Image and also the SHOT method.

Besides these approaches, other works following the path opened by Spin Image
are Spherical Spin Image [Ruiz-Correa et al. 2001], Local Surface Patches [Chen and
Bhanu 2007], and Scale-Invariant Spin Image [Darom and Keller 2012].

5.4. Principal Component Analysis [S,P,RF,G]

Initially, the theoretical basis of this method was presented by Pearson [1901] to trans-
form a set of observations of possibly correlated variables into a set of values of linearly
uncorrelated variables called principal components. It was exported to other fields, such
as statistics, computer vision, and computational geometry. In point cloud registration,
this method is used to find the principal axes that describe the shape of a point cloud
(Figure 5). Given two point clouds A and B from the same object, if the main axes are
coincident, we can find a transformation that aligns both coordinate systems.

Chung et al. [1998] presented a registration algorithm based on PCA, using the
covariance matrix to determine the transformation μ between two point clouds. This
method can also be considered a searching strategy, due to the global understanding
of the algorithm, because it finds the principal component of all points in the point
cloud. However, there are many other algorithms that implement local PCA and obtain
principal components of local neighborhoods, considering it a point descriptor.

There are many approaches that use PCA. Pottmann et al. [2009] and Yang et al.
[2006] use PCA to find principal components of a local sphere neighborhood. Sipiran
and Bustos [2011] and Darom and Keller [2012] use PCA as an interest point detector.
Johnson [1997] uses PCA to compress Spin Images, whereas Körtgen et al. [2003] use it
to find the orientation of 3D shapes. Liu and Ramani [2009] presented an improvement
of PCA for rigid and nonrigid registration, robust to noise and outliers, using the least
median of squares (LMS) technique.

PCA is a very fast method, but it has some drawbacks that constrain its use in
some practical applications. The algorithm needs large set overlap (≥50%) to find good
correspondences and symmetries in the surface. Furthermore, the presence of noise in
the original point cloud may influence the alignment [Bailey 2012].
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Fig. 6. Representation of a bitangent plane from Line-based method, rolling over a surface and describing
two bitangent curves. This picture is taken from Vanden Wyngaerd and Van Gool [2002].

5.5. Line-based algorithm [S,P,nRF,G]

Vanden Wyngaerd and Van Gool [2002] presented a descriptor based on bitangent
curves. The reason for using these types of curves instead of typical surface curvatures
is that they are easier to calculate using dual space. Using two bitangent points lying in
the same plane and rolling the plain over the surface, we obtain two bitangent curves
that are used as a shape descriptor f LB (Figure 6).

The key to this method is that in transforming the range images on dual space,
the bitangent points of the surface are coincident. This transformation decreases the
computing time and improves the robustness. The main problem of this method is that
in some cases, the number of bitangent curves may be insufficient for the achievement
of a good registration result. Moreover, noise hampers the search for correspondences.

5.6. 3D Shape Contexts [H,P,nRF,G]

Körtgen et al. [2003] presented a 3D extension of 2D Shape Contexts. This method
consists of describing a certain point in relation to the other points in the object, and
not only the points in the neighborhood around it. Due to the size of the datasets,
this algorithm only uses random sampled points instead of the full-sized data. The
complexity of this detection step is O(Slog(n)), with S being the number of samples
taken from n points.

Given a sampled point ai, the method finds the vectors from ai to all other sampled
points (Figure 7). These vectors express the appearance of the entire shape in relation
to the reference point ai. For each point on the sampled set, the shape function f 3DSC

is defined as a coarse histogram of the relative coordinates of the remaining N −
1. To create this histogram, a sphere-space division is used, with center at ai. This
sphere is divided into bins. This space discretization is enough to obtain a robust
descriptor.

The last part looks for correspondences. This is the most computationally expensive
part of the algorithm. Two specific techniques are used to match the descriptors between
two different shapes: Local Matching and Global Matching. The first one combines
three concepts: shape, appearance and position. The goal is to obtain an invariant shape
descriptor for each sampled point. For Global Matching, two different strategies are
used: hard and soft assignments. Hard assignments stand for a one-to-one searching
method and require high computational cost. However, this cost is reduced on soft
assignments by carrying out a preselection of the candidates in second shape for each
point in the first shape. Using this approach, the authors achieve a cost of O(n1n2)
instead of O(n3) from hard assignments (n1 and n2 are the number of samples for each
shape).

The authors claim that the method is robust to noise, topological, and geometrical
artifacts and invariant under transformations. These claims are backed by an experi-
mental study carried out using processed data. One question that remains is whether
this method may have some problems with real scanned data, especially regarding
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Fig. 7. Example of 3D Shape Contexts taken from [Körtgen et al. 2003]. (a) Mesh with 50 samples. (b) Just
the 50 samples. (c) 49 vectors originating from one sample point. (d) 49 Vectors originating from another
sample point.

shapes with a low ratio of overlapping. Questions naturally arise from the fact that the
descriptor is computed using sampled points from the entire model.

5.7. Dynamical Systems [S,P,nRF,T]

Dey et al. [2003] presented a topological shape segmentation method called dynamical
systems. Instead of focusing on local geometric properties of the shape, this approach
identifies and segments the main sections of the shape from a global point of view.
A single point represents an entire segment, where the weight of this point is the
volume of the segment. First, given a set of points A, the Voronoi diagram and the
Delaunay triangulation are computed. Following the theory of the flow induced by
a shape, critical points are selected. These points are defined to be the intersection
points of the Voronoi objects with the Delaunay objects. For each critical point ai, a
stable manifold S(ai) is defined as the set of points that flow into ai, grouping a set
of Delaunay tetrahedra. Thus, the closure of these stable manifolds stands for the
features of the shape. Then, the authors defined a signature as a set of features of
A. Each feature yields a representative point r, which is the weighted average of the
centroids of all Delaunay tetrahedra from each feature. The weight of r is the volume
of the feature. Finally, the matching process is performed by computing the similarity
of the signatures of two shapes.

Few signatures are used to align two shapes. However, the cost of the algorithm is
�(mn), which is a drawback if more signatures are needed. Furthermore, the authors
did not test the method with real or noisy data.
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Fig. 8. 2D representation of the integral invariant descriptor.

5.8. Integral Invariants [S,M,RF,G]

The descriptors based on differential geometry, such as curvatures [Do Carmo 1976;
Porteous 2001], are not robust to noise and perturbations, and require data smoothing
and prior de-noising to achieve better results. This is problematic when working with
real data, which usually contains noise and outliers. Integral Invariants produce a
good solution for this problem, obtaining a descriptor based on the volume under the
surface of an object. Given a point ai on a surface A, a sphere of radius r centered at
ai is computed. The method calculates the enclosed volume of the sphere Vr(ai) under
the surface, and the value of this volume stands for the integral invariant descriptor
f II. Figure 8 shows a 2D representation of the process. To find corresponding points,
the value of f II is used for comparison purposes.

The first authors to study the applications of the volume descriptors were Manay
et al. [2004]. The authors claim that the numerical differentiation methods applied on
point descriptors are sensitive to noise. Integral invariant signatures, presented in his
paper, are robust to noise, including discretization artifacts, and present a multiscale
behavior. Pottmann et al. [2009] presented a stability analysis of integral invariants
based on distance functions. This method is based on the PCA of local neighborhoods
defined by kernel balls of various sizes. Yang et al. [2006] presented an experimental
paper about integral invariants obtained by integration over local neighborhoods. This
short paper compares the method based on applying PCA over a ball or sphere neigh-
borhoods from Pottman with the normal cycles method [Cohen-Steiner and Morvan
2003] and the osculating jet method [Cazals and Pouget 2005]. The authors conclude
that Integral Invariants are more robust to noise than the other methods while ex-
hibiting the desired scaling behavior. However, the papers in question do not test the
method with real data, without smoothing and de-noising. In this situation, with high
amounts of perturbations, as well as with low overlapping regions and holes, integral
invariants may not produce satisfactory results.

Pottman et al. [2009] proposed three different ways to compute integral invari-
ants: the Fast Fourier Transform–based method, the octree-based method, and the
triangulation-based method. All of these methods generate running times of the same
order.

5.9. Curve Skeleton [S,P,nRF,T]

Curve-skeleton or skeletal graphs were introduced by Blum [1967]. This method con-
sists in describing a shape by a thinned representation (Figure 9). A skeleton (stick
figure) of the shape is extracted and converted to a skeletal graph that preserves the
topological properties of the shape. Then, the graphs of the two objects being matched
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Fig. 9. Curve skeleton representation of T-Rex and Chef models.

are compared to register two different shapes. This method can be used either with
point clouds, meshes, or volumetric data.

More recently, Cornea et al. [2007] presented a thorough state-of-the-art example of
curve-skeleton approaches. According to Cornea et al. [2007], curve-skeleton methods
have many useful properties for shape registration, such as homotopy, invariance under
isometric transformation, robustness, and efficiency, among others. One of the most
common ways to compute a curve skeleton is the Voronoi diagram, which represents
the space subdivision of the shape. The internal edges and faces of the Voronoi diagram
are used to approximate the skeleton. There are different matching methods that
use the curve skeleton as a feature descriptor, such as Cornea et al. [2005], which
uses a low-dimensional vector, whose components are based on the eigenvalues of the
subgraph’s (0,1) adjacency matrix, or Sundar et al. [2003], which consists of using a
distribution-based similarity measure designed to evaluate dissimilarity between two
multidimensional distributions.

A curve-skeleton descriptor can be used for matching incomplete point clouds
[Tagliasacchi et al. 2009] and also for nonrigid registration [Iyer et al. 2005].

5.10. Point Feature Histograms [H,P,RF,G]

Point Feature Histograms (PFH) were presented by Rusu et al. [2008]. This method
consists of extracting geometrical information from the neighborhood of a given point.
Given a query point ai from a point cloud A, a sphere of radius r encloses the neighbor-
hood Nai . All points lying inside the sphere are connected with the others via a fully
interconnected mesh (Figure 10, left). For each point aj ∈ Nai with a normal vector 
nj ,
the algorithm selects another point ak ∈ Nai where the angle between 
nj and the vector
defined by (ak − aj) is minimum. Basically, this means that the algorithm is focused on
concave zones of the shape. For each pair of points aj and ak ( j 	= k), a reference frame
called Darboux uvn frame is computed (
u = 
nj, 
v = (ak − aj) × 
u, 
w = 
u × 
v). Then, the
angular information is calculated with these functions:

α = v · 
nk, (9)

φ = u · (ak − aj)
||ak − aj || , (10)

θ = arctan(w · 
nk, u · 
nk). (11)

Finally, the algorithm builds a histogram divided into bins, where bin space is
arranged covering all values of the features. For each query point ai, a descriptor
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Fig. 10. Left: PFH representation. All relations between neighbors in Nai are taken into account to compute
f PFH(ai). Right: FPFH representation. Each point only uses its direct neighbors to compute his own SPFH.
Then, the neighboring SPFHs are used to weight the final descriptor value of f FPFH(ai). Note: Only three
neighbors of ai are shown in the figure for major clarity.

histogram is computed according to the value of angular information of each pair of
neighbors (aj, ak).

The correspondences between points from different shapes are found by sampling
a number of described points. For each sampled point in SA, a set of points in SB are
selected. From these, one point is randomly selected and a transformation μ computed.
The quality of μ is evaluated by computing its error metric.

The main drawback of PFH is its high complexity O(n · m2), where n is the number of
points of A and m is the number of neighbors of each point. For this reason, the authors
simplified the method and presented the Fast Point Feature Histogram (FPFH) [Rusu
et al. 2009], which reduces the complexity to O(n · m). Given a query point ai, instead
of calculating the relationships between all points in Nai , only the direct neighbors of
ai are taken into account (see Figure 10). The angular information of these pairs of
points are computed and a simplified point feature histogram (SPFH) is made using
this information. Thus, each point in A has its own SPFH, computed only with its
direct neighbors. Afterward, the SPFHs of the points inside the neighborhood Nai are
used to weight the histogram of ai, obtaining a f FPFH(ai) (see Figure 10 right),

f FPFH(ai) = SPFH(ai) + 1
m

m∑
i=1

1
wm

· SPFH(am), (12)

where wm is the distance between the query point ai and its neighbor point am, used to
weight the final value of FPFH(ai).

FPFH is tested with real data with an overlap of approximately 45% and obtains good
results combined with a specific searching strategy called SAmple Consensus Initial
Alignment (SAC-IA) [Rusu et al. 2009].

5.11. MeshHOG [H,M,RF,G]

Zaharescu et al. [2009] dealt with local feature detection and description methods.
The authors presented a 3D feature detector MeshDoG (difference of Gaussians) (see
Section 4) and a 3D feature descriptor MeshHOG (histogram of oriented gradients)
for uniformly triangulated meshes. The latter is a generalization of the histogram of
oriented gradients (HOG) descriptor and uses two different parameters together to
improve the surface registration: geometric and photometric information are extracted
from the model to obtain more accurate results.
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Fig. 11. Construction of HOG. Left: Choosing three orthogonal planes onto which to project the gradient
vectors. Middle: Polar coordinate system used for creating histograms via binning of 2D vectors. Right:
Example of a typical spatial and orientation histograms, using four spatial polar slices and eight orientation
slices.

The shape function f MH(ai) of this method is computed using support regions, defined
using a neighborhood ring Nai . To make the descriptor invariant to rotation, a local
coordinate system is taken into account. For each vertex of the neighborhood of ai,
the gradient information is computed. These gradient vectors are projected onto the
three orthogonal planes from the local coordinate system to make the representation
of the descriptor more compact. For each of the planes, the authors compute a two-
level histogram. First, the plane is divided into bs = 4 polar slices. For each slice,
the algorithm computes an orientation histogram, with bo = 8 bins for each projected
gradient vector. f MH is finally computed by concatenating bs × bo for each of the three
planes. We present the sequence of the algorithm in Figure 11.

The authors use an intuitive greedy heuristic algorithm as a correspondence function
c f MH for descriptor matching. Given two surfaces A and B, two sets of descriptors SA ⊂
A and SB ⊂ B are extracted from both shapes. For each descriptor in SA, the algorithm
finds the best correspondence in SB in terms of Euclidean distance. Then, a cross
validation is performed by checking, for each descriptor in SB, the best correspondence
in SA. The total cost of the matching process is O(n2).

The running time of the algorithm depends on the size of Nai . The authors con-
clude that the descriptor is robust under rigid transformations and outperforms the
traditional purely photometric descriptors used in images.

5.12. Intrinsic Shape Signatures [H,P,RF,G]

ISS [Zhong 2009] is a point descriptor focused on shape retrieval problems. This method
describes a 3D point using two different pieces of information: an LRF based on the
eigendecomposition of the neighborhood’s covariance matrix and a 3D occupational
histogram of the points in its spherical neighborhood.

Given a point set A, a point ai, and a supporting radius r, the LRF is computed
using the eigenvectors of the weighted covariance matrix of the neighborhood of Nai

(ex
i , ey

i , ez
i ). Then, a feature vector is computed using a 3D occupational histogram of the

supporting neighborhood Nai . Each neighbor ak is coded using its polar coordinates with
reference to the LRF of ai. A discrete spherical grid is used to simplify the histogram.
Figure 12 shows a graphic example of the process.
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Fig. 12. ISS representation. Left: Polar coordinates for neighboring points (ρ, θ, ϕ). Right: Spherical grid
used to divide the angular space.

The ISS descriptor f ISS(ai) is a combination of an LRF of ai and the 3D shape feature
vector. To find the correspondences between two shapes, the authors compare the
feature vectors of the candidates using χ2 statistics to compute the distance between
two shape feature vectors.

5.13. Heat Kernel Signature [S,M,nRF,T]

HKS, presented by Sun et al. [2009], is a variation of the heat kernel that is a funda-
mental solution of the Heat equation. HKS is based on the concept of heat diffusion
on a surface over time. The authors propose HKS as both a detector and a descriptor
method that possesses many properties: intrinsic, informative, multiscale, and stable
against noise and perturbations. To reduce complexity, HKS focuses on the measure
of heat diffusion on the considered point alone. The authors use a time parametriza-
tion because the time parameter provides a natural notation of scale to describe a
shape around a point. The method thereby computes the heat that remains at a certain
point at time t. Given a point ai on a mesh MA, the authors define its HKS ( f HKS(ai))
as a function over the temporal domain, maintaining all the information of the heat
kernel:

f HKS(ai) : R
+ → R, HKS(ai, t) = kt(ai, ai). (13)

The original heat kernel function kt(ai, aj) : R
+ × M × M (M being a Riemannian

manifold) can be interpreted as the amount of heat that is transferred from ai to aj
in time t given a unique heat source at ai. Due to the complexity of the computation,
the authors restricted the function to a subset of R

+ × M. Despite this restriction, they
showed that the heat kernel function {kt(ai, ai)}t<0 keeps all information of {kt(ai, aj)}t<0.

The scale of the descriptor is given at timed intervals. For small values of t, the de-
scriptor is focused on small neighborhoods, which provide a more detailed description.
It can be used to describe the curvature of the surface. For large values of t, large
neighborhoods are taken into account, obtaining a global descriptor of the shape, dis-
tinguishing large parts of the same object. Figure 13 is an example of the performance
of the HKS: at small scales the claws are similar to each other. With large values of
t, we can distinguish different parts of the dragon like front feet, back feet, head, and
tail.

The authors use local maxima of the function kt(ai, ai) for large t. Point ai is a feature
if kt(ai, ai) > kt(aj, aj) for all aj in the two-ring neighborhood of ai. The correspondence
function c f is basically the comparison between both descriptors f HKS(ai) and f HKS(bj).

According to Sun et al. [2009], despite the restrictions applied to the heat kernel, HKS
preserves all of the shape information, as well as the stability against perturbations.
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Fig. 13. Color plot of the difference between the HKS defined by the range of scales [t1, t2] of the point
marked by the purple sphere and the signatures of other points on the shape. The difference increases as
the color changes from red via green to blue. Left: Both t1 and t2 are small. Right: t1 is small, whereas t2 is
large. Figure taken from Sun et al. [2009].

The main drawbacks are the computation of the eigendecomposition, which is costly.
This means that the computing time, in certain conditions with very large point clouds,
can prove to be impractical.

Dey et al. [2010] presented an application of HKS for the pose-oblivious matching
of incomplete models. HKS is used to obtain a segmentation of the model to perform
shape retrieval from a data base of complete, incomplete, or partial models. HKS is
used in conjunction with a point selection method based on persistent homology that
consists of selecting a subset of the maximum values of HKS across different scales
with large topological persistence.

Ovsjanikov et al. [2010] presented a method that uses HKS to conduct matching with
isometries using only one-point correspondence on rigid and nonrigid transformations.
The authors presented a new approach called Heat Kernel Maps. Given a fixed point
in a manifold A, this method creates a global shape descriptor. For each point ai in A,
a heat kernel function is computed:

�A
p : A → F,�A

p (ai) = kAt (p, ai), (14)

where F is the space of functions from R
+ to R

+. Thus, �A
p associates a real-valued

function to every point ai ∈ A. This function is a one-parameter function (t) given by
kAt (p, ai). The key issue in this approach is that only one correspondence is needed for
the matching process. This is the direct consequence of the authors proving formally
that the heat kernel map is injective.

5.14. Rotational Projection Statistics [S,M,RF,G]

Rotational projection statistics (RoPS) [Guo et al. 2013] is a local feature descriptor
that describes a point using a coarse partition of a 2D projection plane with rotational
statistics of the surface in combination with a robust LRF that is invariant to clutter
and occlusions.

As we can also see in other approaches [Chung et al. 1998; Zhong 2009], a robust
LRF is computed by performing an eigendecomposition of the covariance matrix of
the neighborhood around a given point. This LRF makes the descriptor invariant to
rotation and translation changes. However, the sign ambiguity of the LRF results in a
lack of precision.

Given a point ai from A, only a neighborhood Nai is considered using a sphere of
radius r centered at ai for the descriptor computation. The neighboring points are
rotated at an angle θk along the x-axis of the LRF (Nθk

ai
). Then, all points are projected

into the xy plane, resulting in a 2D representation of Nθk
ai

. This plane is divided into
regular cells, and for each cell, the falling points are counted, producing a distribution
matrix D. To make the descriptor more compact, several statistics are computed, such
as moment and entropy, from each distribution matrix. Next, this process is repeated
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Fig. 14. RoPS representation. Left: Projection of the Nai into the xy plane from LRF of ai . This step is done
for yz and xz planes as well. Right: Projection of the same Nai into a rotated xy plane over the x-axis.

by projecting the point cloud into yz and xz planes, obtaining one feature vector for
each projection. This operation is repeated with different angles θk, k = 1, 2, . . . , T .
Finally, all of these steps are repeated for the other local axes y and z. Figure 14 shows
a representation of the algorithm. The overall process produces many feature vectors
that are concatenated to make the RoPS descriptor.

In Guo et al. [2013], RoPS was compared to other methods such as Spin Image
[Johnson and Hebert 1999], local surface patches [Chen and Bhanu 2007], and SHOT
[Tombari et al. 2010], obtaining good results in noisy scenes as well as with varying
mesh resolutions. However, the tests were made with processed data, taking only 1,000
random feature points of the original models.

6. SEARCHING STRATEGIES

Once the points in the two sets (A,B) to be matched have been filtered and their
shape described, registration algorithms need to find the proper point correspondences
between the two sets.

Methods that extract few key points are able to use brute force to find correspon-
dences. However, this process is computationally expensive. Some methods reduce the
computation time minimizing the search space, such as 3D Shape Contexts [Körtgen
et al. 2003], which preselects the possible candidates satisfying certain criteria and
then applies brute force with these candidates. Nevertheless, in most situations, more
elaborate algorithms are necessary to report results in a reasonable amount of time.

Considering that at least three points in each set are needed to determine a rigid
transformation between two 3D point sets unambiguously, the asymptotic cost of such
approaches is in O(n6). Consequently, the space to be navigated in the search for cor-
respondences is huge. Devising a sophisticated search strategy that is able to take
advantage of detection and descriptor information has the potential to greatly reduce
computation costs and thus increase the range of application of such registration al-
gorithms. Existing methods implementing searching strategies already achieve very
good results in comparison with typical brute-force methods.

As opposed to Fine Matching algorithms, the finality of these searching strategies
is to achieve only a rough alignment. The idea of these kinds of methods is to identify
the arbitrary position of input shapes and find the transformations between them as
quickly as possible. Precision is thus not the most important factor. Instead, robustness
is key providing guarantees to subsequent Fine Matching. Henceforth, we describe the
most relevant searching strategies in chronological order.
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6.1. Algebraic Surface Model

Many methods work with triangulated meshes, or at least with correspondences be-
tween points in meshes. Tarel et al. [1998] proposed a Coarse Matching method that
estimates a transformation using a polynomial model as a surface representation,
without the need for point correspondences. This method consists of creating two poly-
nomial models of the registering surfaces. The authors use a linear algorithm based on
least squares called 3L Fitting to obtain a distance function between the polynomial
model and the points of the shape. Unlike other implicit polynomial fitting methods,
the linear algorithm does not incur in high computational costs. The only requirement
is to have the normal vector of each point in the surface to estimate the model. Fur-
thermore, the computation time is faster than other searching strategies because this
method does not need to calculate point correspondences.

However, normal vectors are required to estimate the models. These vectors are not
easy to compute. The main drawback of this method is that the overlap between sur-
faces is required to be high (≥85%). This is not usually the case in real-life applications.

6.2. RANSAC-based Methods

Random Sample and Consensus (RANSAC) is an iterative method designed to find
the parameters of a model from a set of data that contains outliers. Given an input
noisy data, RANSAC finds the parameters that adjust the input data to a given model,
discarding the outliers. This approach is the base of a wide variety of methods. One of
them is the approach presented by Chen et al. [1999], which is based on the fact that we
can determine a rigid transformation with only three points (a base B). The idea is to
find a base in one of the shapes and find the corresponding base in the other shape. The
algorithm works as follows. First, determine three different points randomly on the first
surface: primary (ap), secondary (as), and auxiliary (aa). Consider the distances between
these three points to be dps, dpa, and dsa. Each point on the second surface is considered
as the corresponding point bp of the primary point ap on the first surface. Then, the
correspondence of the secondary point is searched on the second surface at distance dps
from bp. If no point around bp at distance dps exists, discard bp and start again with
another primary point on the second surface. However, if there is a secondary point bs,
look for the auxiliary point ba that satisfies the distances. The transformation between
both surfaces can be determined when the base BB on the second surface is identified.
This search is repeated for all bases found. The best transformation is the one with the
highest number of corresponding points.

Although this method is robust even with outliers, the main drawback is its compu-
tation time. In fact, this method is only usable with a small amount of input data, as
was stated in Salvi et al. [2007] and Dı́ez et al. [2012].

Winkelbach et al. [2006] presented an improvement of the classic RANSAC called
Random Sampling (RANSAM). This approach consists of randomly selecting four ori-
ented points (points with their normal vector) from both surfaces ((ai, ah) ∈ A and
(bj, bk) ∈ B) using a Monte-Carlo algorithm. Bases of two oriented points are sufficient
to determine a rigid transformation. This yields a searching complexity of O(n2).

The correspondences between points are encoded in 4D relation vectors. These vec-
tors consist of the Euclidean distance between the points, the angles of inclination be-
tween their normal vectors, the line connecting them, and the rotation angle between
the normals around the connection line. The search for correspondences is performed
using a hash table that stores these relation vectors. The use of this hash table allows
the complexity of the algorithm to drop to O(n).

Whenever a correspondence is found, a rigid transformation is computed. The quality
of the registration is measured then by estimating the proportion of the overlapping
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areas between the two point clouds. A movement is considered a solution if the distance
between points in both surfaces is smaller than a certain threshold. The selection of
points can be improved using descriptors that weight the random selection.

Another method that uses randomized algorithms is property testing [Ron 2001]. This
approach consists of determining whether a given object has a predetermined property
or is “far” from any object having the property. This methodology can be applied in
computational geometry problems [Czumaj et al. 2000].

6.3. Robust Global Registration

Gelfand et al. [2005] presented a Coarse Matching approach based on looking for
correspondences using a branch-and-bound algorithm. Given two shapes A and B, the
method consists of extracting a set of key points SA from A using an Integral Invariants
volume descriptor [Manay et al. 2004]. To increase the robustness, the authors use
multiscale resolution in the description process. For each feature point ai in SA, the
algorithm finds a subset of points in B, called CB(ai), with a high correspondence with
ai. To reduce the correspondence list of points, a thresholding function is applied over
CB(ai), considering a pair of points (ai, aj) from SA and a pair of potential corresponding
points (bi, bj) from CB(ai). The distance between ai and aj needs to be approximately
the same as the distances between their correspondences in the model.

The searching strategy uses a branch-and-bound algorithm that creates a solution-
candidate tree where each branch represents one possible correspondence set of points
from B. In each level of the tree, one possible candidate is added to the solution. If one of
these possible candidates does not pass the threshold test, and thus the RMSD between
A and B is not improved, the entire branch is pruned. The whole tree is explored finding
the best correspondence set where all correspondences pass the threshold and provide
the minimum error (RMSD) between both shapes.

This method is robust to noise and works well with occluded scenes and partial regis-
tration. However, the algorithm needs strong feature points to obtain good alignments.
The uncertainty created due to the use of weak feature points increases the error both
between registered points and the searching time.

The authors also extend their algorithm to detect symmetries registering an object
with a copy of itself.

6.4. 4-points Congruent Sets

Aiger et al. [2008] presented a searching strategy that takes advantage of the geometric
properties of coplanar groups of four points to devise a method that, while using more
than the usual three points to determine motions, can be shown to incur lower asymp-
totic costs. The method finds a transformation between two views using a coplanar set
of points with no assumption about the initial alignment.

The authors use four coplanar points from A to build a base BA and find its corre-
spondent base in B. Although the extra point is not mandatory to compute a movement,
it makes the process more robust and allows the authors to provide proof of reduced
asymptotic costs. The key to this method in terms of speed is the use of wide bases.
Figure 15 presents a comparison between wide and narrow bases. Performing the
alignment process with wide bases makes the registration more robust because the
alignment is affected less by errors in accuracy. With narrow bases, a small pertur-
bation of the base might ripple away to induce a noticeable displacement of the full
object.

The algorithm works as follows. Given two surfaces A and B, four almost-coplanar
points are selected from A (base BA = {ai, aj, ak, al}). The algorithm chooses three
random points close to each other and selects the remaining point such that the four
points together form a wide base that is approximately coplanar. To find the best
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Fig. 15. Comparison between wide base (top) and narrow base (bottom) of the 4PCS method, taken from
Aiger et al. [2008]. Golden and gray curves represent two different surfaces to be registered.

four-points set in surface B that are approximately congruent to BA (up to an approx-
imation level δ), the authors use a descriptor of 4-points sets, based on distance ratios
between points in the base:

r1 = ||ai − e||/||ai − aj ||, (15)

r2 = ||ak − e||/||ak − al||, (16)

where e is the intersection point between aiaj and akal lines. These two ratios are invari-
ant under affine transformations. Thus, four-point sets from B that have approximately
the same ratios than BA are identified. The full algorithm runs in O(n2).

The authors justify not using local descriptors because they are not robust to noise
and outliers, applied with real data. Instead, the authors rely on the principle of large
numbers. This principle applies in the sense that although particular point correspon-
dences might be overlooked, the high number of corresponding points between the two
sets allow for a large number of solutions. In this approach, this principle requires
solving the largest common pointset (LCP) problem. LCP under δ-congruence reports
a subset of B that has the largest possible cardinality, where the distance between A
and μ(B) is less than δ.

The authors report and provide experimental proof of how the combination of wide
bases and LCP makes the registration method resilient to noise and outliers.

The method of 4-points congruent sets (4PCS) is compared with a combination of
local descriptors with RANSAC. The authors use Spin Image [Li and Guskov 2005]
and Integral Invariants [Pottmann et al. 2009]. As we can see in Figure 16, 4PCS
outperforms LD-RANSAC. An additional aspect of 4PCS in this case is that, as opposed
to LD-RANSAC, it does not need parameter tuning.

6.5. Evolutionary Methods

Evolutionary methods are searching strategies based on computational models of evo-
lutionary processes that carry out the registration without any initial estimation of the
initial alignment and without needing refinement. The idea is to use fitness functions
to measure the quality of each potential solution. A remarkable example of the appli-
cation of genetic algorithms for surface registration can be found in Chow et al. [2004].
Albarelli et al. [2010] presented a game-theoretical approach for surface registration
that consists of casting the selection of correspondences in a game-theoretic frame-
work, where a natural selection process allows matching points that satisfy a mutual
rigidity constraint to thrive, eliminating all other correspondences. Other strategies
are used: stochastic sampling, classical one-point crossover, and simply bit flipping
mutation.

A thorough study was presented by Santamarı́a et al. [2011]. This work reviews
the literature concerning evolutionary image registration methods for 3D modeling,
including an experimental study. Evolutionary methods are tested against classical ICP
methods. One conclusion reached is that the most evolutionary methods outperformed
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Fig. 16. Performance and comparison taken from Aiger et al. [2008] between 4PCS and LD-RANSAC. We can
observe that with low overlap ratios, high level of noise, or many outliers, 4PCS outperforms LD-RANSAC
in terms of estimated error and computational time.

the classical approaches based on ICP. Moreover, with EM, a prealignment of input
surfaces is not necessary. However, as stated by the authors, genetic algorithms present
expensive computational times, making these methods inappropriate when time is a
critical factor.

7. REFINEMENT

The last part of the registration process is the refinement of the alignment achieved
by Coarse Matching. This step is also commonly referred to as Fine Matching. The
most commonly used method today is called Iterative Closest Point (ICP), presented by
Besl and McKay [1992]. This method has become a standard in the research field of
registration due to its robustness and reliability. Given an initial coarse registration,
the method associates points from two different point clouds by nearest neighbor cri-
terion, uses mean squared distance minimization functions to estimate the movement,
transforms points according to these functions, and iterates until convergence. At the
same time as Besl, Yang and Medioni [1992] presented a method following a similar
approach. Later, Rusinkiewicz and Levoy [2001] presented several variations of ICP,
improving the precision of the algorithm and introducing several filtering methods like
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NSS, as mentioned previously. Today, there are many improvements in ICP, such as
those achieved by Sharp et al. [2002], Gruen and Akca [2005], Makadia et al. [2006],
and Nuchter et al. [2007], to name a few.

Other approaches are able to solve the same problems as ICP, each with a slightly
different focus: examples are Matching signed distance fields [Masuda 2001, 2002] and
Evolutionary Methods [Chow et al. 2004], which are in most cases able to solve both
the Coarse and Fine Matching problems.

8. DISCUSSION

Every paper studied in this review was tested by the authors under different conditions.
For this reason, it is difficult to compare their reported experimental performances.
However, there are some reviews and benchmarks that implemented and tested the
most commonly used methods [Tangelder and Veltkamp 2004; Salvi et al. 2007;
Bronstein et al. 2010; Boyer et al. 2011; Van Kaick et al. 2011; Salti et al. 2011;
Dutagaci et al. 2012; Yu et al. 2013; Kim and Hilton 2013; Tam et al. 2013]. Using the
results reported in the literature, here we extract some overall conclusions.

To evaluate the performance of the different methods, we focus on three main issues:
precision, robustness, and efficiency. We understand precision as how accurate the
method is, considering error measurements presented in the experimental results of
every paper. Robustness is the resilience of the method against outside perturbations,
such as noise, occlusion, or cluttering. Finally, efficiency is measured according to the
runtimes provided by the authors, taking into account the data size and the complexity
of the algorithm.

Furthermore, we take into account the type of the data used in each proposal. Reposi-
tories of processed scanned models like the Stanford Repository,10 AIM@SHAPE Shape
Repository,11 or Ajmal Mian’s Databases12 are the most widely used because they pro-
vide useful data for the tests. However, these models usually consist of only processed
data. Besides, there are authors who use scanned data without any preprocessing. This
kind of input data provides more realistic situations for the testing of algorithms.

For this discussion, we follow the order of the proposed registration pipeline
(Figure 1). We focus on detectors, descriptors, and searching strategies. For a thor-
ough Fine Matching discussion, see Salvi et al. [2007].

8.1. Discussion on Detectors

Detection speeds up computations and thus enhances the range of applicability of
algorithms. However, if the detection is not done properly, important information might
be lost and existing matches overlooked. If a detection algorithm is able to consistently
produce a similar output for the same object under different conditions (noise, change of
view, etc.), then this problem is minimized. Consequently, we focus on the repeatability
of the detected points over all executions.

A first general conclusion to be drawn is that most of the approaches reviewed use
only processed data. Only a few papers present results with real scanned data. Addi-
tionally, important differences are observed between these two types of data whenever
reported. We believe that obtaining results with real application data represents a
mandatory step toward truly practical algorithms.

The methods that achieve higher repeatability results, all with processed data, are
Heat Kernel-based Features (HKF) [Sun et al. 2009], Harris 3D [Sipiran and Bustos
2011], and MeshDoG [Zaharescu et al. 2009], which are tested several works [Salvi

10http://graphics.stanford.edu/data/3Dscanrep/.
11http://shapes.aimatshape.net/.
12http://www.csse.uwa.edu.au/.∼ajmal.
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et al. 2007; Bronstein et al. 2010; Boyer et al. 2011; Salti et al. 2011]. According to
Bronstein et al. [2010] and Boyer et al. [2011], HKF achieves approximately 93% of
repeatability, retrieving between 9 and 23 feature points from a point cloud of 10,000
points. Under the same conditions, Harris 3D and MeshDoG obtain nearly 83% and
87% of repeatability, respectively. Harris 3D demonstrates notable robustness against
holes and topological changes in the input surface, whereas MeshDoG performs when
it comes to scaling variances and noise. Furthermore, in Dutagaci et al. [2012], HKF is
compared, among other methods, with a human ground truth. These experiments, with
processed data alone, demonstrate the good performance of HKF, retrieving points that
are usually selected by human subjects.

We mention two other methods, ISS [Zhong 2009] and KPQ [Mian et al. 2010], both
tested in Salti et al. [2011]. Although these methods obtain slightly worse results than
those of the methods mentioned earlier, both are tested using processed and real data.
ISS reports nearly 70% of key-point repeatability using processed data. The authors
demonstrate a good recognition range using ISS to retrieve similar models from a
database. KPQ achieves lower results in terms of repeatability (≈58%). With real data
taken from scans, KPQ achieves similar repeatability results, yet the performance of
ISS decreases considerably (≈30%). In terms of temporal efficiency, however, ISS is
much faster than KPQ in all tests.

Using volumetric input data, DoG, Harris 3D, and MSV are tested in Yu et al. [2013],
among others. The volumetric-specific–designed method MSV obtains the best results
yet proves to be slower than the others. In terms of time efficiency, HNSS [Dı́ez et al.
2012] outperforms the runtimes of NSS [Rusinkiewicz and Levoy 2001], obtaining
an approximately 99% time reduction in the most extreme case, besides its precision
improvements. The authors stress the importance of hierarchical data structures to
speed up the searching of correspondences.

Upon analyzing the reported results, we note that there are methods that are more
restrictive than others. Specifically, methods like HKF report very few key points, which
are expected to convey more distinctive shape information. Conversely, other methods,
such as ISS, report many more points in comparison. Although HSF performs better
than ISS in most situations, in some others, such as low overlapping ratios or missing
data, it might be advisable to opt for more key points. Using fewer feature points
in situations where some parts of the shapes are missing might lead to sampling
instances that actually prevent the finding of a match. This observation is supported
by the results reported in Bronstein et al. [2010], where HKF obtains its worst results
when applied to models with holes and shot noise. Consequently, robustness to noise
and occlusions should also be considered when choosing which detector to use. Table I
summarizes all detectors reviewed in this article.

8.2. Discussion on Descriptors

Descriptors represent a very active field of research in terms of the number of published
papers. More precisely, today, object retrieval methods are one of the most popular topics
within descriptors. According to the literature, there are many different approaches,
but all of them have the same target: providing a useful representation of the shape
around the given point that facilitates searching for correspondences between two
shapes, thereby avoiding exhaustive searches.

As discussed in Section 5, many of the methods are histogram based. These ap-
proaches are easy to implement and also incur low computational costs. However,
whenever a part of the compared surfaces is missing or is extremely perturbed, the
resulting histogram might also be largely perturbed. This is produced by the strong
dependency of these types of descriptors on LRFs. This dependency makes these ap-
proaches more sensitive to noise and occlusions. It is not clear whether histogram-based
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Table I. Summary of Detector-Based Methods Sorted by Publication Year

Year Method Description
2001 Normal Space Sampling [Rusinkiewicz

and Levoy 2001]
Selects points with high distinctiveness

2006 Maximally Stable Volumes [Donoser and
Bischof 2006]

Detects stable regions across different scales

2009 Heat Kernel-based Features [Sun et al.
2009]

Selects key points according to head
distribution function

2009 MeshDoG [Zaharescu et al. 2009] Uses DoG operator to detect points with
maximum value of the Laplacian function

2009 Intrinsic Shape Signatures [Zhong 2009] Uses the neighborhood’s covariance matrix to
detect key points

2010 Key-Point Quality [Mian et al. 2010] Uses the neighborhood’s covariance matrix to
detect key points

2011 Harris 3D [Sipiran and Bustos 2011] Harris operator for 3D point cloud
registration

methods are able to overcome these kinds of problems. However, some methods such as
ISS [Zhong 2009], SHOT [Tombari et al. 2010], or ISI [Zhang et al. 2012] show a good
resilience to synthetic noise and obtain promising results in many different situations,
as we see in Tombari et al. [2010], Salti et al. [2011], and Zhang et al. [2012]. In Tombari
et al. [2010], the authors present an experimental study proving that using a unique
and unambiguous LRF improves the precision and the accuracy of the descriptor.

In Kim and Hilton [2013], SHOT, Spin Image, Shape Contexts [Körtgen et al. 2003],
and FPFH [Rusu et al. 2009] are tested using real data acquired with different tech-
niques. The latter proves to be the most stable and quickest method throughout the
tests. With models possessing a high level of irregularities, SHOT works better, yet it
fails with regular surfaces.

Another approach to take into account is PCA [Chung et al. 1998]. Although it is not
robust to noise and sensible to errors and occlusions, it is one of the fastest methods.
For this reason, there are many other algorithms that use PCA as a local descriptor,
reporting a local distribution of the neighborhood around a given point. Examples are
found in Yang et al. [2006], Pottmann et al. [2009], Sipiran and Bustos [2011], and
Darom and Keller [2012], to name a few. Using PCA in a local neighborhood provides
descriptions less sensible to noise.

Both in terms of accuracy and time efficiency, the methods reporting the best recent
results are Integral Invariants [Manay et al. 2004; Pottmann et al. 2009] and HKS
[Sun et al. 2009]. Both methods outperform other algorithms in terms of speed and ac-
curacy, with input data sizes around 100,000 points. Due to the complexity of integral
computation, the use of Integral Invariants is slower than HKS. However, most meth-
ods are tested only with processed data, where the ground truth is clearly known. With
real data, the results are quite different. For example, HKS shows high repeatability
and distinctiveness with processed models [Bronstein et al. 2010], yet with laser-scan
data or image-based reconstructions, this method is too selective to report a robust
registration [Kim and Hilton 2013]. Table II summarizes all descriptors reviewed in
this article.

8.3. Discussion on Searching Strategies

There are very few published papers related to searching strategies (Table III). The
tendency in the literature is to use good detectors and descriptors, retrieving a number
of feature points to use them in brute-force matching strategies. ICP is then used
to refine the alignment. Searching strategies make the searching step more efficient
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Table II. Summary of Descriptor-Based Methods Sorted by Publication Year

Input Ref.

Year Method Description Category Data Frame
1996 Principal Curvature

[Feldmar and Ayache
1996]

Use the principal curvatures of the
surface as a descriptor

Sign. Points No

1997 Point Signature [Chua
and Jarvis 1997]

Describe a point with the
curvature of the surface arround

Sign. Points Yes

1997 Spin Image [Johnson
1997]

Histogram of the relative position
of the neighbors

Hist. Mesh Yes

1998 PCA [Chung et al. 1998] Principal directions of the shape Sign. Points Yes
2003 3D Shape Contexts

[Körtgen et al. 2003]
Describe a point with the position

of certain points of the object
Hist. Points No

2003 Line-based algorithms
[Vanden Wyngaerd and
Van Gool 2002]

Describe a point using the curves
of the surface

Sign. Points No

2006 Integral Invariants
[Manay et al. 2004]

Descriptor that use the volume
below the surface

Sign. Mesh Yes

2007 Point Feature
Histograms [Rusu et al.
2008]

Describe points according to the
normal distribution of its
neighborhood.

Hist. Points Yes

2009 MeshHOG [Zaharescu
et al. 2009]

Descriptor based on the gradient
information over different scales

Hist. Mesh Yes

2009 Intrinsic Shape
Signatures [Zhong 2009]

Histogram of the relative position
of the neighbors

Hist. Mesh Yes

2009 Heat Kernel Signature
[Sun et al. 2009]

Descriptor based on the heat
diffusion over the surface

Sign. Mesh No

2010 SHOT [Tombari et al.
2010]

Descriptor that encodes
histograms of the normals

Hist. Mesh Yes

2012 Scale-Invariant Spin
Images [Darom and
Keller 2012]

Scale-invariant formulation of the
spin-image descriptor

Hist. Mesh Yes

2012 Improved Spin Image
[Zhang et al. 2012]

Encode angle information between
normals and neighbors

Hist. Mesh Yes

2013 RoPS [Guo et al. 2013] Uses rotational statistics of the
surface to describe points.

Sign. Mesh Yes

Table III. Summary of Searching Strategies Sorted by Publication Year

Year Method Description
1998 Algebraic surface model [Tarel et al. 1998] Motion estimation using polynomial models

1998 RANSAC-based methods [Chen et al. 1999] Find the same three-point bases between two
models that preserves the Euclidean
distances between them

2005 Robust global registration [Gelfand et al.
2005]

Find correspondences using a
branch-and-bound algorithm

2006 RANSAM [Winkelbach et al. 2006] Select points randomly and use distance and
angular relationships between points to
find a good movement

2008 4-points congruent sets [Aiger et al. 2008] Use coplanar four-point bases to find the
correspondences between two models

2011 Evolutionary methods [Santamarı́a et al.
2011]

Align two different shapes using evolutionary
algorithms without no other assumptions
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for an initial pose for ICP, helping spread the computational costs while making the
process less descriptor dependent.

Concerning robust global registration [Gelfand et al. 2005], the method achieves good
results with processed models up to 68,000 points, yet without strong feature points,
the computation time and errors increase noticeably. Similarly, evolutionary algorithms
[Santamarı́a et al. 2011] obtain very good results in terms of precision, yet they are
computationally expensive dealing with large amounts of data. RANSAM obtains good
results in terms of performance and accuracy. Working with nearly 60,000 points, the
computation time is reasonable. For example, RMS precisions of 1.03mm, consisting of
mechanical ground truth provided with a high-precision turntable, achieves runtime
values around 0.5 seconds. No data is provided, however, on the robustness to noise of
the algorithm. We feel that this might well prove to be an issue, as algorithms using
normal vector information have been reported to present sensibility to noise [Salvi
et al. 2007].

Even though no proper experimental comparison of searching strategies exists, we
consider that the best approach today is 4PCS [Aiger et al. 2008], because it achieves
very good results in many different situations (see Section 6 for details). Using a
standard laptop computer, the authors deal with huge point clouds, achieving very
accurate registration outputs with low computation time. Moreover, the authors tested
their algorithm with real scanned data, achieving more accurate results than others
compared to any RANSAC-based method (see Figure 16).

9. CONCLUSIONS

In this article, we reviewed state-of-the-art methods for point cloud rigid registration
and proposed a pipelined classification to organize the available approaches.

Working with synthetic or processed data makes it possible to create ground truth
values to test the methods. This stands for a far better controlled testing scenario and
allows the authors to focus on specific algorithmic aspects. Experimentation with real
data, however, is always a crucial step toward application. We believe that the lack of
comprehensive studies on real data represents another sign of the intrinsic complexity
of the problem.

According to the number of published papers, current trends are focused on detec-
tion and description methods, both using the same shape function either to detect or
describe the key points. We noted that besides registration between two objects, many
approaches also deal with the problem of 3D shape retrieval from object databases.
Herein lies an important difference, because these kinds of methods tend to use fewer
feature points to reduce the runtime needed to match the model with all objects in the
database. The more data points considered, the more precise the final result. Conse-
quently, when working with real data perturbed by noise and occlusions and related to
real-life applications, a large number of points is often necessary, and thus efficiency
becomes a key factor. Another issue that arises is that most of the studied methods
focus on one of the steps of the pipeline only—usually description—and use brute force
to determine the final motion. We believe that combining a good descriptor with a so-
phisticated searching strategy, such as those reviewed in Section 6, would improve the
efficiency of the methods. Moreover, this combination has the potential to extend the
degree of detail admissible in shape retrieval libraries.

There are few publications focused specifically on improving the searching strategies
for matching correspondences between feature points from different shapes. We believe
that this field of research may yet produce more efficient methods, using advanced algo-
rithms and data structures such as kd-trees, octrees, or other GPU-friendly structures
in this part of the registration pipeline. This fact brings ever closer the registration
topic to other fields of research, such as computational geometry, where this problem
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is tackled from a more theoretical point of view. We believe that the inclusion of these
resources has the potential to improve the state of the art, particularly in terms of time
efficiency. We believe that this possibility, together with the good performance already
shown using real data, shows how searching strategies are ready to be integrated in a
fully practical registration pipeline that can deal with a variety of application problems.

ICP and its improvements are the most commonly used refinement methods. The
majority of the papers studied in this review used ICP to refine the initial alignments.
Although there are other approaches that achieve good results, they incur high com-
putational costs and are only available for small input data.

At this time, it is difficult to compare the performances of existing registration meth-
ods. This is due to the lack of a standardized evaluation methodology as well as com-
monly accepted benchmarks. These results are presented in different magnitudes, or in
some cases they go unreported. Although there are some benchmarks [Tangelder and
Veltkamp 2004; Salvi et al. 2007; Bronstein et al. 2010; Boyer et al. 2011; Van Kaick
et al. 2011; Salti et al. 2011; Dutagaci et al. 2012; Yu et al. 2013; Kim and Hilton 2013;
Tam et al. 2013] that provide comparative studies, they are far from comprehensive
and difficult to extend to all methods in the literature. We believe that it is necessary to
define generic guidelines to be used to test the performances of registration methods.
What may be more interesting still might be to define standard conventions for the
study and presentation of results. For example, it is important to report the runtime of
each part of the process, computer characteristics, data sizes, number of feature points,
evaluation measures, and so forth.

To sum up, we believe that most parts of the registration pipeline presented have
reached a point where the existing methods have already been shown to be usable
in practical situations, or seem to be quite close to it. Consequently, a reasonable
expectation is that in a near future, it will be possible to present a registration algorithm
optimized in terms of all of these pipeline steps. Such a method would have the potential
to greatly increase the current areas of application of point cloud registration, as well
as the sizes of the data sets used. We believe that the design of such a method and the
provision of experimental proof of its ability to work on a variety of real-life situations
represent both a challenge and an opportunity for the research communities involved.

REFERENCES

Dror Aiger, Niloy J. Mitra, and Daniel Cohen-Or. 2008. 4-points congruent sets for robust pairwise surface
registration. ACM Transactions on Graphics 27, 85.

Andrea Albarelli, Emanuele Rodola, and Andrea Torsello. 2010. A game-theoretic approach to fine surface
registration without initial motion estimation. In Proceedings of the 2010 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). IEEE, Los Alamitos, CA, 430–437.

Marc Alexa. 2002. Recent advances in mesh morphing. Computer Graphics Forum 21, 173–198.
Mathieu Aubry, Ulrich Schlickewei, and Daniel Cremers. 2011. The wave kernel signature: A quantum

mechanical approach to shape analysis. In Proceedings of the 2011 International Conference on Computer
Vision Workshops (ICCV Workshops). IEEE, Los Alamitos, CA, 1626–1633.

Stephen Bailey. 2012. Principal component analysis with noisy and/or missing data. Publications of the
Astronomical Society of the Pacific 124, 919, 1015–1023.

Paul J. Besl and Neil D. McKay. 1992. A method for registration of 3-D shapes. IEEE Transactions on Pattern
Analysis and Machine Intelligence 14, 2, 239–256.

Harry Blum. 1967. A transformation for extracting new descriptors of shape. In Models for the Perception of
Speech and Visual Form. MIT Press, Cambridge, MA, 362–380.

Edmond Boyer, Alexander M. Bronstein, Michael M. Bronstein, Benjamin Bustos, Tal Darom, Radu Horaud,
Ingrid Hotz, Yosi Keller, Johannes Keustermans, Artiom Kovnatsky, Roee Litman, Jan Reininghaus,
Ivan Sipiran, Dirk Smeets, Paul Suetens, Dirk Vandermeulen, Andrei Zaharescu, and Valentin Zobel.
2011. SHREC 2011: Robust feature detection and description benchmark. In Proceedings of the 4th
Eurographics Conference on 3D Object Retrieval. 71–78.

ACM Computing Surveys, Vol. 47, No. 3, Article 45, Publication date: February 2015.



A Qualitative Review on 3D Coarse Registration Methods 45:33

Alexander M. Bronstein, Michael M. Bronstein, Benjamin Bustos, Umberto Castellani, Marco Crisani, Bianca
Falcidieno, Leonidas Guibas, Iasonas Kokkinos, Vittorio Murino, Maks Ovsjanikov, Giuseppe Patane,
Ivan Sipiran, Michela Spagnuolo, and Jian Sun. 2010. SHREC 2010: Robust feature detection and
description benchmark. In Proceedings of the Eurographics 2010 Workshop on 3D Object Retrieval.
79–86.

Benjamin Bustos, Daniel A. Keim, Dietmar Saupe, Tobias Schreck, and Dejan V. Vranić. 2005. Feature-based
similarity search in 3D object databases. ACM Computing Surveys 37, 4, 345–387.

Owen Carmichael, Daniel Huber, and Martial Hebert. 1999. Large data sets and confusing scenes in 3-D
surface matching and recognition. In Proceedings of the IEEE International Conference on 3D Digital
Imaging and Modeling. 358–367.

Frederic Cazals and Marc Pouget. 2005. Estimating differential quantities using polynomial fitting of oscu-
lating jets. Computer Aided Geometric Design 22, 2, 121–146.

Chu-Song Chen, Yi-Ping Hung, and Jen-Bo Cheng. 1999. RANSAC-based DARCES: A new approach to fast
automatic registration of partially overlapping range images. IEEE Transactions on Pattern Analysis
and Machine Intelligence 21, 11, 1229–1234.

Hui Chen and Bir Bhanu. 2007. 3D free-form object recognition in range images using local surface patches.
Pattern Recognition Letters 28, 10, 1252–1262.

Chi Kin Chow, Hung Tat Tsui, and Tong Lee. 2004. Surface registration using a dynamic genetic algorithm.
Pattern Recognition 37, 1, 105–117.

Chin Seng Chua and Ray Jarvis. 1997. Point signatures: A new representation for 3D object recognition.
International Journal of Computer Vision 25, 1, 63–85.

Do Hyun Chung, Il Dong Yun, and Sang Uk Lee. 1998. Registration of multiple-range views using the
reverse-calibration technique. Pattern Recognition 31, 4, 457–464.

David Cohen-Steiner and Jean-Marie Morvan. 2003. Restricted Delaunay triangulations and normal cycle.
In Proceedings of the ACM Annual Symposium on Computational Geometry. 312–321.

Nicu D. Cornea, M. Fatih Demirci, Deborah Silver, Ali Shokoufandeh, Sven J. Dickinson, and Paul B.
Kantor. 2005. 3D object retrieval using many-to-many matching of curve skeletons. In Proceedings
of the International Conference on Shape Modeling and Applications. IEEE, Los Alamitos, CA, 366–
371.

Nicu D. Cornea, Deborah Silver, and Patrick Min. 2007. Curve-skeleton properties, applications, and algo-
rithms. IEEE Transactions on Visualization and Computer Graphics 13, 3, 530–548.

Artur Czumaj, Christian Sohler, and Martin Ziegler. 2000. Property testing in computational geometry. In
Algorithms—ESA 2000. Lecture Notes in Computer Science, Vol. 1879. Springer, 155–166.

Tal Darom and Yosi Keller. 2012. Scale-invariant features for 3-D mesh models. IEEE Transactions on Image
Processing 21, 5, 2758–2769.

Tamal K. Dey, Joachim Giesen, and Samrat Goswami. 2003. Shape segmentation and matching with flow dis-
cretization. In Algorithms and Data Structures. Lecture Notes in Computer Science, Vol. 2748. Springer,
25–36.

Tamal K. Dey, Kuiyu Li, Chuanjiang Luo, Pawas Ranjan, Issam Safa, and Yusu Wang. 2010. Persistent heat
signature for pose-oblivious matching of incomplete models. Computer Graphics Forum 29, 1545–1554.

Yago Dı́ez, Joan Martı́, and Joaquim Salvi. 2012. Hierarchical Normal Space Sampling to speed up point
cloud coarse matching. Pattern Recognition Letters 33, 2127–2133.

Manfredo P. Do Carmo. 1976. Differential Geometry of Curves and Surfaces. Pearson.
Michael Donoser and Horst Bischof. 2006. 3D segmentation by maximally stable volumes (MSVs). In Pro-

ceedings of the 18th International Conference on Pattern Recognition. 63–66.
Helin Dutagaci, Chun Pan Cheung, and Afzal Godil. 2012. Evaluation of 3D interest point detection tech-

niques via human-generated ground truth. Visual Computer 28, 9, 901–917.
Jacques Feldmar and Nicholas Ayache. 1996. Rigid, affine and locally affine registration of free-form surfaces.

International Journal of Computer Vision 18, 2, 99–119.
Natasha Gelfand, Niloy J. Mitra, Leonidas J. Guibas, and Helmut Pottmann. 2005. Robust global registration.

In Proceedings of the Eurographics Symposium on Geometry Processing. 197–206.
Armin Gruen and Devrim Akca. 2005. Least squares 3D surface and curve matching. ISPRS Journal of

Photogrammetry and Remote Sensing 59, 3, 151–174.
Yulan Guo, Ferdous A. Sohel, Mohammed Bennamoun, Jianwei Wan, and Min Lu. 2013. RoPS: A local

feature descriptor for 3D rigid objects based on rotational projection statistics. In Proceedings of the 1st
International Conference on Communications, Signal Processing, and Their Applications. 1–6.

Qi-Xing Huang, Bart Adams, Martin Wicke, and Leonidas J. Guibas. 2008. Non-rigid registration under
isometric deformations. Computer Graphics Forum 27, 1449–1457.

ACM Computing Surveys, Vol. 47, No. 3, Article 45, Publication date: February 2015.



45:34 Y. Dı́ez et al.

Natraj Iyer, Subramaniam Jayanti, Kuiyang Lou, Yagnanarayanan Kalyanaraman, and Karthik Ramani.
2005. Three-dimensional shape searching: State-of-the-art review and future trends. Computer-Aided
Design 37, 5, 509–530.

Andrew E. Johnson. 1997. Spin-Images: A Representation for 3-D Surface Matching. Ph.D. Dissertation.
Carnegie Mellon University, Pittsburgh, PA.

Andrew E. Johnson and Martial Hebert. 1999. Using spin images for efficient object recognition in cluttered
3D scenes. IEEE Transactions on Pattern Analysis and Machine Intelligence 21, 5, 433–449.

Kourosh Khoshelham and Sander Oude Elberink. 2012. Accuracy and resolution of Kinect depth data for
indoor mapping applications. Sensors 12, 2, 1437–1454.

Hansung Kim and Adrian Hilton. 2013. Evaluation of 3D feature descriptors for multi-modal data registra-
tion. In Proceedings of the 2013 International Conference on 3D Vision. 119–126.

Iasonas Kokkinos, Michael M. Bronstein, Roee Litman, and Alexander M. Bronstein. 2012. Intrinsic shape
context descriptors for deformable shapes. In Proceedings of the 2012 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). IEEE, Los Alamitos, CA, 159–166.
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Maks Ovsjanikov, Quentin Mérigot, Facundo Mémoli, and Leonidas Guibas. 2010. One point isometric match-
ing with the heat kernel. Computer Graphics Forum 29, 1555–1564.

ACM Computing Surveys, Vol. 47, No. 3, Article 45, Publication date: February 2015.



A Qualitative Review on 3D Coarse Registration Methods 45:35

Karl Pearson. 1901. LIII. On lines and planes of closest fit to systems of points in space. London, Edinburgh,
and Dublin Philosophical Magazine and Journal of Science 2, 11, 559–572.

Ian R. Porteous. 2001. Geometric Differentiation: For the Intelligence of Curves and Surfaces. Cambridge
University Press.

Helmut Pottmann, Johannes Wallner, Qi-Xing Huang, and Yong-Liang Yang. 2009. Integral invariants for
robust geometry processing. Computer Aided Geometric Design 26, 1, 37–60.

Dana Ron. 2001. Property testing. Combinatorial Optimization Dordrecht 9, 2, 597–643.
Salvador Ruiz-Correa, Linda G. Shapiro, and Marina Melia. 2001. A new signature-based method for ef-

ficient 3-D object recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. I–769.

Szymon Rusinkiewicz and Marc Levoy. 2001. Efficient variants of the ICP algorithm. In Proceedings of the
IEEE International Conference on 3D Digital Imaging and Modeling. 145–152.

Radu Bogdan Rusu, Nico Blodow, and Michael Beetz. 2009. Fast point feature histograms (FPFH) for 3D
registration. In Proceedings of the IEEE International Conference on Robotics and Automation. 3212–
3217.

Radu Bogdan Rusu, Nico Blodow, Zoltan Csaba Marton, and Michael Beetz. 2008. Aligning point cloud
views using persistent feature histograms. In Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems. 3384–3391.

Samuele Salti, Federico Tombari, and Luigi Di Stefano. 2011. A performance evaluation of 3D keypoint
detectors. In Proceedings of the IEEE International Conference on 3D Imaging, Modeling, Processing,
Visualization, and Transmission. 236–243.

Joaquim Salvi, Carles Matabosch, David Fofi, and Josep Forest. 2007. A review of recent range image
registration methods with accuracy evaluation. Image and Vision Computing 25, 5, 578–596.

Jose Santamarı́a, Oscar Cordón, and Sergio Damas. 2011. A comparative study of state-of-the-art evolution-
ary image registration methods for 3D modeling. Computer Vision and Image Understanding 115, 9,
1340–1354.

Gregory C. Sharp, Sang W. Lee, and David K. Wehe. 2002. ICP registration using invariant features. IEEE
Transactions on Pattern Analysis and Machine Intelligence 24, 1, 90–102.

Philip Shilane, Patrick Min, Michael Kazhdan, and Thomas Funkhouser. 2004. The Princeton shape bench-
mark. In Proceedings of the Conference on Shape Modeling Applications. 167–178.

Ivan Sipiran and Benjamin Bustos. 2011. Harris 3D: A robust extension of the Harris operator for interest
point detection on 3D meshes. Visual Computer 27, 11, 963–976.

Jian Sun, Maks Ovsjanikov, and Leonidas Guibas. 2009. A concise and provably informative multi-scale
signature based on heat diffusion. Computer Graphics Forum 28, 1383–1392.

Hari Sundar, Deborah Silver, Nikhil Gagvani, and Sven Dickinson. 2003. Skeleton based shape matching
and retrieval. In Proceedings of Shape Modeling International, 2003. IEEE, Los Alamitos, CA, 130–
139.

Andrea Tagliasacchi, Hao Zhang, and Daniel Cohen-Or. 2009. Curve skeleton extraction from incomplete
point cloud. ACM Transactions on Graphics 28, 3, Article No. 71.

Gary Tam, Zhi-Quan Cheng, Yu-Kun Lai, Frank Langbein, Yonghuai Liu, David Marshall, Ralph Martin,
Xianfang Sun, and Paul Rosin. 2013. Registration of 3D point clouds and meshes: A survey from rigid
to non-rigid. IEEE Transactions on Visualization and Computer Graphics 19, 7, 1199–1217.

Johan W. H. Tangelder and Remco C. Veltkamp. 2004. A survey of content based 3D shape retrieval methods.
Multimedia Tools and Applications 39, 3, 441–471.

Jean-Philippe Tarel, Hakan Civi, and David B. Cooper. 1998. Pose estimation of free-form 3D objects without
point matching using algebraic surface models. In Proceedings of the IEEE Workshop on Model-Based
3D Image Analysis. 13–21.

Federico Tombari, Samuele Salti, and Luigi Di Stefano. 2010. Unique signatures of histograms for local
surface description. In Proceedings of the European Conference on Computer Vision. 356–369.

Greg Turk and Marc Levoy. 1994. Zippered polygon meshes from range images. In Proceedings of the 21st
Annual Conference on Computer Graphics and Interactive Techniques. 311–318.

Oliver Van Kaick, Hao Zhang, Ghassan Hamarneh, and Daniel Cohen-Or. 2011. A survey on shape corre-
spondence. Computer Graphics Forum 30, 1681–1707.

Joris Vanden Wyngaerd and Luc Van Gool. 2002. Automatic crude patch registration: Toward automatic 3D
model building. Computer Vision and Image Understanding 87, 1, 8–26.

Simon Winkelbach, Sven Molkenstruck, and Friedrich M. Wahl. 2006. Low-cost laser range scanner and
fast surface registration approach. In Proceedings of the 28th Conference on Pattern Recognition. 718–
728.

ACM Computing Surveys, Vol. 47, No. 3, Article 45, Publication date: February 2015.



45:36 Y. Dı́ez et al.

Chen Yang and Gérard Medioni. 1992. Object modelling by registration of multiple range images. Image and
Vision Computing 10, 3, 145–155.

Yong-Liang Yang, Yu-Kun Lai, Shi-Min Hu, and Helmut Pottmann. 2006. Robust principal curvatures on
multiple scales. In Proceedings of the 4th Eurographics Symposium on Geometry Processing. 223–226.

Tsz-Ho Yu, Oliver J. Woodford, and Roberto Cipolla. 2013. A performance evaluation of volumetric 3D interest
point detectors. International Journal of Computer Vision 102, 1–3, 180–197.

Andrei Zaharescu, Edmond Boyer, Kiran Varanasi, and Radu Horaud. 2009. Surface feature detection and
description with applications to mesh matching. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 373–380.

Zhiyuan Zhang, Sim Heng Ong, and Kelvin Foong. 2012. Improved spin images for 3D surface matching
using signed angles. In Proceedings of the IEEE International Conference on Image Processing. 537–540.

Qian Zheng, Andrei Sharf, Andrea Tagliasacchi, Baoquan Chen, Hao Zhang, Alla Sheffer, and Daniel Cohen-
Or. 2010. Consensus skeleton for non-rigid space-time registration. Computer Graphics Forum 29, 635–
644.

Yu Zhong. 2009. Intrinsic shape signatures: A shape descriptor for 3D object recognition. In Proceedings of
the IEEE International Conference on Computer Vision Workshops. 689–696.

Received January 2014; revised September 2014; accepted November 2014

ACM Computing Surveys, Vol. 47, No. 3, Article 45, Publication date: February 2015.


