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a b s t r a c t

This work proposes a system for long-term mapping and localization based on the Feature Stability
Histogram (FSH)model which is an innovative feature management approach able to cope with changing
environments. FSH is built using a voting schema, where re-observed features are promoted; otherwise
the feature progressively decreases its corresponding FSH value. FSH is inspired by the human memory
model. This model introduces concepts of Short-Term Memory (STM), which retains information long
enough to use it, and Long-Term Memory (LTM), which retains information for longer periods of time. If
the entries in STM are continuously rehearsed, they become part of LTM. However, this work proposes
a change in the pipeline of this model, allowing any feature to be part of STM or LTM depending on
the feature strength. FSH stores the stability values of local features, stable features are only used for
localization and mapping. Experimental validation of the FSH model was conducted using the FastSLAM
framework and a long-term dataset collected during a period of one year at different environmental
conditions. The experiments carried out include qualitative and quantitative results such as: filtering out
dynamic objects, increasing map accuracy, scalability, and reducing the data association effort in long-
term runs.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

For over two decades a solution for the SLAM (Simultaneous Lo-
calization and Mapping) problem (2D or 3D) has been the focus of
research inmobile robotics. Application fields for SLAM range from
service [1], industrial [2], security [3], inspection [4] to space [5]
sectors. However, the aforementioned application fields also re-
quire an autonomous system deployed for long-term operation
without human intervention. In these application fields, SLAM is
a fundamental task for an autonomous robot since mapping and
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robot localization are essential to guarantee accurate and safe nav-
igation. Most classic SLAM methods assume a static environment;
nevertheless mobile robots require interaction with people and
adapt their internal representation of the environment according
to the changes taking place in the robot’s surroundings.

This work addresses the long-term mapping and localization
problem, in which the environment is no longer assumed as static
and where manymapping and localization runs can be performed.
Nowadays, mobile robots have to deal with dynamic envi-
ronments, changes in illumination, occlusions by pedestrians,
structural changes in the environment, perceptual aliasing, and
interaction with people without any previous knowledge of
robotics. These environmental changes can be classified as perma-
nent and temporal, and it is desirable that the map representa-
tion of the environment changes accordingly. Another important
aspect is related to the current number of SLAM methods avail-
able (e.g. EKF, appearance-based, pure probabilistic approaches,
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Table 1
Review of SLAM techniques in dynamic environments.

Authors/year Classification Probabilistic
framework

Static environment
learning

Avoid ever grown
number of features

Multiple map
representation

Map update

[10] Wang et al./2003 Detect dynamic. obj. ✓ × × × ×

[11] Burgard et al./2007 Detect dynamic. obj. ✓ ✓ × ✓ ✓

[13] Hochdorfer et al./2009 Landmark rating × × ✓ × ×

[14] Pirker et al./2011 Landmark rating × × ✓ × ×

[12] Andrade-Cetto et al./2002 Landmark rating × × ✓ × ×

[16] Konolige and Bowman/2009 Pruning × ✓ ✓ ✓ ✓

[15] Kretzschmar et al./2010 Pruning ✓ ✓ ✓ × ✓

[18] Biber and Duckett/2009 Multiple maps ✓ ✓ × ✓ ✓

[19] Milford and Wyeth/2009 Integrated long-term SLAM ✓ ✓ × × ×

[20] Glover et al./2010 Integrated long-term SLAM ✓ ✓ × × ×

[24] Dayoub et al./2011 Memory management × ✓ ✓ × ✓

[25] Labbe and Michaud/2011 Memory management × ✓ ✓ × ✓
etc.) [6]. Hence, it is necessary to consider the adaptation of all
these SLAM methods to operate in long-term mapping and local-
ization conditions.

In this work, the following contributions are made: first, based
on our previous work, where the Feature Stability Histogram
model was proposed [7], we introduce the probabilistic founda-
tions to integrate the FSH model into the current SLAM solutions.
An automatic feature classification method is then proposed to
determine whether a feature is stable. Taking advantage of this
feature classification, a method to remove useless and weak fea-
tures caused by dynamic objects is presented. A complete system
for long-termmapping and localization is also described, in which
the more stable features and environmental configuration at each
mapping and localization run are obtained and considered to es-
timate the robot pose,in this way, these changes in the environ-
ment are integrated into the current map model and the internal
map representation is updated. Furthermore, the FSHmodel is an-
alyzed using a metric map built with the FastSLAM [8] approach,
which allows us to qualitatively observe the FSH model behavior
over themapping and localization runs in the presence of dynamic
objects, and structural changes in the environment. In addition, in
this paper we measure the influence of the FSH model over map-
ping and localization runs in terms of localization accuracy, scal-
ability and matching effort. Finally, successful SLAM methods
depend not only on the filter used but on the perception system;
therefore, this work describes a sensor model based on the extrin-
sic calibration between a 2D Laser Range Finder (LRF) and an om-
nidirectional camera [9,8,7,6,5,4] in order to extract 3D locations
of vertical edges, which are used to describe the appearance of the
environment.

The remainder of this paper is organized as follows. Section 2
describes related works focused on long-term mapping and lo-
calization methods. Subsequently, for self-containment the FSH
model is briefly explained in Section 3. The probabilistic foun-
dations used to integrate it with the current SLAM methods are
described as well as the feature classification and feature prun-
ing methods in Section 3. The sensor model is then introduced in
Section 4. Section 5 presents the experimental conditions and the
qualitative and quantitative results. Our final remarks are given in
Section 6.

2. Related work

Typical techniques to solve the SLAM problem assume a static
environment andmany approaches have been proposed in the two
last decades. Only in the last eight years has the SLAM problem
faced dynamic environments as shown in Table 1.

Themost common strategy to deal with dynamic environments
is to detect dynamic objects and considering them as spurious
measurements. A seminal work using a 3D LRF in outdoor envi-
ronments was proposed in [10]. Here the Detection and Tracking
of Mobile Objects (DTMO) is performed in advance of SLAM. The
probabilistic framework proposed in [10] is based on estimating
the constant velocity motion of mobile objects and differentiat-
ing static from moving observations. In contrast, [11] proposes a
probabilistic framework based on occupancy grid maps, estimat-
ing whether each individual LRF beam has been reflected by a
dynamic object. Once these laser beams are identified, they are
filtered out from the range registering process. This technique also
learns quasi-static environmental configurations by clustering lo-
cal grid maps.

A service robot has to learn relevant information about the en-
vironment in which it is deployed. One way to do this is through
landmark visibility and rating. In this context, [12] developed an
EKF-based map building system which incorporates the measure-
ment of landmark strength and quality allowing the elimination of
unreliable observations. However, the removal criteria were based
on user supplied strength and quality thresholds. In [13] the land-
mark quality is quantified based on its contribution to the robot’s
self-localization ability. In these approaches the landmark uncer-
tainty and its visibility are taken into account to quantify the land-
mark quality, and are then used to avoid the ever-growing number
of landmarks. A clustering step is performed to identify the land-
mark’s spatial distribution, which computes their visibility. An-
other interesting idea is presented in [14], where the landmark
visibility is computed using the Histogram of Oriented Cameras
(HoC) in order to reduce the average number of matching candi-
dates per frame.

A logical consequence of landmark rating is the pruning of unre-
liable or useless landmarks. In this sense, [15] is focused on remov-
ing observations which do not provide relevant information with
respect to the map built so far. To do so, the entropy of an ob-
servation is computed using past measurements to obtain its in-
formation gain. If this information gain is zero the observation is
discarded. In [15] a graph-based SLAM solution is used and the
observations are the node positions. In [16] a lifelong mapping
solution is proposed using the FrameSLAM approach [17] and a
view deletion method based on removing views with low match-
ing rates is described. In spirit thiswork is similar to [11], but in this
case learning clusters of views is done to represent similar and per-
sistent places in the environment. These pruning techniques have
the tendency to introduce delayed map updates, since the opti-
mization of large maps can take more time than the observation
time window.

One characteristic that has gained attention in long-term map-
ping and localization is multiple map representations. A seminal
contribution on this context was [11,16] with a particularly differ-
ent approach, however, in [18] the environment is simultaneously
represented at multiple timescales and at each timescale a differ-
ent learning rate is used to obtain a map of the environment. A
drawback of [18] is that the timescaleswere found experimentally,
which limits the robot’s autonomy when compared to [11,16].

In general, the approaches described so far solve the SLAMprob-
lem independently from the detection and tracking of dynamic
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changes in the environment. Decomposing thewhole problem into
two separate estimations is understandable given the high dimen-
sionality of the estimation problem, and inmany situations the dy-
namic objects do not provide relevant localization information for
the robot. However, in [19] the RatSLAM algorithm is presented
and its system architecture is inspired by the rat hippocampus
place cells. RatSLAM is composed on an experience space, each ex-
perience is associatedwith a local view cell and each local view cell
is associated with a set of pose cells. Themap is kept up-to-date by
continuously adding experience, and the data association method
is strongly dependent on lighting conditions [19]. In contrast, FAB-
MAP [20] is a pure probabilistic appearance-based mapping tech-
niquewith a reliable data association approach, as a result in [21] is
presented as a hybrid mapping system combining the best of both
algorithms but integrating them in one SLAM solution.

Biologically or psychologically inspired models have been used
over many years in the robotics community. The human mem-
ory model proposed by [22] or [23], and the recency-weighed
averaging approach [18] are good examples of memory manage-
mentmodels inspired bypsychological andneuroscientificmodels.
In [24] the Atkinson and Shiffrin memory model [22] is considered
in order to update the reference view of a particular place. How-
ever, the authors assume that the robot is able to self-localize using
othermeans, since theirmain goal is to keep the reference views of
the topological map up to date. Using the human memory model
proposed in [23], a real-time loop-closure detection approach is
presented in [25], evaluating the number of times locations have
been matched and recurrently viewed. This evaluation is done us-
ing a Bayesian filter to estimate the probability that the current
topological location matches that of one already visited stored in
the Working Memory (WM).

The long-term mapping and localization approaches reviewed
in this section can integrate (or not) the dynamism of the environ-
ment in the estimation process or not. Moreover, given the high
number of SLAM solutions available nowadays, it is worth design-
ing and implementing long-term mapping and localization meth-
ods in such a way that it can be applied to the current SLAM
solutions. In addition, independence in terms of the type of sensor
used is another important observation to note from Table 1. There-
fore, it seems that a high-level featuremanagement approach such
as the FSHmodel is an interesting option to dealwith the long-term
mapping and localization problem.

3. Feature stability histogrammodel

Typical SLAM techniques assume static environments, and they
build a map without taking into account real-world conditions,
which can include pedestrians, moving obstacles, perceptual alias-
ing, weather changes, occlusions, and robot–human interaction.
So, how can a mobile robot update its location and internal
representation of an environment which appearance changes
constantly? The Feature Stability Histogram (FSH) is a solution
proposed in this work to deal with changing environments and
long-term mapping and localization. The main idea behind this is
to classify the features of the environment as stable andnon-stable,
in this way differentiating the most persistent features and envi-
ronmental configurations from those temporal changes in the en-
vironment.

In this section, an overview of the FSH model [7] is presented.
The probabilistic foundations are then described in order to
integrate the FSH model to the current SLAM methods. And the
automatic feature classification and feature pruning methods are
also presented. Finally, the SLAMalgorithmoverview for long-term
mapping and localization using the FSH model is described.

3.1. Method overview

For years the scientific community has been finding inspira-
tion in nature, e.g. probabilistic localization has its origins in how
the place cells in the hippocampus work. In this paper, the Atkin-
son and Shiffrin memory model [22] is used as inspiration to dis-
tinguish stable features from unstable ones, and to then use the
stable features for robot mapping and localization. This model is
composed of two main components: the Short-Term Memory
(STM), which retains information long enough to use it, and the
Long-Term Memory (LTM), which retains information for longer
periods of time. If STM inputs are continuously rehearsed, they
become part of LTM. The memory model proposed in [22] has
drawn criticism from psychologists and neuroscientists due to its
extremely linear representation of the memory process [23,26].
They argue that the Atkinson and Shiffrin model does not take into
account the ability of many people to recall information despite
the fact that this information has not been rehearsed. In addition,
this memory model does not consider different levels of memory
that could be useful from the robotics point of view, since it can be
represented by feature strength.

In thiswork, a featuremanagement approach for robotmapping
and localization inspired by [22] is proposed (see Fig. 1). Thismodi-
fiedmemorymodel representation has twomain advantages: first,
an input feature can bypass STM and become part of LTM depend-
ing on the feature strength (e.g., the feature uncertainty, the Hes-
sian value in the SURF descriptor [27] or the matching distance);
second, the weighted voting schema implemented to build FSH
defines a non-linear memory representation, which means that a
feature can be part of STM or LTM depending on its strength. The
rehearsal process implemented in this work is based on the num-
ber of times a feature was observed. In this way, the appearance of
the environment represented for FSH is updated according to the
presence or absence of pre-observed features, or the inclusion of
new features.

FSH is used to distinguish between STM and LTM features.
A feature is defined as an LTM if it has a high value in FSH;
otherwise it is considered as an STM feature. This classification has
two main advantages: first, it is a straightforward method to deal
with dynamic objects because they often produce STM features or
spurious features which should not be part of the map until they
are rehearsed; and second, it is a suitable method to deal with
changing environments. In the end, themore stable features belong
to LTM and will be those used for mapping and localization.

The FSH pipeline process is described as follows: the first stage
of the FSH model deals with introducing the features set in order
to build a normalized histogram using the feature strengths; this is
called the Feature Stability Histogram. Afterwards, using the map
information the re-observed features can be identified and their
votes incremented according with the feature strengths. Finally, as
a result of the feature classification as STM or LTM a new model
of the environment is obtained as well as a new FSH. It is worth
noting that the bigger the FSH value is, the more stable a feature is.

The automatic feature classification process implemented in
this work is based on the k-means [28] clustering and exponential
decay algorithm, such that the feature mean lifetime is identified.
Once the LTM features are found, they are used for robot pose
estimation and crucial SLAM processes such as loop-closure. In
loop-closure situations, the observed LTM features are used to
impose constraints in the loop. As a result, when considering LTM
features in typical SLAM tasks, the map of the environment can
be updated accordingly and the robot can deal with long-term
mapping and localization.

3.2. Localization and mapping using the feature stability histogram

The FSH model can be viewed as a method which is transversal
to the current SLAM solutions, providing long-term operation and
map updating skills. To do so, the SLAM problem formulation
and the feature stability level (provided by FSH) are considered
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Fig. 1. The modified human memory model.
Table 2
Notation.

Definition Symbol Value and uncertainty

Mirror parameter ζ 0.96651± 0.00599
Principal point u0, v0 510.61716± 1.43172, 420.61415± 1.68635
Generalized focal lengths γ1, γ2 402.97909± 0.67177, 403.55496± 0.67395
Skew S 0
Distortion parameters k1, k2, k3, k4, k5 −0.01934± 0.00623, 0.00229± 0.00362,−0.00016± 0.00183,−0.00017± 0.00046, 0
Translation vector T [−0.0069± 0.0007,−0.2100± 0.0017, 0.5557± 0.027]T
Roll, Pitch and Yaw RPY 0.7644°± 0.002°,−4.5928°± 0.0005° and−105.0235°± 0.033°
to re-formulate the SLAM problem as shown in Section 3.2.1.
The environmental features are classified as LTM or STM in
terms of their strength. A detailed description of this process is
provided in Section 3.2.2. Also, Section 3.2.2 discusses the ever
increasing number of features in long-term operations problem,
which is common in service robotics. The integration of the
FSH model in a SLAM method involves the modification of the
data association, update and loop closure processes, which are
described in Section 3.2.3. In order to understand the main
variables used in Sections 3.2.1–3.2.3 and their meaning, Table 2
summarizes the notation used.

3.2.1. Probabilistic foundations
Fig. 2 shows themodules affected by integrating the FSHmodel

in a typical SLAM framework. Basically, data association, map
update and loop-closure processes are involved. The FSH model
depends on the data association process to update the histogram
of weighted votes. Afterwards, all the re-observed features are
estimated, new features are initialized and only the current
re-observed LTM features are used to estimate robot position.
Furthermore, loop-closure situations require a reliable landmark
shared between the current robot position and the re-visited one
to close the loop. LTM features in the re-visited position are used
to impose reliable constraints and start the preferred non-linear
minimization method.

The probabilistic derivation is based on the SLAM problem for-
mulation; however, two important assumptions have to be made:
first, the observations can be decomposed into LTMand STMobser-
vations. We introduce additional variable Ct which tell us whether
an observation belongs to LTM or STM at each time step t . This as-
sumption is depicted in Eq. (1) and shown in Fig. 2:
Zt = ZLTM

t + ZSTM
t

Ct = [ct == LTM, ct == STM] (1)
where Zt are the observations taken at time t , and Ct is labeled as
ct = LTM or ct = STM if Zt corresponds to LTM or STM observa-
tions. Second, the posterior of the robot pose depends on the LTM
features only, which is shown in Eq. (2):

p(xt ,Mt |Zt ,Ut) = p(xt ,Mt |ZLTM
t ,Ut) (2)

where xt is the robot state at time t,Mt is the map built so far, Ut
are the control inputs at time t , and ZLTM

t are the LTM observations
at time t . Next, introducing the variable Ct into the probabilistic
formulation of the SLAM problem yields the expression shown in
Eq. (3):

p(xt ,Mt |Zt ,Ut , Ct) ∝ p(zt , ct |xt ,Mt , Zt−1,Ut , Ct−1)

× p(xt ,Mt |Zt−1, Ct−1,Ut) (3)

where zt is the last measurement performed. Considering the as-
sumption expressed in Eq. (1), the observation can be factorized
out as Eq. (4) shows:

p(zt , ct |xt ,Mt , Zt−1,Ut , Ct−1)

= p(zt |ct , xt ,Mt , Zt−1,Ut , Ct−1)p(ct |xt ,Mt , Zt−1,Ut , Ct−1)

= p(zt |ct , xt ,Mt)p(ct)
= p(zt |ct = LTM, xt ,Mt)p(ct = LTM) (4)

where the standard Markov assumption was considered, as well
as the conditional independence of zt and ct given xt and Mt . Fur-
thermore, considering only LTM features (assumption expressed in
Eq. (2)), the right term of Eq. (3) can be further developed as de-
picted in Eq. (5).

p(xt ,Mt |Zt−1CLTM
t−1 ,Ut)

= p(xt |Mt , Zt−1C LTM
t−1 ,Ut)p(Mt |Zt−1CLTM

t−1 ,Ut)
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Fig. 2. FSH model integrated in the SLAM framework.
=


p(xt |xt−1,Mt , Zt−1CLTM

t−1 ,Ut)p(xt−1|Mt , Zt−1CLTM
t−1 ,Ut)

× p(Mt |Zt−1CLTM
t−1 ,Ut)dxt−1

=


p(xt |xt−1, ut)p(xt−1,Mt |Zt−1C LTM

t−1 ,Ut−1)dxt−1. (5)

The last line in Eq. (5) depicts the well known SLAM prediction
step, considering only LTM correspondence variables. The final fil-
ter equation is obtained by expanding Eqs. (4) and (5) into Eq. (3).
This is shown in Eq. (6):
p(xt ,Mt |Zt ,Ut , C LTM

t ) ∝ p(ct = LTM)p(zt |ct = LTM, xt ,Mt)

×


p(xt |xt−1, ut)p(xt−1,Mt |Zt−1CLTM

t−1 ,Ut−1)dxt−1. (6)

Eq. (6) shows the SLAM posterior weighted by the term p(ct =
LTM), which is the likelihood that an observation zt corresponds to
an LTM feature. Exploiting the fact that ct is conditionally indepen-
dent of zt given xt , p(ct = LTM) is extracted from the normalized
FSH and regarded as a probability distribution. FSH values are re-
lated to the information content of a landmark, in this work they
are computed by the sumof the reciprocals of themain diagonal el-
ements of the covariancematrix, as suggested in [29] and depicted
in Eq. (7):

fsh(zt,i, Σi
zt ) =

R
n=1

1
σ 2
nn

(7)

where zt,i is the i-th feature of themeasurement performed at time
t, R is the rank of zt,i and σ 2

nn is the n-th value of the covariancema-
trix Σi

zt . Eq. (7) is part of the rehearsal process depicted in Fig. 1,
which is in charge of rating the map landmarks when FSH values
are updated. As described in Section 3.1, there are other options to
define the feature strength, e.g. the Hessian value in the SURF de-
scriptor [27] or thematching distance. Then, Eq. (7) can be replaced
by any of these options.

The aim of the probabilistic derivation done from Eqs. (3) to (7)
is to show that the FSH model proposed can be used in different
SLAM methods. The right term of Eq. (6) is basically the SLAM
formulation, which considers LTM features as observations in the
filtering process. This means that parametric (e.g. EKF) and non-
parametric filters (e.g. particle filters) are both suitable for the FSH
model.
3.2.2. LTM/STM feature classification and STM features removal

3.2.2.1. LTM/STM feature classification. The FSH model discussed
up to now considers two types of features, namely LTM and STM.
Taking into account the FSH model depicted in Fig. 1 and the
human memory model proposed by [22], it is important to define
a discrimination method to classify the environmental features
as either LTM or STM. As a result, useless STM features can be
removed in order to increase the SLAM algorithm scalability. In
our previous published work [7], the feature classification method
was based on a fixed threshold computed statistically. In this work,
however, themap landmarks are classified automatically as LTMor
STM each time the SLAM process completes one iteration.

The LTM/STM feature classification process can be summarized
as follows: first, after each SLAM iteration measured features
and their associations are available; second, using their strength
(Eq. (7)) the normalized FSHmodel is built (see Fig. 3(a)) and sorted
in descending order; finally, clustering into LTM or STM sets is
performed through k-means [28].

The LTM/STM feature classification is a clustering process with
low dimensionality (rank-2), for this reason keeping the number
of data points low is desirable. In this work, a global stochastic
map is used as environmental representation. Then, a new node
is started when the number of features in the current node reaches
a maximum [6]. Using this strategy a low number of features for
each node of the topological map are analyzed. However, other
sub-mapping techniques can be used [6].

Formally, given a set of observations (sf1, sf2, . . . , sfN) where
each observation is the feature strength, the aim of clustering is
to classify the N features into LTM or STM, S = {SLTM , SSTM}. The
within-cluster sum of squares cost function yields as depicted in
Eq. (8):

min
S

K
j=1

N
i=1

∥sf i − µj∥
2 (8)

where K is the number of sets which in this case is 2, and µj is the
mean of the data points belonging to the set Sj (j stands for LTM or
STM). Once the minimization of Eq. (8) is done, all those features
which belong to the set with highest mean are considered as LTM.

Fig. 3(a) shows a typical normalized FSH where the data points
depicted using diamonds correspond to LTM features, and those
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Fig. 3. (a) LTM and STM feature selection using k-means. (b) Normalized feature time stamp with respect to the current viewing step. (c) STM feature candidates to be
removed (circle-shaped).
points drawn with circles correspond to STM features. This classi-
fication was done applying Eq. (8) to FSH values, which is directly
related to feature strength. It isworth noting that aminimumnum-
ber of features are required in order to perform clustering using
k-means with at least two sets. As a rule of thumb the number of
sets can be estimated by Eq. (9), justified in [30]:

k ≈


N
2

(9)

whereN is the number of data points. Accordingwith Eq. (9),N = 8
is the minimum number of features to perform clustering with
k-means. However, when the mobile robot is visiting a new area
may be the number of features observed could be less than eight. In
this case, the LTM/STM classification is performed using exponen-
tial fitting in order to estimate the mean lifetime as the threshold
value to distinguish LTM fromSTM features. The exponential fitting
of the FSH is performed using a direct minimization method based
on the Nelder–Mead simplex algorithm described in [31], which
tries minimizing the sum of squares error described in Eq. (10).

f (A, λ) =

K
i

(Ae−λxi − yi)2 (10)

where K is the number of data points, A and λ are the parame-
ters to estimate and (xi, yi) are the data point pairs. Once the ex-
ponential decay parameters function are estimated, the LTM/STM
feature classification is performed selecting the mean lifetime as
the threshold value to differentiate between these two sets. The
mean lifetime is shown in Eq. (11).

τ = Ae−1 (11)

3.2.2.2. STM features removal. Observing Fig. 3(a), particularly
STM features, their strengths are comparatively low with respect
to LTM feature strength. This is can be due to two main reasons:
either the features have been recently incorporated to themap and
their strength is not high, or the features are old and they have not
been re-observed inducing a relative decreasing of their strength.
Taking advantage of this, an STM feature removal algorithm can
be proposed by considering the following requirements: limiting
the ever-growing number of STM features, preserving the newest
features even though they have low strengths, and removing the
oldest and weakest features.

The STM feature removal process can be summarized as fol-
lows: first, once the LTM/STM classification process finishes the
STM features can be identified; second, our approach estimates
how old a feature is with respect to the first time the map was
created; third, clustering again the STM features in two sets those
STM features to be removed and those features to preserve, to do
so the joint given by the feature strength and their age is consid-
ered; finally, all those features belonging to the STM features to be
removed set are deleted from the current map.
The STM feature removal first step was described in Sec-
tion 3.2.2.1. To estimate how old a feature is, the FSH model con-
siders a time stamp associated to each feature in the environment
map. This time stamp shows how many times a feature has been
observed, however this value may be different from the number of
times the robot has visited the feature’s surrounding area. For this
reason, the former is normalizedwith respect to the latter. Fig. 3(b)
shows the normalized time stamp corresponding to those features
in Fig. 3(a). The higher the histogram values the younger the fea-
ture.

Observing the normalized time stamp values for features 7–15,
the weakness of features 11–14 is not justification enough to
remove these features since they are new. On the other hand,
features 14 or 15 could be candidates for removal, since they have
low strengths and they are the oldest. Formally, assuming that the
normalized feature time stamp and the feature strength stored in
the FSH are independent given the robot position, the likelihood
model for the STM feature removal is given in Eq. (12):

p(sf STMi , tf STMi |xt) = p(sf STMi |xt)p(tf
STM
i |xt) (12)

where xt is the robot position, sf STMi is the i-th STM feature strength
and tf STMi is the i-th STM feature time stamp. Fig. 3(c) shows the
resulting likelihood model given by Eq. (12) for the typical FSH
model and time stamps of Fig. 3(a) and (b). Here, the classification
problem is to group STM features into two sets: those STM features
to be removed and those to be preserved. Finally, the k-means
algorithm is used as depicted in Eq. (8) doing the appropriate
changes in the variables. As a result, the circle shaped points in
Fig. 3(c) show the STM features to be removed. In the case the
number of STM features were not enough to cluster them (N <
8), it is a better option gather more evidence about STM features
before taking the decision of delete them. Therefore, if N < 8 the
STM features removal process does not take place.

3.2.3. Localization and map building
Previous sections described the essential characteristics of the

FSH model such as: the structure inspired on the human memory
model, the probabilistic foundation to adapt the FSH model to
the current SLAM solutions, the FSH model rehearsal procedure
to promote features from STM to LTM, the STM/LTM feature
classification method and the STM feature removal. However,
considering Fig. 2 additional insights have to be described in
order to integrate the FSH model implementation into any SLAM
solution.

The following assumptions have to be considered:

1. the observations can be decomposed into LTM and STM, as
depicted in Eq. (1)

2. the posterior of the robot pose depends on the LTM features
only, as depicted in Eq. (2).
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3. the FSHmodel is computed once the SLAM process has finished
the update stage.

4. the LTM/STM feature classification is performed at each time
step; however the STM feature removal is performed each time
a previously mapped area is re-visited. The latter includes: loop
closure situations or further SLAM runs.

According to Fig. 2, the FSHmodel is involved in the data associ-
ation, map and state update and loop closure detection processes.
Algorithm 1 describes how the FSH model can be integrated into
current SLAM methods. Our implementation of the FSH model is
based on the FastSLAM algorithm [8]; in this context, each par-
ticle has a separate FSH model, avoiding the map consistency in-
convenient when the best particle switches. However, Algorithm 1
considers a general notation introduced in Table 2 with the aim of
easily integrate it on current SLAMmethods.

In Algorithm 1, the SLAM prediction and measurement stages
are not affected by the FSH model (lines 2–6), though, the data
association process does keep in mind current LTM and STM
feature indexes in order to perform its work hierarchically (line
8), i.e., LTM features are associated before STM features. Data
association of STM features is important because depending on the
FSH, STM features can increase the strength and eventually become
part of LTM.

Another SLAM stage affected is the filter update process (line
10). Here LTM features are considered only to correct the robot
pose and covariance. On the other hand, re-observed STM features
are updated in order to estimate their covariance matrix and in
this way compute their strength. Once the SLAM filter finishes,
the FSH model is computed using the data association vector,
current FSH values and the updated covariance matrices of the re-
observed features (lines 13–18). Subsequently, LTM/STM feature
classification take place as well as the STM features removal
process (lines 19–23).

LRF sensors are popular in the robotics community. The FSH
model described so far can be applied to any type of observation.
In this work, the laser scan is also processed by the FSHmodel (line
24). By doing so, amore stable local environmental structure can be
obtained, filtering out pedestrians and moving objects. Formally,
given a sequence of LRF readings St =


s1 · · · sN


, where N

is the total number of LRF scans and sj corresponds to an m × N
matrix beingm the rank of the data points, a set of votes vsij can be
computed for each i-th point in the j-th laser scan.

Using the previous filtered robot positions the st−1 LRF readings
are sequentially registered, yielding a local map patch PS t−1. At
each step, thePS t−1 is alignedwith the current LRF reading st using
the filtered robot position xt+1 and the set of votes for the FSH
model is computed using the Nearest-Neighbor (NN) approach.
The vote of a data point is defined as depicted in Eq. (13):

vsij =

1 if ∥sit − PSk

t−1∥
2 < LRFresThreshold2

0 Otherwise (13)

where sit is the i-th point in the current laser scan, PSk
t−1 is

the nearest-neighbor k-th point in the previous map patch, and
LRFresThreshold depends on the LRF resolution. In this work, the
URG-04LX LRF is used and its range resolution is 0.04 m [32], thus
the LRFresThreshold value was set to 0.04 m.

Detecting loop closure situations is a challenging task. Many
loop-closure detection techniques have been proposed [33]. On
one hand, map-to-map matching methods are based on find-
ing correspondences between common features in different
sub-maps [34]. Furthermore, image-to-image matching methods
detect loop-closures based on recognizing visual appearance of
places [21]. Finally, image-to-map or feature-to-map matching
methods are based on finding correspondences between features
and maps [35,36]. Once the loop-closure is detected, topological
Algorithm 1. SLAM and FSH model computation.
1. while operating
2. % SLAM prediction.
3. [xt Pxt ] = doSLAMprediction(xt−1, ut , Pxt−1,Rt);
4. % SLAMmeasurement.
5. Zt = doMeasurement(xt , Pxt ,Mt ,Qt);
6. st = getCurrentScan();
7. % SLAM data association.
8. Ht = getDataAssociationVector(Zt ,Mt ,

ZindSTM
t , ZindLTM

t );
9. % SLAM update.
10. [xt+1, Pxt+1, Zt+1,Mt+1]

= doSLAMupdate(xt , Pxt ,Mt , Zt ,Ht , FSH t ,
ZindSTM

t , ZindLTM
t );

11.
12. % Current FSH model.
13. FSH t = getFSHvalues();
14. % FSH model computation—Rehearsal process.
15. forz iG,t+1 = Zt+1(Ht)

16. Sz iG,t+1 = getFeatureStrength(Pz iG,t+1);
17. FSH t+1 = updateFSHvalues(Sz iG,t+1, FSH t);
18. end
19. % FSH model computation—LTM/STM feature

classification.
20. [ZindLTM

t+1 , ZindSTM
t+1 ]

= doLTM_STM_Classification(FSH t+1);
21. % FSH model computation—STM pruning
22. doSTMfeaturePruning(FSH t+1, ZindSTM

t+1 );
23. % FSH model computation—LRF readings.
24. PS t = doFSHoverLRFreadings(PS t−1, st);
25.
26. % Loop-closure detection.
27. LC_Alert= doLoopClosureDetection(xt+1, Pxt+1,

Mt+1,Ht , ZindSTM
t+1 , Zind

LTM
t+1 , PS t);

28. if (LC_Alert)
29. doConstraintLoop(xt+1, Pxt+1,Mt+1,Ht , ZindLTM

t+1 );
30. end
31. end

representations of the environment are helpful to improve themap
and robot position estimation [37]. In this work, a global stochastic
map representation is stored using the relative locations between
nodes. A new node is started when the number of features in the
current node reaches a maximum, or when no correspondences
were found by the data association stage.

There are twoways inwhich the FSHmodel is used for loop clo-
sure detection: first, the re-visited map patch PS j and the current
scan st are used to get a similarity measure using the Hausdorff
fraction [38], which is a metric used to measure the distance be-
tween two sets of points; second, an overlapping of 60% [39,40]
in the LTM features is used between the current node and the re-
visited node. In this work, an overlapping of 60% (both LRF map
patches and landmarks) is used to issue a loop-closure alert (line
27). In this case, a set of conditions such as the robot position, the
base position of the node that closes the loop and a shared LTM
feature are used to constrain the loop.

Finally, in line 29 the detected loop closure is processed using
the graph representation of the robot poses, their uncertainties,
and the additional constraint over the observed LTM feature. The
non-linear optimization is done using TORO [41], which has been
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Fig. 4. Precision–recall curve for loop closure detection using the FSH model. The
total robot path used to compute this curve was 1.24 km approximately.

adapted to work in incremental mode and through Matlab MEX
files.

An importantmetric to test our loop closure detection approach
is through the precision–recall curve, where precision is defined
as the number of correct loop closure matches divided by the
total number of matches, and recall as the number of correct loop
closure matches divided by the total number of expected matches.
These definitions are observed in Eq. (14).

Precision =
TP

TP + FP
, Recall =

TP
TP + FN

(14)

where TP, FP and FN are true positives, false positives and false
negatives respectively. Expectedmatches are defined as previously
selected locations in the map within 2 m distance to the current
robot location. It is worth remembering that our LRF hasmaximum
range of 4 m. Fig. 4 shows the precision–recall curve for loop
closure detection using the FSH model. To compute this curve,
fifteen runs over the ground floor were used. The ground floor
map contains essentially three loop closure situations, and it is
worth noting that the SLAM runs used belongs to our dataset
which considers changes in illumination, season in the year, and
occlusions due pedestrians. Observing Fig. 4, it reports over 70%
precision over more than 80% of the recall range.

4. Sensor model

The type of perception system and the feature extraction
method used determine how the environment is represented, how
likely it is to re-observe the environment features and how the un-
certainty is handled since it depends on the robot sensors used (or
a combination of them). One of the most important problems in
SLAM is to find correspondences between the observations taken
at different places in the environment. These correspondences are
crucial to simultaneously estimate the robot position and the map
of the environment. For this reason, the environmental feature rep-
resentativeness and thematching process reliability are important
factors of SLAM.

In this work, a sensor model based on the extrinsic calibra-
tion between an LRF and an omnidirectional camera [9] is used in
order to extract the 3D position of vertical edges in indoor en-
vironments [42]. Table 3 summarizes the omnidirectional cam-
era intrinsic parameters and the extrinsic calibration parameters
between the Hokuyo LRF and the omnidirectional camera used.
Vertical edge features are predominant in indoor structured en-
vironments, and they are not deformed by the non-linear dis-
tortions introduced by the omnidirectional camera mirror. For
self-containment, Algorithm2 shows the basic steps to extract ver-
tical edge features. It consists of six stages: first, the LRF segments
and the vertical edges [43] are detected (lines 1–3); second, using
the extrinsic calibration between the LRF and the omnidirectional
camera [9], and the Barreto conic projection model [44], the LRF
segments are projected onto the sphere and the image plane (lines
Table 3
Omnidirectional camera intrinsic calibration parameters, and extrinsic calibration
with the Hokuyo LRF.

Variable Description

xt−1, x̂t , xt+1 Previous, estimated and corrected robot pose.
Pxt−1, P̂xt , Pxt+1 Previous, estimated and corrected robot pose covariance

matrix.
ut Current motion command.
Rt ,Qt Process and observation uncertainty matrix.
Mt ,Mt+1 Current and updated map.
FSH t , FSH t+1 Current and updated FSH values.
ZindLTM

t , ZindSTM
t Current LTM and STM feature indexes.

ZindLTM
t+1 , ZindSTM

t+1 Updated LTM and STM feature indexes.
Ht Current data association vector.
Zt , Zt+1 Estimated and corrected re-observed set of features.
ZLTM
t , ZSTM

t Current LTM and STM landmarks.
z iG,t+1 Corrected i-th feature, G stands for LTM or STM.
Pz iG,t+1 Corrected i-th feature covariance matrix, G stands for

LTM or STM.
Sz iG,t+1 i-th feature strength, G stands for LTM or STM.
PS t−1, PS t Previous and computed FSH model for the laser scans.
ZLTM
0:t , PSLTM

0:t ,ALTM
0:t LTM landmarks, FSH model for the laser scans and

appearance-based image descriptors from t = 0 to t = t .

6–11); third, the LRF corner uncertainties are found on the image
plane (lines 14–16); fourth, the vertical edge model on the image
plane is computed and their intersections found with the conics
corresponding to the LRF segments (lines 19–24); fifth, using the
corner uncertainties in the image plane and the intersects com-
puted above, the Joint Compatibility Branch and Bound (JCBB) [45]
test is used to robustly associate each corner with the vertical edge
intersect (line 25); finally, the vertical edge range-bearing mea-
surement model is found using the associated LRF corner with re-
spect to the camera frame (lines 26–30).

Fig. 5(a) shows an example of the resulting data association pro-
cess on the image plane described above. In this figure, the conic
intersects are shown in circle-shaped points and the associated LRF
corners are shown in star-shaped points. The remaining LRF cor-
ners are also shown in diamond-shaped points. Fig. 5(b) shows the
consistency between the laser scan matching and the correspond-
ing vertical edges in the scene using the sensor model described
above. The vertical edges depicted in this figure correspond to the
most predominant ones. The vertical edge position uncertainties
are also shown, as well as their measured lengths.

5. Experiments and results

The experimental evaluation of this work was carried out at the
University of Girona using an indoor dataset captured over one
year at different times of day and seasons of the year. This was
done due to the lack of publically available datasets of dynamic
environments. The more recent work in this sense is the COLD
database [46], but the detailed intrinsic and extrinsic calibration
parameters of the sensors involved are not available, which did not
allow the sensor model presented in Section 4 to be tested.

Our dataset shares three important properties with the COLD
database: first, most of changes are due weather conditions, it
means robot runs were performed in different seasons of the year
(winter, spring, summer and autumn); second, changes due times
of daywere also considered, itmeans robot runswere performed at
morning, afternoon and night; third, pedestrianswere notwarmed
about the robot runs, even though robot runs were performed
when many people were walking around. Sadly, big structural
changes are not common, however moving doors are more often
and they involve visual and structural changes in the environment.
We believe that these changes are important to test long-term
SLAMmethods.
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Fig. 5. (a) Vertical edges and their LRF corner associations on the image plane. (b) Detailed view of the predominant vertical edges in the map.
Algorithm 2. Vertical edge feature extraction.
1. lrfSegments = getLRFsegments();
2. lrfCorners = getCornersFromSegments();
3. veListFOV = getCatadioptricVerticalEdgesInFOV ();
4.
5. % Computing the segments normal in the sphere and

their conic matrix on the image plane.
6. lrfSegNormals← []; lrfSegConic← [];
7. for each S ∈ lrfSegments
8. lrfSegSph = doProjectSegment2Sphere(S);
9. lrfSegNormals← getNormalVector(lrfSegSph);
10. lrfSegConic← getBarretoConicProjection(lrfSegSph);
11. end
12.
13.
14. % Computing the corners uncertainty on the image

plane.
15. [Jp, Jr, Js, Jd, Ji] = doPropagateCornersUncertainties

(lrfCorners);
16. sensorSigma = getSensorSigma(lrfCorners);
17. lrfCornersSigma = getUncertaintyOnImagePlane

(Jp, Jr, Js, Jd, Ji, sensorSigma);
18.
29. % Vertical edge intersection with the LRF segment

conics on the image plane.
20. veMeasurement← [];
21. for each ve ∈ veListFOV
22. veImgModel = doComputingVEmodel(ve);
23. for each Ns ∈ lrfSegNormals; Cs∈lrfSegConic
24. [conicCenter, conicRadii]

= getConicCenterRadii(Cs);
25. conicInt = getConicIntersects

(coniCenter, conicRadii, veImgModel);
26. H = getCornerIntersectsDataAssociation

(conicInt, lrfCornersImg, lrfCornersSigma);
27. If empty(H)
28. continue;
29. else
30. veMeasurement← doMeasurement

(H, lrfCorners);
31. end
32. end
33. end
The collected dataset includes seven (7) runs of each floor of
Building PIV at the University of Girona, covering a total distance
of 550 m, 445 m and 640 m of the ground, first and second floor
respectively. Fig. 6 shows the estimated map over the CAD map,
and the stochastic topological map of each floor of Building PIV
at the University of Girona. As can be observed from Fig. 6, the
map’s large size can cause visualization problems if a detailed view
is needed. For this reason, the topological representation of the
environment is included in order to ease the visualization of the
results presented in this section. The experimental validation was
conducted as follows: first, at each floor the initial map was built
using the FastSLAMalgorithm [8]; second, seven further SLAM runs
were performed for eachmap. At each run a newmap is generated,
which considers the respective changes in the environment. This
new map is loaded in the next run.

The season of the year and time of day of SLAM runs per-
formed at each floor are described as follows: at ground floor, test
were performed using Winter-Afternoon, Autumn-Night, Spring-
Afternoon, Autumn-Morning, Winter-Night, Summer-Morning
and Summer-Night dataset; at first floor, test were performed
using Autumn-Afternoon, Autumn-Night, Spring-Night, Winter-
Morning,Winter-Night, Summer-Afternoon and Summer-Morning
datasets; at second floor, test were performed using Autumn-
Morning, Autumn-Afternoon, Winter-Afternoon, Spring-Morning,
Spring-Night, Winter-Morning and Summer-Night datasets.

We tested our approach on a Pioneer 3DX mobile robot
equipped with an onboard computer at 1.5 GHz, an omnidirec-
tional vision setup composed of a RemoteReality parabolic mirror
with a diameter of 74 mm, a UI-2230SE-C camera with a resolu-
tion of 1024× 768 pixels, and a URG-04LX LRF (Fig. 7(a)). The en-
vironmental conditions in which the dataset was collected can be
observed in Fig. 7(b), where each row corresponds to each floor
in Building PIV. From these omnidirectional images, it can be ob-
served that there are illumination changes and occlusions caused
by pedestrians, in this way ensuring real-world experimental con-
ditions.

The experiments conducted to test the FSHmodel were divided
in three parts: first, a static LRF in order to showhow the FSHmodel
works with range data, and how the appearance representation of
the environment is updated in the presence of dynamic objects
(Section 5.1); second, a set of qualitative results, such as filtering
dynamic objects, map quality, and map update over the localiza-
tion and mapping runs (Section 5.2); and third, in the absence of
ground-truth, quantitative results involve the measurement of the
SLAM performance using the average likelihood of the range scan
reading given the estimated robot position [18], and the LTM scan
model (Section 5.3). The mean pose error over the robot path sub-
sequently took into account all the mapping and localization runs,
which showed a bounded pose error despite the long-term runs,
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Fig. 6. Building PIV of the University of Girona. (a)–(b) Map, and graph of the ground floor. (c)–(d) Map, and graph of the first floor. (e)–(f) Map, and graph of the second
floor.
and the dynamism of the environment. Furthermore, to demon-
strate the system scalability, the mean number of LTM and STM
features by node over the localization and mapping runs was con-
sidered. The aim of this test is to show the performance of STM
pruning discussed in Section 3.2.2, and demonstrate that the FSH
model can deal with large environments and long periods of oper-
ation. Also, we measured the matching effort [14] over the local-
ization and mapping runs; in this work, the matching effort is the
mean percentage of LTM or STM matched features. This value is
compared to the full matching effort which is measured when the
FSH model is not considered.

5.1. Static Laser-based experiment

The static LRF-based experiment took place in a crowded corri-
dor in Building PIV of the University of Girona. Basically, our goal
is to test how the FSH model behaves in crowded environments,
extracting the most stable environment configuration despite of
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Fig. 7. (a) Pioneer 3DX robot and coordinate frames of the LRF and the omnidirectional camera. (b) Typical omnidirectional images taken from the collected dataset. Each
row corresponds to each floor in Building PIV.
pedestrian occlusion. The Pioneer 3DX robot acquired data over
30 min at lunch time. The robot surroundings were composed of
static objects (walls, doors and windows). During the data acqui-
sition the appearance of the environment was artificially changed
and many pedestrians were passing by. Fig. 8 shows the evolution
over time using the FSH model (Fig. 8(a)) and the LTM laser read-
ings (Fig. 8(b)), the lighter the color the less stable the laser reading.

Using the FSH model and Eq. (13), laser readings were
continuously classified as LTM or STM. Figs. 8(a) and 7(b) show
the time at which box No. 1 was placed modifying the appearance
of the environment. The FSH model starts assigning votes to
those laser readings belonging to box No. 1, though they are not
immediately classified as LTM until the laser reading votes are
high enough. When comparing Fig. 8(a) and (b), despite the fact
that the corridor selected is very crowded those spurious laser
readings corresponding to the dynamic obstacles do not appear in
the LTM lasermodel. In the end, only those environmental changes
considered stable by the FSH model were shown in the LTM laser
readings.

5.2. Qualitative results

In this section, three qualitative results are presented in order
to visually observe the behavior of the FSH model in different sit-
uations presented in our dataset such as: filtering dynamic objects
(pedestrians), which can cause erroneous robot position estima-
tions and spurious features (Section 5.2.1); the map quality over
the mapping and localization runs (each run considers changes in
illumination due different times of day and seasons), which gives
evidence about the FSH model stability over time (Section 5.2.2);
and the capability to update the learnt map when changes in the
environment have taken place, which are due to pedestrians and
changes in illumination causing erroneous position estimations
(Section 5.2.3).

5.2.1. Filtering dynamic objects
Dynamic objects cause basically two main problems:if they

are not handled properly, they introduce localization errors [11];
also, they cause spurious features in the map of the environment
carrying no information about the vehicle pose estimation [10].
Fig. 9 shows LRF readings and features of the map of the ground
level, particularly nodes 1 and 33 of the topological map which
are a busy area of Building PIV. The left column of Fig. 9(a) and
(b) shows the LRF readings and features without considering the
FSHmodel, and on the right side of Fig. 9 the LTMmodel of the LRF
readings and features is shown. In addition, Fig. 9(a) and (b) also
shows the vertical edge uncertainty ellipses as either STM or LTM
features, and Fig. 9(c) shows the environmental conditions.

Comparing the left side and right side of Fig. 9, not only are the
pedestrians filtered out as a result of applying the FSH model, but
the more stable laser readings persist showing a more accurate
representation of the environment. Also, it can be observed that
a spurious vertical edge was created when the pedestrians were
passing by (left side of Fig. 9(a)). Nonetheless, the LTM version of
themap does not show this spurious feature (right side of Fig. 9(a)).
This situation is repeated in Fig. 9(b), where a pedestrianwas found
on the robot right side (Fig. 9(c)). In this case, an STM vertical edge
feature was created, but it does not appear in the LTM model of
the environment because it has not enough strength to be part of
the LTM model of the environment. In addition, it is worth noting
that these spurious features could have caused registration errors
when the laser readings were processed, though the STM features
are not considered in the robot pose estimation, and thus do not
affect this process.

5.2.2. Map Quality over mapping and localization runs
SLAM solutions are not error-free. This causes erroneous fea-

ture position estimations and consequently, erroneous robot po-
sition estimations, which in turn cause LRF scan alignment errors.
In long-term mapping and localization runs, this situation could
probably make the filter diverge [15]. Therefore, an important re-
sult is that the FSH map model of the environment is stable over
time. Fig. 10 shows only 3 (10(a), (b), and (c)) of the 7 mapping
and localization runs performed at node 31 of the second floor. The
STM and LTM map model are shown on the left and right side of
Fig. 10(a)–(c), respectively. In addition, the omnidirectional images
shown in Fig. 10(d) describe the changing environmental condi-
tions, which basically are two such as: changes in illumination and
occlusion by pedestrians.

Fig. 10(a)–(c) shows the clear evidence of the difference be-
tween STM and LTM features. This can be observed by comparing
the uncertainty ellipses drawn on the 2D plane of the laser scan.
At the end of the mapping and localization runs, the more stable
vertical edges are shown, and they are consistent with the ap-
pearance of the environment. Fig. 10(d) depicts the change in the
illumination conditions and the moving obstacles. These environ-
mental conditions cause most STM features shown on the left side
of Fig. 9(a)–(c). Nevertheless, these features are not present in the
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Fig. 8. Static LRF-based experiment. (a) FSH model evolution over time. (b) LTM laser readings evolution over time.
LTM map of the environment. It is worth noting that the straight-
ness of the walls remains consistent despite performing various
mapping and localization runs, since only LTM features and LTM
laser scans were considered in the robot pose estimation and map
representation respectively.

5.2.3. Map update over the mapping and localization runs
Another important result is the capability to update the learned

map [16]. In common indoor environments, doors are opened
and closed, the furniture is moved and structural changes in
the environment are made. In these situations, erroneous robot
position estimations occur and it is desirable to update the map
accordingly. The FSHmodel proposed in thiswork embeds themap
update capability into the LTMmap version. As a result, the current
stable configuration of the environment is learnt over time.

Fig. 11 shows the LTMmap at node 5 of the ground floor over 4
mapping and localization runs (Fig. 11(a) of run 1, Fig. 11(b) of run
3, Fig. 11(c) of run 5 and Fig. 11(d) of run 7). Here, it can be observed
how the LTM map is continuously modified in order to take into
account the state of the door (open/closed). At the beginning this
door was closed, but further mapping and localization runs show
that the new state of the door is properly updated. In [18] various
time constants are considered to hold different environment con-
figurations, then the current observations are matched with these
different versions of the environment, and the map version se-
lected is the one which better explains the current measurements.
In this work, the FSH model holds one model of the environment
namely the LTM map, which embeds the more stable appearance
of the environment. This can be observed in Fig. 11(b), where the
LTMmap shows the state of the door (open/closed). However, this
happens temporarilywhile the LTMmap is updated properly, since
it is worth recalling that LRF observations are classified between
LTM/STM without considering a weight based voting schema, this
means that only for LRF readings, inconsistencies as depicted in
Fig. 11(b) temporarily happen. However, it can be solved using hor-
izontal lines estimated from raw LRF readings because in this case
uncertainty could be measured and used for LTM/STM classifica-
tion.

Observing Fig. 11(b), in the worst case an object might block
half of a hallway and stay there over a considerable period of time,
the this object will part of the LTMmap. Afterwards, next time the
robot re-visits this hallway the object is placed blocking the other
half. In this situation, there is a map discrepancy since the corridor
appears blocked, therefore the robot could not plan any trajectory
along the hallway. Last situation could be solved considering hor-
izontal lines extracted from raw LRF readings to improve the en-
vironment model as mentioned above. However, the scope of our
work does not consider these extreme situations, and for this rea-
sonwemention in conclusions section particularly in future works
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Fig. 9. Filtering dynamic objects. STM (left column) and LTM (right column) features of node 1 (a) and 33 (b) of the ground floor. The environmental conditions are shown
in (c).
that better landmark ratingmethods are needed to resolve tempo-
ral map inconsistencies.

Fig. 12 shows the LTM map at node 27 of the ground floor over
4 mapping and localization runs. In this figure a case of map re-
pair is presented. Node 27 on the ground floor is a busy entrance
of Building PIV, and in addition the large windows provide consid-
erable illumination changes (see Fig. 12(e)). As a result, the proba-
bilities of making an error in the robot pose estimation increases.
This can be observed in the second map update (Fig. 12(b)), where
thewall appears at different positions with respect to the first map
update (Fig. 12(a)). Furthermapping and localization runs rehearse
the last hypothesis on the LTM map. For this reason the last map-
ping and localization run shows the wall in the new position and
removes the previous hypothesis. Fig. 12(e) shows four omnidirec-
tional images, each one corresponding to each mapping and local-
ization run. As can be observed, the big window on the right and
the pedestrians passing by cause significant changes in the appear-
ance of the environment. These changes have a negative effect in
the ground floor map, though when using the FSH model is used
throughout the mapping and localization runs, the current stable
hypothesis remains.

5.3. Quantitative results

In this section, quantitative results are presented. Measuring
the real performance of SLAM solutions requires ground-truth
data, which in most cases are hard to obtain. It is even harder to
obtain in dynamic environments. In thiswork, a set of performance
measures were selected and the results obtained over all the
mapping and localization runs. They considered changes in illu-
mination due different times of day and seasons, occlusion by



1552 B. Bacca et al. / Robotics and Autonomous Systems 61 (2013) 1539–1558
Fig. 10. Map quality over the localization and mapping runs of node 31 on the second floor. (a) Localization and mapping run 1. (b) Localization and mapping run 4.
(c) Localization and mapping run 7. (d) Omnidirectional images corresponding to (a)–(c).
pedestrians and structural changes in the environment. Those
performance measures are as follows:
1. the average laser scan likelihood over the mapping and local-
ization runs given the robot position estimations and current
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Fig. 11. Map update over the mapping and localization runs. LTM map at node 5 of the ground floor over 4 mapping and localization runs. From top to bottom and left to
right: mapping and localization runs 1, 3, 5 and 7.
LTM map. This likelihood is computed using the Hausdorff
fraction [38], which is a metric used to measure the distance
between two sets of points. Our goal is to measure of how
expected the current laser scan is, given the LTM map. It is
worth noting that the current laser scan is registered at the cur-
rent robot position.

2. the mean pose error along the robot trajectory and over the
mapping and localization runs. Here, we used the G2O frame-
work [47] in order to obtain a batch optimization of each map-
ping and localization run as the ground-truth map.

3. the mean number of LTM, STM and deleted features by node
over the mapping and localization runs can provide evidence
for the scalability of this work.

4. the mean matching effort over the mapping and localization
runs when the FSH model is used (LTM and STM features), and
when it is not.

5.3.1. Scan-likelihood over the mapping and localization runs
Fig. 13 shows the mean laser scan likelihood for the ground

floor (12(a)), the first floor (12(b)) and the second floor maps
(12(c)) over the mapping and localization runs. In all cases, it
can be observed that the more mapping and localization runs
performed, the higher the scan likelihood when the FSH model is
used. The scan likelihood depicted in Fig. 13 is a measure of the
localization accuracy given the computed LTM features. The initial
scan likelihood in all cases is quite good: 71.31% and 69.73% for
the map on the ground and second floor respectively. However,
the scan likelihood increases as more mapping and localization
runs are performed, meaning that the localization accuracy also
increases when the FSH model is used.

The reason for this is because the Hausdorff fraction that
directly depends on the number of closest points between two
point clouds. To perform this calculation the Hausdorff fraction
is based on the nearest neighbor criteria. However, the Hausdorff
fraction depends inversely on the number of points in the reference
cloud of points. In our case, this is the LTM model. Therefore, it
is expected that this measure increases over successive mapping
runs because, in first place, the LTM model of the environment
contains more information to match with the current laser scan;
and in second place, since the LTM model is used for SLAM
the average likelihood of laser scans is a measure of how the
localization accuracy is improved over time.

The impact of dynamic changes in the environment is shown
in Fig. 13. In this figure, it can be observed an increment of the
measure uncertainty in themapping and localization run number 5
at the ground floor, in themapping and localization runs 3–7 of the
first floor and in the mapping and localization run 5 of the second
floor. Then, dynamic changes in the environment cause a reduction
in the average likelihood of the laser scans.

The highest variation in the scan likelihood uncertainty is
present in Fig. 13(b), which corresponds to the first floor map.
Here, the SLAMalgorithm, in conjunctionwith the FSHmodel, faces
a great challenge. Observing Fig. 6(d), node 6 on the first floor
map has not enough features, and it covers a space of about 6 m,
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Fig. 12. Map update over the mapping and localization runs. LTM map at node 27 of the ground floor over 4 mapping and localization runs. From top to bottom and left to
right: mapping and localization runs 1, 3, 5 and 7.
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Fig. 13. Mean scan likelihood over the mapping and localization runs. (a) Ground
floor. (b) First floor. (c) Second floor.

which is greater than the LRF maximum range (4 m). In addition,
the first level is traversed by many pedestrians. Even though the
SLAM algorithm presented slight divergences over the mapping
and localization runs, theywere not catastrophic enough to get the
robot lost.

It is worth noting that, the increasingly improved behavior of
the scan likelihood over the mapping and localization runs means
that the localization algorithm behaves well using the persistent
configuration of the environment. In addition, the LTM map of
the environment (including vertical edge features and laser scans)
is changed properly as the configuration of the environment is
modified over time.

5.3.2. Mean pose error along the robot trajectory
Fig. 14 shows the mean pose (XY and heading) error along the

robot trajectory for the ground (Fig. 14(a) and (b)), first (Fig. 14(c)
and (d)), and second floor (Fig. 14(e) and (f)). The procedure to
obtain the pose error was as follows: first, only one robot trajec-
tory was considered. This trajectory corresponds to the first map-
ping and localization run. Second, this trajectory was evaluated
(i.e. only the robot localization was considered) using all other
maps corresponding to the seven mapping and localization runs.
Third, in order to obtain the ground truth data, we used the G2O
framework [47]. This algorithm provides a solution for batch opti-
mization of graph-basednon-linear error functions.We introduced
the first robot trajectory of each experiment as a graph, including
nodes, edges and constraints. The first mapping and localization
run of each experiment was carefully selected for ground-truth es-
timation purposes. The output of the algorithm is an estimate of
the robot trajectory obtained after a non-linear minimization us-
ing a Levenberg–Marquardt algorithm. Finally, using this output
we were able to extract the X–Y and heading error of the robot
along its path as depicted in Fig. 14. The aim of this test is to show
the robot mean pose error behaves well despite of changing illu-
mination conditions, dealing with dynamic objects and occlusions.
a

b

c

d

e

Fig. 14. Mean pose error along the robot trajectory. (a)–(b) XY and heading error
for the ground floor. (c)–(d) XY and heading error for the first floor. (e)–(f) XY and
heading error for the second floor.

In general, comparing with the first mapping and localization
run, the XY and heading error graphs depicted in Fig. 14 decrease
as more are performed. This can be directly observed in those
figures corresponding to the ground and second floor. It is worth
noting that the rise and fall of the XY and heading error graphs
depend on the environmental conditions, which include situations
such as pedestrians passing by at some particular node in the
map, changes in illumination (time of day or season), occlusions,
and changes in furniture location. Nevertheless, whatever the
changes, a decreasing behavior was evident, which followed
the peak in error graph. Fig. 13(c) and (d) shows the XY and
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Fig. 15. Mean LTM, STM and deleted number of features by node over themapping
and localization runs. (a) Ground floor. (b) First floor. (c) Second floor.

heading error corresponding to the first floor, which is a very
busy floor and where the SLAM algorithm used encountered
more difficulties due the lack of availability of features over 6 m
(exceeding the maximum range of the LRF—4 m). However, since
the FastSLAM algorithm performs a non-Gaussian joint posterior
distributionmodeling of the robot pose, and designates the feature
classification performed by the FSH model as either LTM or STM,
the slight divergences were not catastrophic. This situation can be
also observed in Fig. 14(b), where the scan likelihood uncertainty
is greater than the scan likelihood uncertainty in Fig. 12(a) and (c).

5.3.3. Scalability
An important motivation behind this work is to deal with large

environments and long-term navigation. Thus, the mean number
of LTM, STM, and deleted features per node provide evidence for
the scalability of this work. Fig. 15 shows the evolution of the
number of LTM, STM, and deleted features by node as the mapping
and localization runs increase. The diamond points correspond to
the evolution of the number of LTM features, the circle points
are the evolution of the number of STM features, and the square
points are the evolution of the number of STM deleted features.
The dashed curves show their uncertainties.

Observing the evolution of LTM and STM features in these
figures, there is a clear tendency for LTM features to remain almost
constant. To start with, the number of LTM features is greater than
the number of LTM features in the other mapping and localization
runs. An explanation of this behavior is that at the very beginning
most of the features are considered to be LTM, however as more
mapping and localization runs are performed the number of LTM
features tends to decrease, because the more stable vertical edges
are identified. On the other hand, as expected, the number of STM
features is greater than LTM features, but thanks to the pruning
method discussed in Section 3.2.2.2 the number of STM features
does not increase boundlessly.

5.3.4. Matching effort
Classifying the environmental features as STM or LTM has an-

other interesting result it reduces the mean matching effort in
comparison with the full matching effort. In this work, the match-
ing effort is the mean percentage of LTM or STMmatched features
over the mapping and localization runs. Fig. 16 shows the mean
matching effort for the map on the ground, first, and second floor
over the mapping and localization runs when the FSH model was
used and when it was not. In this figure, diamond points corre-
spond to the LTM matching effort over the mapping and localiza-
tion runs, square points are the STM matching effort, and circle
points are the full matching effort (without using the FSH model).

Observing Fig. 16, the LTM matching effort is greater than the
STM matching effort because the more stable the (LTM) features
the more likely they are to be found compared with STM features.
This result, in conjunction with the scan likelihood depicted in
Fig. 13, shows evidence that the FSH model proposed in this
work updates the map of the environment in accordance with the
changes that have taken place on it, and it also shows that the FSH
model includes these changes to increase the localization accuracy.

The full matching effort was measured without using the FSH
model, that is, it means using all the features available, without
classifying them as STM or LTM, and without pruning the useless
or old STM features. Fig. 15(a)–(c) show the full matching effort
is greater than the LTM and STM matching effort. As a result,
reducing the number of matching candidates also reduces the data
association effort for long-term runs, and increases the robustness
in dynamic environments reducing the effect of outliers.

6. Conclusions

This paper presented a more complete Feature Stability His-
togram model, one able to be used with current SLAM methods,
and thanks to the feature classification and removal methods pro-
posed it can deal with long-term mapping and localization runs
in dynamic environments. Further to our previously published re-
sults [7], this paper integrates the FSHmodelwith the FastSLAMal-
gorithm and it presents a wide experimental analysis in long-term
mapping and localization experiments using an indoor dataset cap-
tured over one year at different time of day and seasons of the
year. In addition, the environment appearance was modeled using
vertical edges and their positions were estimated from the sensor
model proposed in [42].

The FSH model is an innovative feature management approach
that is inspired by the human memory model [22], implementing
concepts such as LTM and STM as mechanisms to classify features
as either stable or non-stable, and removing useless and old fea-
tures, avoiding in this way the ever-increasing number of features
that would cause problems in long-termmapping and localization
runs. The proposed feature classification method as LTM or STM
is based on the k-means algorithm and takes advantage of feature
strength. Furthermore, using this clustering algorithm, weak and
old STM features were detected and deleted by considering the
normalized feature time stamp.
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Fig. 16. Matching effort over themapping and localization runswith the FSHmodel
and without the FSH model. (a) Ground floor. (b) First floor. (c) Second floor.

The FSH model proposed in this paper implements these two
ideas to deal with long-term mapping and localization in dynamic
environments. As a result, qualitative and quantitative resultswere
achieved. Qualitative results include, first, the dynamic objects as
pedestrians passing by were filtered out, avoiding robot position
estimation errors, and then reducing laser alignment errors, which
tend to generate thick and blurred walls. Dynamic objects also
cause spurious features, though they were filtered out and they do
not appear in the LTM map which was used for robot localization.
Second, the map quality increases over time, as, the more stable
features are continuously rehearsed and themore stable changes in
the environment are integrated into the LTMmap. The more map-
ping and localization runs performed, the more consistent the ver-
tical edges with the appearance of the environment when the FSH
model is used. Finally, updating the map in accordance with the
changes observed in the environment was also demonstrated. The
LTM map of the environment embeds the changes in the environ-
ment, which means that not only is the configuration of the envi-
ronment learned, but corrections in the map of the environment
were also performed.

In the absence of ground-truth, four performance measures
were carried out: first, the laser scan likelihood over the mapping
and localization runs has shown an increasingly improved behav-
ior, meaning that the localization accuracy also increased when
the FSH model is used. In addition, as the environment changes,
the LTMmap of the environment changes accordingly. Second, the
mean pose error along the robot trajectory has shown how the XY
and heading error evolves over the robot path and the mapping
and localization runs. In general, the more mapping and localiza-
tion runs performed, the less the error poses. However, depending
on the environmental conditions error peaks were present but fol-
lowed by a fall in the error graph. Third, the mean number of LTM,
STM and deleted features by node provide evidence for the scala-
bility of this work. In this way, the results reported here show that
the FSH model integrated in a SLAM solution deals well with large
environments because LTM featureswere only used for robotmap-
ping and localization, and useless or old STM features were deleted
properly. Finally, the LTM, STM, and full matching efforts provide
evidence of reducing the effect of outliers. Also, taking into account
the scan likelihood results, the localization accuracy is increased
when the FSHmodel was used, because it incorporates the current
stable changes of the environment into the LTM map.

As for future work, better landmark rating methods are needed
because the feature covariance suffers from the well-known dis-
advantage of obtaining an overconfident uncertainty as the map is
continuously updated. It would be interesting to fuse feature visual
appearance and its metric information. The experiments reported
here and in our previous published results [7] correspond to indoor
environments, so conducting outdoor experimentswould be an in-
teresting option to evaluate the FSH model. However, this could
be difficult because of the lack of availability of long-term outdoor
datasets. Another interesting question is related with knowing the
feature pruning decision is right or wrong, and what are the con-
sequences of wrong feature pruning on map consistency or robot
pose.

In conclusion, the main advantage of the proposed FSH model
is the manner in which it incorporates changes and extracts fea-
tures from the environment configuration, incrementally increas-
ing map quality. This result arises from the fact that rating map
landmarks allows them to be classified as STM or LTM in the con-
text of the modified human memory model [7,22]. As a result, the
localization accuracy is increased in further mapping and localiza-
tion runs, and the data association effort is reduced thanks to the
map landmark classification approach into STM and LTM, and the
pruning method described in this paper. Therefore, integrating the
proposed FSHmodel into a SLAMmethod improves its behavior in
long-term navigation.
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