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Abstract— This paper considers the application of feature-
based simultaneous localisation and mapping (SLAM) using
a random finite sets (RFS) framework for an autonomous
underwater vehicle. SLAM allows for reduction in localisation
error by tracking features which provide a fixed external
reference. The SLAM problem is addressed here using a single-
cluster probability hypothesis density (PHD) filter. The filter
uses a particle approximation for the vehicle position with a
conditional Gaussian mixture PHD for the feature map. Map
features are selected as unique point features generated from
a stereo camera on-board the vehicle. We demonstrate the
improvement in localisation applying the algorithm to a dataset
obtained in an indoor test tank.

I. INTRODUCTION

Navigation and localisation of underwater vehicles is difficult
in the absence of measurements with respect to a fixed
reference. Using only dead reckoning results in cumulative
localisation error in the estimated position. This is an issue
in cases where persistent autonomy is required, a key issue
to be addressed by the PANDORA European FP7 project [1].

One of the main aims of the PANDORA project is to move
toward persistent autonomy for intervention autonomous
underwater vehicles (AUVs). This requires that the vehicle
maintains a map of its environment and is able to localise
itself accurately within that map. The use of simultaneous
localisation and mapping (SLAM) provides a way to achieve
this dual aim.

Early approaches to the SLAM problem involved using the
extended Kalman filter (EKF) to address this as a joint state
estimation problem, coupling the positions of the vehicle
and landmarks detected in the environment [2], [3]. Several
advances resulted in the development of unscented Kalman
filter (UKF) SLAM [4] as well as particle-based FastSLAM
algorithms [5], [6] over the last decade.

This work has been supported by the FP7-ICT-2011-7 project
PANDORA-Persistent Autonomy through Learning, Adaptation, Observa-
tion and Re-planning (Ref 288273) funded by the European Commission
and the Spanish Project ANDREA/RAIMON (Ref CTM2011-29691-C02-
02) funded by the Ministry of Science and Innovation.

All these approaches, however, rely on some form of data
association, i.e., features which are detected by the sensor
must be associated with a particular landmark in the state
using some heuristic. Accurate data association can be prob-
lematic in situations with high clutter, or false positives.
This provides the motivation behind a new approach to the
SLAM problem which relies on a random finite set (RFS)
formulation.

RFSs provide a means of characterising the uncertainty in the
number of states and measurements. This allows them to be
used in cases where detection of features in the environment
is unreliable and prone to false positives. The probability
hypothesis density (PHD) filter [7], [8] provides a suboptimal
multi-object estimation framework. By using RFSs, the PHD
filter provides a principled approximation to a multi-object
posterior. The filter avoids the need for data association and
is able to perform well in highly cluttered environments.

Recent work by Mullane et al. [9]–[11] as well as Lee, Clark
& Salvi [12], [13] has shown that the PHD filter can be
extended to deal with SLAM scenarios. In this work, we
apply the single-cluster PHD (SC-PHD) filter [12]–[14] to
solve the SLAM problem in an underwater setup which uses
a stereo camera to detect landmarks. Detection of features
from the environment is affected by both lighting conditions,
as well as inaccuracies in the camera calibration. The result
is that the detected set of features is well represented using an
RFS and the SC-PHD filter provides a suitable framework.

In the next section, we summarise the formulation of the
SC-PHD filter. In Section III, we discuss the model for the
vehicle as well as the specific implementation of the Kalman
filter for dead reckoning and the SC-PHD filter for the
SLAM. Section IV presents the experiments and results, with
conclusions and directions for further work being presented
in Section V.

II. SINGLE CLUSTER PHD SLAM

In this section, we provide an overview of the PHD filter and
its application to the SLAM problem. The reader is referred
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to the work of Mullane et al. [9], [10] and Lee, Clark &
Salvi [12], [13] for an in-depth treatment of the PHD-based
SLAM methods. Additionally, the reader is referred to the
works of Mahler, B.-N. Vo, B.-T. Vo, Ristic and Clark [7],
[15]–[21] for further information on PHD filters.

The PHD filter provides a means of multi-object estimation
by approximating the Bayes multi-object filter [7], [8], [18].
The PHD filter achieves this by representing the multi-
object state and observations (including false positives) using
RFSs. In any multi-object estimation problem, both the
number of target states as well as their individual values
are unknown and must be estimated. RFSs provide a natural
means of capturing the uncertainty in the number of targets
(or cardinality) as well as the spatial uncertainty.

In addressing the SLAM problem, map features in the
environment can be conveniently represented using a RFS. In
this case, the number of map features and their positions are
a priori known. Additionally, sensor measurements are prone
to false positives which must be accounted for by the filter.
The PHD filter provides a principled framework for dealing
with these uncertainties. The PHD filter achieves this while
removing the need for data association, resulting in improved
performance when dealing with high-clutter environments.

Formally, we represent the multi-object state at time k as

Xk = {xk,1, . . . ,xk,mk
} ∈ F(X ), (1)

with each state xk,l taking a value in the state space X . In
the SLAM context, these states may represent the position of
different landmarks in the map. The observations are given
by

Zk = {zk,1, . . . , zk,nk
} ∈ F(Z), (2)

with the state space for each observation given by Z . This
observation set is the union of observations arising from
targets as well as observations due to clutter (false positives).

The Bayes multi-target filter can be used to estimate the pos-
terior distribution on the multi-target state Xk, pk|k(X|Z1:k),
given a sequence of observations up to time k, Z1:k. The
Bayes recursion is given by the combination of a one-step
prediction and update:

pk|k−1(X|Z1:k−1) =

∫
pk−1|k−1(X|Zk−1)fk|k−1(X|Y)δY,

(3)

pk|k(X|Z1:k) =
pk|k−1(X|Z1:k−1)gk(Zk|X)∫
pk|k−1(X|Z1:k−1)gk(Zk|X)δX

,

(4)

where fk|k−1(X|Y) represents the multi-target transition
density, gk(Z|X) is the multi-target likelihood function,
and the integrals in the prediction and update represent set
integrals [7], [8].

The intractability of the full Bayes recursion when dealing
with a large number of targets and clutter leads us to the

PHD filter. The PHD filter approximates the true multi-
target distribution on the single-target state space using the
intensity function, also referred to as the PHD. Analogous
to moments of probability distributions, the PHD is the
first-order moment of the multi-target distribution. Since
the intensity function exists on the single-target state space,
peaks in the intensity function indicate regions with higher
likelihood of targets. Computing the integral of the intensity
function provides an estimate of the number of targets
present. In this manner, the PHD filter allows us to estimate
both the number of targets as well as their positions.

In the SLAM problem, the state consists of both the vehicle
pose as well as the map landmarks. This joint state can
be modelled as a single cluster process, where the vehicle
pose comprises the parent state and the map is a conditional
daughter process. The joint state can be estimated using
the SC-PHD filter [12]–[14]. The parent state (vehicle) is
denoted by the random vector xk and the associated daughter
state (map) is given by the RFS Mk:

xk = [xk,1, . . . , xk,nx
], (5)

Mk = [mk,1, . . . ,mk,mk
], (6)

where mk,l denotes a single feature in the map.

We now reproduce the expressions for the prediction and
update of the single-cluster PHD (SC-PHD) filter [12]–[14].
The intensity function on the joint parent-daughter state is
denoted as Dk−1(x,m), which can be factored as [12]

Dk−1(x,m) = Dk−1(x)×Dk−1(m|x), (7)

where Dk−1(x) is the intensity function of the vehicle state
and Dk−1(m|x) is the intensity function of the conditional
map states.

The predicted intensity function is given by

Dk|k−1(x,m) =

∫
Dk|k−1(x) p(x|xk−1)

Dk|k−1(m|xk−1)dxk−1 (8)

where p(x|xk−1) is the Markov transition density for the par-
ent process and Dk|k−1(m|xk−1) is the predicted intensity
function for the conditional daughter process. The prediction
for the daughter process is given by

Dk|k−1(m|xk−1) = γk|k−1(m|xk−1)+∫
Dk−1(m|xk−1)pS(m|xk−1)pk|k−1(m|mk−1,xk−1)dmk−1

(9)

where γk|k−1(m|xk−1) represents a birth process,
pS(m|xk−1) is the probability of survival and
pk|k−1(m|mk−1,xk−1) is the (single-target) Markov
transition for map feature states. The birth process γk|k−1

is used to initialise new targets as they appear in the sensor
field of view and the probability of survival is used to model
the death of targets.



Here, we assume the probability of survival to be 1, and
the Markov transition density to be the identity matrix. This
implies that landmarks which are currently in the map are
expected to continue to exist. However, when not supported
by the observations, the intensity function (subsequent to the
filter update) will reflect the absence of previously confirmed
landmarks.

On receiving a set of observations Zk, the factorised updated
intensity function is obtained as [12], [14]

Dk(x) =
LZk

(x)Dk|k−1(x)∫
LZk

(x)Dk|k−1(x)dx
, (10)

Dk(m|x) = (1− pD(m|x))Dk|k−1(m|x)+∑
z∈Zk

pD(m|x)Dk|k−1(m|x)gk(z|m,x)

κk(z) +
∫
pD(m|x)Dk|k−1(m|x)gk(z|m,x)dm

,

(11)

where LZk
(x) is a multi-object measurement likelihood,

pD(m|x) is the probability of detection of the daughter
state (map feature) conditioned on the parent state (vehi-
cle position), gk(z|m,x) is the conditional single object
measurement likelihood function, and κk(z) is the clutter
intensity. The multi-object measurement likelihood LZk

(x)
is given by

LZk
(x) = exp

(
−
∫
pD(m|x)Dk|k−1(m|x)dm

)
×∏

z∈Zk

(
κk(z) +

∫
pD(m|x)Dk|k−1(m|x)gk(z|m,x)dm

)
.

(12)

The clutter intensity function κk(z) is assumed to have a
Poisson distribution on the number of points such that

κk(z) = λcp(z) (13)

where λc is the mean of the cardinality distribution and p(z)
is the spatial distribution of the clutter.

III. APPLICATION TO UNDERWATER ROBOTICS

In this paper, we consider application of the SC-PHD
SLAM algorithm to an underwater scenario using the
Girona 500 AUV. The Girona 500 AUV (Fig. 1) is an under-
water robotic vehicle developed by the Research Centre in
Underwater Robotics (CIRS) at the University of Girona. The
vehicle utilises a triple-hull design which provides significant
stability in roll and pitch. In the configuration used here, the
vehicle is equipped with 5 thrusters providing 4 degrees of
freedom (DoF) – translation in x, y, z and rotation in the yaw
angle. Maximum operational depth is rated at 500 m.

The vehicle is equipped with a variety of sensors for nav-
igation and mapping. An inertial measurement unit (IMU)
provides vehicle orientation and angular velocity; velocity
and depth are measured using a Doppler velocity log (DVL)

Fig. 1. The Girona 500 AUV in the test tank a the stereo camera viewing
the poster.

and depth sensor respectively. A global positioning system
(GPS) provides vehicle position at the surface and is not used
in the experiments here. In addition to this, the vehicle is
equipped with a downward looking calibrated stereo camera
for surveying and mapping of the sea-floor.

The vehicle is teleoperated within a test tank measuring
16 m×8 m×5 m. The floor of the tank is fitted with a known
pattern created from a sea-floor mosaic. The camera is used
to detect features from this pattern for use with SLAM.
Images from the camera are also compared against the
known pattern to estimate the ground-truth trajectory of the
vehicle. In the next section, we describe the motion and
observation model used by the vehicle. This is followed by
a description of the implementation of the SLAM algorithm,
feature detection method and the experimental results.

A. Motion Model

The vehicle state consists of the position and linear velocities
at time tk given by

xk = [xk, yk, zk, ẋk, ẏk, żk]T . (14)

Vehicle orientation and angular velocity [φ, θ, ψ, φ̇, θ̇, ψ̇] are
measured by an IMU and not estimated.

Using a constant velocity model, the predicted state at time
k is given by

xk|k−1 = f(xk−1,uk,∆t) + vk, (15)

where f(xk−1,uk,∆t) is the prediction function, uk =
[φk, θk, ψk] is the control input comprising the vehicle ori-
entation, ∆t = tk− tk−1 and vk ∼ N (0,Σv) is a zero mean
white Gaussian process noise. For the model used here, the



prediction function is given by

f(xk,uk,∆t) =



 xk
yk
zk

+ Rk(φk, θk, ψk)∆t

 ẋk
ẏk
żk


ẋk
ẏk
żk

 ,
(16)

where Rk(φk, θk, ψk) denotes the 3× 3 rotation matrix.

Sensor observations received from the DVL and IMU are
transformed to the vehicle coordinate system. In the vehicle’s
reference frame, the DVL measurements consist of velocities
along the three axes zk,ν = [ẋk,ν , ẏk,ν , żk,ν ]. For a given
state, the observation equation is given by

zk,ν = Hk,νxk|k + wk,ν , (17)

Hk,ν =
[
03×3 I3

]
, (18)

where 0p×q represents a p × q zero matrix, Ip is the p × p
identity matrix and wk,ν ∼ N (0,Σν) is zero mean white
Gaussian noise associated with the DVL measurement.

Observations from the depth sensor are used to update
the vehicle depth. The observation equation for the depth
measurement zk,d is given by

zk,d = Hk,dxk + wk,d, (19)
Hk,d = [0 0 1 0 0 0], (20)

where wk,d ∼ N (0,Σd) is zero mean white Gaussian noise
associated with the depth measurement.

B. Localisation using the EKF

In the absense of SLAM, vehicle localisation is performed
using the above model and an extended Kalman filter (EKF).
The EKF estimates the filtered distribution of the vehicle
state as a Gaussian distribution with mean and covariance
given by (xk,Pk). The predicted mean and covariance are
given by

xk|k−1 = f(xk,uk,∆t), (21)

Pk|k−1 = Fk−1Pk−1F
T
k−1 + Σv, (22)

where Fk−1 is the Jacobian of the prediction function
(equation (16)).

For a given observation zk, the updated mean and covariance
of the distribution are given by

xk = xk|k−1 + Kkŷk, (23)
Pk = (I−KkHk)Pk|k−1, (24)

where Kk represents the Kalman filter gain, and

Sk = HkPk|k−1H
T
k + Σw, (25)

Kk = Pk|k−1H
T
k S
−1, (26)

ŷk = zk,ν −Hkxk|k−1, (27)

with Hk = Hk,ν , Σw = Σν for DVL measurements and
Hk = Hk,d, Σw = Σd for depth measurements. These
prediction and update equations are used to estimate the
position of the vehicle.

The sensor observations comprise velocity measurements
from the DVL with the result that the uncertainty on the
vehicle position is unbounded. In the next section, we illus-
trate how measurements corresponding to static landmarks in
the environment are used to improve the vehicle localisation.

C. Single Cluster PHD SLAM

The vehicle position estimated by the EKF can be improved
by using a SLAM framework. To implement the SC-PHD
filter, we use a particle representation for the vehicle position
and a Gaussian mixture (GM) representation for the per-
particle feature map. This follows a similar implementation
to that derived by Lee et al. [12]. A Rao-Blackwellised
particle filter (RBPF) is used to estimate the vehicle state
with the Kalman filter used to estimate the velocity and a
particle representation for the vehicle position and heading.
Here, we include the heading angle in the state space since
we are able to correct erroneous heading angles obtained
using a magnetic compass. The vehicle state is then com-
posed of xk = {µk, µ̇k} where µk = [xk, yk, zk, ψk]
represents the position and heading of the vehicle, and µ̇k =
[ẋk, ẏk, żk] represents the velocities. The intensity function
on the vehicle state is approximated using a set of weighted
particles {(µ(i)

k , µ̇
(i)
k ,Σ

(i)
k ), w

(i)
k } as

Dk(x) =
N∑
n=1

w
(n)
k δ

x
(n)

k

(x). (28)

Associated with the ith particle is a representation of
the map features given by a weighted Gaussian mix-
ture with N

(i)
k,m weights, means and covariances, given by

{w(j|i)
k,m ,m

(j|i)
k ,P

(j|i)
k }, j ∈ {1, . . . , N (i)

k,m}:

Dk(m|x(i)) =

Nk,m∑
j=1

w
(j|i)
k,mN (m

(j|i)
k ,P

(j|i)
k ), (29)

where j|i indicates the conditioning of the map state on the
parent state, and the subscript m is used to refer to the map
landmarks.

1) Prediction: The predicted intensity function for the
vehicle state at time k is obtained by sampling from
the Markov transition given by equation (15) with f =

f([x
(i)
k−1, y

(i)
k−1, z

(i)
k−1], [φk, θk, ψ

(i)
k ],∆t).

The predicted intensity function for the daughter process is
used to predict the state of the map as well as add new
landmarks to the map. In this paper, we deal with static
landmarks; the predicted map weights and states which exist
at time k − 1 are thus unchanged at time k. The prediction
step is used to initialise new landmarks in the map. A



good choice is to follow the strategy of Ristic et. al. [21]
which initialises new targets in regions corresponding to the
observations. It should be noted that adopting this approach
results in a slightly different form of the PHD update given
by equation (11). The birth function is conditioned on the
parent process and, for the ith parent, is given by

γk|k−1(m|x(i)
k|k−1) =

Nk,b∑
j=1

w
(j|i)
k,b N (m

(j|i)
k,b ,P

(j|i)
k,b ). (30)

The formulation of the birth function is described in greater
detail in Section III-D. The predicted intensity function
for the daughter process is then the union of the current
landmarks and those introduced through the birth process:

Dk|k−1(m|x(i)
k|k−1) =w

(j|i)
k|k−1,mN (m

(j|i)
k|k−1,m,P

(j|i)
k|k−1,m)+

Nk,b∑
j=1

w
(j|i)
k,b N (m

(j|i)
k,b ,P

(j|i)
k,b ), (31)

with

w
(j|i)
k|k−1,m = w

(j|i)
k−1,m, (32)

m
(j|i)
k|k−1,m = m

(j|i)
k−1,m, (33)

P
(j|i)
k|k−1,m = P

(j|i)
k−1,m. (34)

The prediction takes this formulation since the probability of
survival pS is 1, the Markov transition is the identity matrix
and there is no process noise.

2) DVL and Depth Sensor Updates: Updates occur when
either DVL or depth measurements are received. The obser-
vation function for the DVL velocities is linear and Gaussian.
We thus estimate the velocity state using the Kalman filter
with mean and covariance given by (µ̇

(i)
k ,Σ

(i)
k ). For obser-

vations from the DVL zk,ν , we estimate the vehicle state
as

pk(µk, µ̇k|zk,ν) = p(µ̇k|zk,ν ,µk)p(µk|Zk,ν) (35)

where the distribution p(µ̇k|zk,ν ,xk) is estimated using
the Kalman filter equations (equations 21–27). The updated
weights are then obtained as

ŵ
(i)
k = w

(i)
k−1N (zk,ν ;Hkµ

(i)
k ,S

(i)
k ), (36)

w
(i)
k =

ŵ
(i)
k∑N

j=1 ŵ
(j)
k

, (37)

S
(i)
k = HkΣ

(i)
k|k−1H

T
k + Σν . (38)

Updates from the depth sensor take the form of a standard
particle filter update with the likelihood function given by

ŵ
(i)
k = w

(i)
k−1p(zk,d|x

(i)
k ) (39)

p(zk,d|x(i)
k ) = N (zk,d; z

(i)
k ,Σd). (40)

3) Landmark Updates: On receiving a set of landmarks, the
SC-PHD update is applied. The set of observed landmarks
Zk,m are used to correct the position of the vehicle using
equation (11). The update for the daughter process is condi-
tioned on the parent state, but is otherwise identical to the
standard Gaussian mixture PHD update. The predicted inten-
sity function is given by Dk|k−1(m|x(i)

k|k−1) (equation (31)).

The updated intensity function is given by a combination of
the missed-detection term Dk,M (m|x(i)

k|k−1) and the detec-

tion term Dk,D(m|x(i)
k|k−1) as [12]

Dk(m|x(i)
k|k−1) = Dk,M (m|x(i)

k|k−1) +Dk,D(m|x(i)
k|k−1).

(41)

The missed detection term is given by the weighted Gaussian
mixture

Dk,M (m|x(i)
k|k−1) =

N
(i)

k,m∑
j=1

(1− pD(m
(j|i)
k|k−1))w

(j|i)
k|k−1,mN (m

(j|i)
k|k−1,P

(j|i)
k|k−1),

(42)

and the detection term is given by the mixture

Dk,D(m|x(i)
k|k−1) =

∑
z∈Zk,m

w
(j|i)
k,m,zN (m

(j|i)
k,z ,P

(j|i)
k,z ), (43)

where the updated weights and states (w
(j|i)
k,m,z,m

(j|i)
k,z ,P

(j|i)
k,z )

are obtained according to a Kalman filter update [18]:

w
(j|i)
k,m,z =

pD(m
(j|i)
k|k−1)w

(j|i)
k|k−1,mgz(m

(j|i)
k|k−1)

κk(z)+

Nk−1,m∑
l=1

pD(m
(l|i)
k|k−1)w

(l|i)
k|k−1,mgz(m

(l|i)
k|k−1)

,

(44)

gz(m
(j|i)
k|k−1) = N

(
z;h(m

(j|i)
k|k−1),S

(j|i)
k,m

)
(45)

m
(j|i)
k,z = m

(j|i)
k|k−1 + Kk,mŷk,m,z, (46)

P
(j|i)
k,z = (I−Kk,mH

(j|i)
k,m )P

(j|i)
k|k−1,m, (47)

S
(j|i)
k,m = H

(j|i)
k,mP

(j|i)
k|k−1,m

(
H

(j|i)
k,m

)T
+ Σm, (48)

Kk,m = P
(j|i)
k|k−1,m

(
H

(j|i)
k,m

)T (
S

(j|i)
k,m

)−1

, (49)

ŷk,m,z = z− h(m
(j|i)
k|k−1). (50)

In the above equations, h(m
(j|i)
k|k−1) denotes the observation

function which may be nonlinear and H
(j|i)
k,m denotes the

corresponding Jacobian. As an alternative to linearising the
update, this may be performed using the unscented Kalman
filter [22], thus avoiding the need to evaluate the Jacobian.
In the absence of prior information, we assume the spatial
distribution of the clutter to be uniform over the entire obser-
vation space: κk(z) = constant. Without any management,
the number of terms in the filter grows exponentially. Several
terms in the mixture may have low weight, thus making



negligible contribution to the intensity function. There will
also be terms which are similar to each other and could be
approximated by a single Gaussian component without loss
of accuracy. To manage the growth of terms, we adopt the
pruning and merging procedure described by Vo and Ma [18].

In the following section, we will discuss the observation
model for the landmarks and define the observation function
h(m

(j|i)
k|k−1) and probability of detection pD(m

(j|i)
k|k−1).

The estimate of the vehicle state is obtained by computing
the weighted mean of the intensity function on the parent
state. The estimated landmarks are selected according to the
map associated with the highest weight particle:

x̂k =
N∑
i=1

w
(i)
k x

(i)
k , (51)

îk = argi maxw
(i)
k , (52)

M̂k = M
(̂ik)
k . (53)

Since the estimated map M̂k also contains unconfirmed
landmarks, we select landmarks which have weights w(j |̂i)

k,m

greater than 0.5.

D. Feature Observation Model

In the experiments conducted here, a downward looking
stereo camera (Fig. 2) is used to estimate point features
of interest in the environment. Rectified stereo images are
obtained from the camera and features of interest are detected
using the speeded-up robust features (SURF) [23] extractor,
a blob detection algorithm that identifies robust features in
the images.

Landmarks in the map exist in the world coordinate system,
while observations are made in the coordinate system of the
camera. It is thus necessary to evaluate the transformation
between the the camera and the vehicle, and the vehicle and
the world coordinate systems. For simplicity, we assume in
the following equations that the

By comparing features between the two rectified camera
images (Fig. 3), we obtain a set of matched observations
with each observation taking the form [ul, vl, ur, vr] with
the subscripts l and r denoting the pixel values in the left
and right images respectively. The set of Lk observations is
then defined as

Zk,m = {z(1)
k,m, . . . , z

(Lk)
k,m }, (54)

z
(i)
k,m = [u

(i)
l , v

(i)
l , d(i)]T , (55)

d(i) = u
(i)
l − u

(i)
r . (56)

For a given state in the map, m(j|i)
k = [x

(j|i)
k,m , y

(j|i)
k,m , z

(j|i)
k,m ]T ,

we can obtain its projection on to the camera image plane

Fig. 2. The stereo camera inside its waterproof housing.

Fig. 3. Features from the left and right rectified images are matched.
Along with the disparity, each pair of pixels is an element of the observation
set. The 3D point corresponding to the pair of pixels can be computed by
triangulation.

as  ul
vl
1

 = g(m
(j|i)
k ,Pl) (57)

 ur
vr
1

 = g(m
(j|i)
k ,Pr) (58)

where

g(m
(j|i)
k ,P) =

P

[
R(−φk,−θk,−ψ(i)

k ) −T(i)
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] [
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]
, (59)

Pl and Pr represent the 3×4 left and right camera projection
matrices, and [φk, θk, ψ

(i)
k ] and T

(i)
k are respectively the

orientation and 3 × 1 translation vector of the left camera.
For simplicity, we assume in the above equation that the
orientation of the camera is identical to that of the vehicle.
When this is not the case, the rotation matrix must be
calculated using the orientation of the camera rather than the
vehicle. The Jacobian required in the Kalman filter update in
equations (48) and (49) is obtained by computing the partial
derivatives of this observation function.

Points which lie outside the view frustum of the stereo
camera will not produce a valid projection on the image
plane. The field of view (FOV) of the camera thus defines
the visibility of map landmarks and thus the probability of
detection pD(m

(j|i)
k ). Variations in lighting and focus also

have an effect on the detection of features, however, we



ignore this and define

pD(m
(j|i)
k ) =

{
pD if m(j|i)

k ∈ V (m
(j|i)
k ),

0 otherwise,
(60)

where V (m
(j|i)
k ) denotes the FOV of the camera correspond-

ing to the ith parent.

The inverse of the observation function g() is required to
introduce new landmarks in the filter. Given the projection
matrices Pl and Pr, and a matched pair of points [ul, vl]
and [ur, vr], it is possible to perform triangulation [24] and
obtain the coordinates of the point in 3D space [x, y, z] (the
projection of this point gives us back the matched points). We
utilise the OpenCV library [25] to perform this triangulation
and define mc = [xc, yc, zc]

T as the coordinates of the
triangulated point in the camera coordinate system:

m(j)
c = g−1(Pl,Pr, [u

(j)
l , v

(j)
l ], [u(j)

r , v(j)
r ]), j ∈ [1, Lk].

(61)

New landmarks are introduced into the map in the world
coordinate system rather than the camera coordinate system.
This requires a transformation which is conditioned on the
parent, obtained as[

m
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1

]
=

[
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1

]
. (62)

In the experiment conducted here, we initialise the covari-
ance associated with the new landmarks to a predefined
constant Pb and initialise the birth weight w(j|i)

k,b to a small
constant in equation (30).

IV. EXPERIMENTS AND RESULTS

A. Experimental Setup

The SC-PHD SLAM algorithm is tested with a dataset
collected using the Girona 500 AUV [26]. The vehicle is
equipped with a DVL which provides velocity measurements,
an IMU which provides orientation and angular velocity, a
depth sensor, and the downward looking stereo camera which
provides images at 10 Hz with a resolution of 1024×768. The
vehicle is teleoperated in an indoor tank of 16 m×8 m×5 m
in a lawnmower pattern. The bottom of the tank is fitted
with a poster simulating a sea-floor. By comparing images
from the camera against this known mosaic, it is possible
to generate a ground-truth trajectory of the vehicle. Fig. 1
shows the Girona 500 AUV in the test tank with the stereo
camera used to detect the features from the poster at the
bottom of the tank.

The recorded sensor observations are processed using both
the EKF and SC-PHD SLAM summarised previously, with
all processing being performed offline. The SC-PHD SLAM
is run using 400 particles with a maximum of 75 features
detected in any pair of images from the camera. The proba-
bility of detection is set as pD = 0.975, and we use λc = 20
for the mean of the clutter cardinality distribution.

Fig. 4. Ground-truth trajectory superimposed on the mosaic. Images from
the camera are matched against the mosaic to estimate the true position.

B. Computation of the Ground-Truth

The ground-truth trajectory is obtained by registering images
from the camera to the original image of the poster mosaic.
The estimation of the camera poses is parametrised on the 6
DoF translation and rotation wrt the local reference frame,
denoted by Θ.

Estimation of the ground-truth pose relies on the identifi-
cation of point correspondences using feature-based robust
matching [27]. The outcome of the matching are two lists of
correspondences xi and xm of points in the camera image
and the poster image respectively, related by the observation
equation

xi = Q(xm,Θ) + ε, (63)

where Q is a projection function that takes into account the
pose, the camera calibration and the scale of the mosaic
poster, and ε is assumed to be Gaussian random noise.

The maximum likelihood estimate of Θ is

ΘML = arg min
Θ

∣∣xi −Q(xm,Θ)
∣∣2 . (64)

The ground-truth pose is then obtained by carrying out a
minimization using a non-linear least squares algorithm [28],
[29].

C. Results

We summarise the results from the experiment in this section.
Fig. 4 shows the ground-truth trajectory followed by the
vehicle superimposed on the sea-floor mosaic. Figures 5 and
6 show the trajectories from the EKF dead reckoning and
SC-PHD SLAM algorithms. The dead reckoning trajectory
suffers from significant deviation, which we show to be the
result of inaccurate heading measurements. On the other
hand, the trajectory obtained from the SLAM does not suffer
the same inconsistencies and provides a closer match to the
ground-truth.

Fig. 7 shows the squared error in the position (x, y) estimated
by the dead reckoning and SLAM. The dead reckoning



Fig. 5. Trajectory estimated from the dead reckoning. The trajectory shows
large deviation due to inaccuracy in the heading angle.

Fig. 6. Trajectory estimated from the SC-PHD SLAM. Errors in the heading
angle can be corrected resulting in lower deviation compared to the dead
reckoning.

exhibits a much larger error which we attribute to inaccurate
vehicle heading obtained from the magnetic compass. Fig. 8
illustrates the error in heading estimated by the compass
and the ground-truth (with an added offset such that the
average error is zero). The figure shows that the compass
is prone to large time-varying deviations between −15◦ and
+15◦. In the absence of a fixed bias, the trajectory estimated
by the dead reckoning suffers from the time-varying nature
of the estimated heading, resulting in a poor estimate of
the trajectory. On the other hand, incorporating the heading
into the state space allows it to be estimated by the SLAM
algorithm and results in a closer match to the ground-truth.

In addition to improved localisation, the SLAM also pro-
duces an estimate of the map features. Figures 9 and 10
illustrate the confirmed landmarks selected from the map
intensity function. The features lie in a plane corresponding
to the bottom of the tank with a standard deviation of 6 cm.
Errors in the camera calibration result in larger uncertainty
in the 3D position of the landmarks.

Fig. 7. Squared position error for the dead reckoning and SLAM.

Fig. 8. Squared position error for the dead reckoning and SLAM.

V. CONCLUSIONS

This paper has presented an application of the single-
cluster PHD SLAM algorithm in underwater robotics. The
Girona 500 AUV is equipped with a downward looking
stereo camera and features extracted from the camera are
used by the algorithm to improve the vehicle localisation.
The trajectory from the SC-PHD SLAM algorithm is com-
pared with the dead reckoning from an extended Kalman
filter. The results show a significant reduction in the locali-
sation error of the vehicle trajectory in the case of the SLAM
algorithm.

In particular, we have shown that the SC-PHD SLAM
algorithm is able to compensate for errors in the heading
angle obtained from a magnetic compass as well as reduce
the drift due to measurement noise from the DVL. The
SC-PHD SLAM algorithm produces a geometric map of
detected features. In the scenario tested here, this consists of
points lying on a plane. Further work will consider the sonar-
based mapping as well as the closed form implementation
using a Gaussian approximation for the vehicle position.



Fig. 9. Confirmed landmarks from the SLAM overlayed on the mosaic.

Fig. 10. 3D coordinates of the confirmed landmarks. The rectangle
corresponds to the mosaic in the test tank.
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