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a b s t r a c t

Shape reconstruction using coded structured light (SL) is considered one of the most reliable techniques

to recover object surfaces. Among SL techniques, the achievement of dense acquisition for moving

scenarios constitutes an active field of research. A common solution is to project a single one-shot

fringe pattern, extracting depth from the phase deviation of the imaged pattern. However, the

algorithms employed to unwrap the phase are computationally slow and can fail in the presence of

depth discontinuities and occlusions. In this work, a proposal for a new one-shot dense pattern that

combines DeBruijn and Windowed Fourier Transform to obtain a dense, absolute, accurate and

computationally fast 3D reconstruction is presented and compared with other existing techniques.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

Three dimensional measurement constitutes an important
topic in computer vision applied in range sensoring, industrial
inspection of manufactured parts, reverse engineering (digitiza-
tion of free-form surfaces), object recognition, 3D map building,
biometrics, clothing design and others. Traditionally, measuring
systems are classified into contact and non-contact according to
whether the measuring surface is touched to perform the mea-
surement, which represents a constraint in many applications.
Non-contact measuring systems are subdivided into passive and
active, depending on whether an additional and structured source
of light is used in the measurement [1]. Active methods based on
Structured Light (SL) are composed of a digital camera (or
cameras) and a Digital Light Projector (DLP). DLP projects a
designed pattern to impose the illusion of texture onto the
measuring surface, increasing the number of correspondences
[2], thus being able to perform measurements even in presence of
textureless surfaces. Among SL techniques, one-shot patterns
have the ability to measure moving surfaces (up to the acquisition
time required by the camera). For instance, spatial multiplexing
patterns perform one-shot 3D absolute reconstruction with good
accuracy at the expense of acquiring a sparse (feature wise)
measurement. This is the case of DeBruijn patterns, that create
ll rights reserved.

dez),
a non-repetitive sequence of colored lines [3–5]; M-arrays pat-
terns, that apply the same principle in the two coding axes [6–8];
or non-formal coding like Koninckx and Van Gool [9], where
vertical stripes and diagonal crossing lines define epipolar-
constrained unique crossing points. Besides, one-shot fringe-based
patterns achieve dense (pixel wise) reconstruction. However,
inaccuracies can occur at surface discontinuities due to the non-
absolute (periodic) coding intrinsic to the method [10]. Despite
some solutions like the one proposed by Sitnik [11] minimize
its probability, still discontinuity errors can occur when a single
frame is projected. There exist some techniques that obtain
density and absolute coding by using one-shot spatial grading
[12,13], but both achieve a rather low accuracy [10]. Therefore,
the problem of designing a one-shot-based pattern providing
dense measurement, absolute coding and high accuracy still
remains unsolved.

This work presents a new one-shot pattern for 3D dense
reconstruction. The main idea is to combine the benefits of
DeBruijn coding in dense fringe-based patterns using the Wind-
owed Fourier Transform (WFT) analysis, with the goal of obtaining
from a unique image an absolute, accurate and computationally
fast 3D reconstruction. The paper is structured as follows: Section
2 presents a brief overview of one-shot dense acquisition techni-
ques. Section 3 presents the design of the new technique especially
focused on the absolute coding unwrapping. Experimental results
with both simulated and real data are presented in Section 4,
including a comparison with other existing SL techniques. Finally,
Section 5 concludes with a discussion of the proposed method,
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analyzing its advantages and disadvantages compared to the
literature.
2. A brief overview of one-shot dense acquisition techniques

There exist some techniques that perform dense (pixel-wise)
reconstruction by projecting a unique (one-shot) pattern. Two
main groups can be distinguished regarding the classification of
Salvi et al. [10]: spatial grading and frequency multiplexing. Both
of them show a continuous variation in intensity or color
throughout one or both pattern axes. In grading methods the
entire codeword for a given pixel position is stored in the pixel
(gray level or color). Grayscale-based patterns [12] and color-
based patterns [13] are found in the literature. However, both
suffer of high sensitivity to signal noise due to the short distance
between codewords of adjacent pixels. In frequency multiplexing,
depth extraction is performed in the frequency domain rather
than in the spatial domain. Fourier Transform, Windowed Fourier
Transform and Wavelet Transform techniques have been tradi-
tionally used for this purpose.

Fourier Transform (FT) was introduced to solve the necessity of
having a phase-shifting-based method for moving surfaces. FT
was first proposed by Takeda and Mutoh [14], who extracted
depth from one single projected pattern. A sinusoidal grating was
projected onto the measuring surface, and the reflected deformed
pattern was recorded. The projected signal for a sinusoidal grating
was represented as

Ip
nðy

pÞ ¼ Ap
þBp cosð2pffypÞ ð1Þ

Once reflected, the phase component is modified by the shape
of the surface. Note that the phase component must be isolated to
extract shape information. This was achieved performing a
frequency filtering in the Fourier domain. The background com-
ponent was suppressed and a translation in frequency was done
to bring the carrier component (which holds the phase informa-
tion) to zero frequency axis. To extract the phase, the input signal
was rewritten as

Iðx,yÞ ¼ aðx,yÞþcðx,yÞe2piffyp

þcnðx,yÞe�2piffyp

ð2Þ

where

cðx,yÞ ¼ 1
2bðx,yÞeifðx,yÞ ð3Þ

where cnðx,yÞ is the complex value of constant cðx,yÞ. Finally, the
phase component was extracted from the imaginary part of the
following equation:

log½cðx,yÞ� ¼ log½ð12Þbðx,yÞ�þ if ð4Þ

The obtained phase component ranges from ð�p,p�, being
necessary to apply an unwrapping algorithm in order to obtain
a continuous phase related to the object. Once the phase was
unwrapped, the relative depth information was extracted using
the following equation:

hðx,yÞ ¼ L �
Dfðx,yÞ

ðDfðx,yÞ�2pf 0dÞ
ð5Þ

where L is the distance to the reference plane and d is the distance
between the camera and the projector devices. However, due to
the periodic nature of the projected pattern, this method is
constrained by the maximum slope that can be reconstructed
given by

@hðx,yÞ

@x
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����
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o
L

3d
ð6Þ

The Windowed Fourier Transform (WFT) splits the signal into
segments before the analysis in frequency domain is performed,
reducing the frequency overlapping between background and
data. These segments must be small enough to reduce the errors
introduced by boundaries, holes and background illumination, at
the same time it must be big enough to hold some periods and
hence allow the detection of the main frequency to perform an
optimal filtering (this tradeoff was evaluated in the work of [15]).
The received signal is filtered applying the WFT analysis trans-
form shown in

Sf ðu,v,x,ZÞ ¼
Z 1
�1

Z 1
�1

f ðx,yÞ � gðx�u,y�vÞ

� expð�jxx�jZyÞ dx dy ð7Þ

being (x,y), ðx,ZÞ the translation and frequency coordinates
respectively, and gðx,yÞ the windowing function. When gðx,yÞ is
a gaussian window, the WFT is called a Gabor transform. Eq. (7)
provides the 4-D coefficients Sf ðu,v,x,ZÞ corresponding to the 2D
input image. The next step is to apply one of the two phase
extraction algorithms: Windowed Fourier Filtering (WFF) and
Windowed Fourier Ridge (WFR) [16]. In WFF the 4D coefficients
are first filtered, suppressing the small coefficients (in terms of its
amplitude) that correspond to noise effects. The inverse WFT is
then applied to obtain a smooth image, and the estimated
frequencies oxðx,yÞ and oyðx,yÞ and their corresponding phase
distributions are obtained from the angle given by the filtered
WFF, as explained in [17]. In WFR, however, the estimated
frequencies are extracted from the maximum of the spectrum
amplitude, as shown in the following equation:

½oxðu,vÞ,oyðu,vÞ� ¼ argmax
x,Z

9Sf ðu,v,x,ZÞ9 ð8Þ

The phase can be directly obtained from the angle of the
spectrum for those frequency values selected by the WFR (phase
from ridges), or integrating the frequencies (phase by integration).

Wavelet Transform (WT) is another windowed based approach,
where the window size increases when the frequency decreases,
and vice-versa. This permits to remove the background illumina-
tion and prevent the propagation of errors produced during the
analysis, which remain confined in the corrupted regions [16].
Additionally the leakage effects are reduced, avoiding large errors
at the edges of the extracted phase maps. The Continuous
Wavelet Transform (CWT) is a sub-family of WT that performs
the transformation in the continuous domain [18]. Similar to
WFT, in 2D analysis a 4D transform is obtained from WT (the
daughter wavelets are obtained by translation, dilation and
rotation of the previously selected mother wavelet). Once this is
performed, phase extraction is pursued using the phase from
ridges or the phase by integration algorithms. It is important to
mention that in WT the window size increases when the hor-
izontal or vertical fringe frequencies decreases. This can be a
troublesome for the analysis of some fringe patterns where the
carrier frequency is extremely low or high, as was pointed out by
Kemao et al. [19]. Moreover, in computational applications a
dyadic net is used to generate the set of wavelet functions (that is,
the size of the wavelet is modified by the factor 2j). This can be a
drawback for fringe pattern analysis, where the change in the
spatial fringe frequencies throughout the image is not high
enough to produce a relative variance of 2j in the size of the
optimal wavelet.
3. A new proposal for one-shot dense reconstruction

The proposed technique combines the accuracy of DeBruijn
slit-based patterns with the density of fringe WFT-based patterns,
in a unique (one-shot) pattern. One-shot projection allows the
algorithm to reconstruct moving surfaces, or to be used for a post-
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processing 3D retrieval of a dynamic environment (real-time pro-
cessing is not considered in this work). A general scheme of the
algorithm is shown in Fig. 1 and explained in the following lines.

3.1. Camera–projector calibration

The camera–projector calibration was done using the algo-
rithm of Fernandez et al. [20], which models the projector as the
inverse of a pinhole camera. First, the camera is calibrated using
the Bouguet’s implementation of the Zhang’s technique [21].
Afterwards, a calibration image (a checkerboard) is projected
onto a plane and captured by the camera. The 3D coordinates of
Fig. 1. Diagram of the proposed algorithm.

Fig. 2. Images showing the calibration plane (left) and t
this plane are found using some fixed and marked positions on
the plane (see Fig. 2). Therefore, 3D coordinates of the projected
checkerboard points are found using the camera parameters.
Finally, projector calibration is performed using these 3D points
and the same calibration procedure employed for the camera.

3.2. Pattern creation

The proposed pattern consists on a colored sinusoidal fringe
pattern, where the color of the different fringes follows a DeBruijn
sequence. DeBruijn sequences are a set of pseudorandom values
having specific properties between them. This prevents from
decoding errors that may arise in non-coded color fringe patterns
proposals [22]. A k-ary DeBruijn sequence of order n is a circular
sequence d0,d1, , dnk�1 (length nk) containing each substring of
length k exactly once (window property of k). DeBruijn sequences
can be constructed directly from the Hamiltonian or Eulerian path
of a n-dimensional DeBruijn graph (see [23] for more details). In
our approach we set n¼3 as we work only with red, green and
blue colors. Moreover, we set the pattern to have 64 fringes—this
is a convention given the pixel resolution of the projector and the
camera. Therefore, nk

Z64, so we set the window property to
k¼4. An algorithm performing the sequence generation provides
us an arbitrary DeBruijn circular sequence d0,d1,: :,d80. The pat-
tern, of size mxn, is generated in the HSV space. For every column
j¼ 1: :m of the V channel, the sinusoidal signal is represented as

Iði,jÞ ¼ 0:5þ0:5 � cosð2pfiÞ ð9Þ

where i¼ 1: :n and the discrete frequency f ¼ 64=n.
The H channel maps a value of the previously computed

DeBruijn sequence to every period of the V channel. The S channel
is set to 1 for all the pixels to obtain the maxima of the saturation
value. Finally, the created HSV matrix is transformed into RGB
values. The resulting pattern is shown in Fig. 3.

3.3. Color calibration

A color calibration reveals necessary to extract the three
different projected colors from the acquired image. To this end,
Caspi et al. [24], developed a color calibration algorithm based on
linearizing the projector-camera matrix and the surface reflec-
tance matrix, specific for every scene point projected into a
camera pixel. Our proposal considers a modification of this
techniques, where a global and unique transformation matrix is
computed. A Least-Squares algorithm is applied to extract the
linear estimated transformation matrix. This is done for each
position and for each recovered channel. An example of the
projected and recovered values for an arbitrary non-calibrated
pixel is shown in Fig. 4. As can be observed, crosstalk (specially in
the green channel) and surface albedo are present in the retrieved
color values. Moreover, the DeBruijn vocabulary was minimized
up to three colors, in order to maximize the Hamming distance
present in the Hue channel and thus minimize the effect of
crosstalk that may remain after color calibration (Fig. 5).
wo checkerboard projections at different positions.



S. Fernandez, J. Salvi / Optics Communications 291 (2013) 70–78 73
3.4. Pattern projection and recovery

The designed pattern is projected by the active device. Once
reflected onto the object, the pattern is recovered by the camera.
The camera calibration matrix is applied to the RGB image,
obtaining the corrected color values. The corrected RGB image is
transformed to the HSV space. Afterwards, a Region Of Interest
(ROI) is selected regarding the information held in the V plane. To
this end, a closure morphological operation is applied followed by
a binarization. Those pixels exceeding the value given by the Otsu
thresholding algorithm are selected for the ROI. Finally, the ROI is
applied to the corrected RGB image and to the V matrix. The RGB
image is the input of the DeBruijn detection algorithm, whereas
the V matrix is used in the Windowed Fourier Transform Analysis.
Fig. 3. Proposed pattern: HSV representation of the DeBruijn sequence (top-left),

fringe pattern (top-right) and the resulting RGB pattern for m¼64 (bottom).

Fig. 4. Received color intensities for uniformly increasing values of red, green and blue,

reader is referred to the web version of this article.)
3.5. DeBruijn analysis

The aim of this step is to extract the color associated to every
deformed colored fringe. We followed the same approach used in slit-
based pattern, provided the recovered fringes present a gaussian-like
shape similar to that present in slit-based patterns [1,10]. Therefore, a
maxima localization algorithm is applied searching local maxima
(detected with sub-pixel precision) on every color channel of the
current scan-column. The implemented algorithm takes into account
the total of n¼64 periods present in the pattern, and the consecutive
maxima-minima distribution. Furthermore, a global threshold sup-
pressing peaks lower than the 70% of maximum peak is applied.
These steps prevent from false peaks detection.

Dynamic programming. Ideally, the matching of correspondences
between the projected sequence and the perceived one is straightfor-
ward. However, usually the whole sequence of projected stripes is not
visible in the image scan-line or some of them are incorrectly labeled
or disorders may occur. Therefore, the use of dynamic programming
becomes compulsory. Dynamic programming works as a scoring
function, measuring the similarities between the projected and the
recovered color sequences (see [5] for more details).
respectively. (For interpretation of the references to color in this figure caption, the

Fig. 5. Visual representation of a Morlet signal with n¼3 periods.
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3.6. Windowed Fourier Transform analysis

The WFT has been chosen for frequency fringes analysis, as it
prevents from leakage distortion. Moreover, it has a more precise
window width selection than WT. First, a salt and pepper filtering
and a histogram equalization is applied to the V channel. After-
wards, an adapted Morlet wavelet is chosen for WFT analysis.
Regarding the work of Fernandez et al. [15], this provides good
frequency and spatial localization at the same time. Morlet signal
definition is

CMorletðxÞ ¼
1

ðf 2
cpÞ

1=4
expð2pif cxÞ � exp

�x2

2f 2
b

 !
ð10Þ

where fc is the mother wavelet central frequency and fb is the
window size.

The average and standard deviation of the fringe period is
estimated counting the number of periods existing in every
column along the coding axis (using the same algorithm
employed to find the local maxima of the DeBruijn sequence).
Average period (pm) and standard deviation (std) are extracted
from the single periods corresponding to each column. The std

represents the uncertainty in the estimated frequency, and is
crucial to perform a global analysis of the image. The average
frequency for the nxm pattern is computed as f m ¼ n=pm. The
frequencies analyzed are in the range ½f m�3 � std,f mþ3 � std� in
both x and y axes, where fm is the average frequency. Using this
range the 99% of detected frequencies are analyzed. In practice,
this range can be reduced to ½f m�2 � std,f mþ2 � std� (95% of the
frequencies are represented) without a significant lose in accu-
racy. Another variable to consider is the window size related to
the number of periods of the sinusoidal mother signal. In contrast
to the mother wavelets in WT, WFT does not require the number
of periods to be linked to the sinusoidal oscillation of the signal. In
our algorithm it has been used from one up to three periods. The
optimal value is selected applying the ridge extraction algorithm
(WFR), which computes the most likely values of window ðwx,wyÞ

and the corresponding phase value. finally, the wrapped phase in
the interval ½�p,p� is obtained.

3.7. Combination of DeBruijn and wrapped phase patterns

The next step is to merge the information obtained from the
WFT and the DeBruijn algorithms. The wrapped phase is merged
with the extracted colored lines. Due to the 2D nature of the WFT
Fig. 6. On the left, detail of the wrapped phase and a crest maxima (in red), and its corre

after correction, and the correction interpolation error. (For interpretation of the refere

article.)
algorithm (which may include some frequencies of adjacent
positions in the Fourier Transform) the phase value of a specific
position may have some deviation. This effect is corrected
shrinking or expanding the wrapped phase accordingly to the
DeBruijn correspondences for the maxima. A nonlinear fourth
order regression line is used to this end, matching the maxima of
the wrapped phase map with the position of the colored lines in
the DeBruijn map. This process is done for every column in the
image, obtaining corrected wrapped phase map. This is shown in
Fig. 6. Finally, the correspondence map provided by the DeBruijn
lines is expanded using the wrapped phase map. The phase values
between two adjacent lines go in the range (�p, p). Therefore, a
direct correlation is set between these values and the position of
the projected and the recovered color intensities. A full (dense)
correspondences map is obtained.
3.8. 3D recovering and filtering

The previously extracted full correspondences map is given to
the triangulation algorithm. Using the extrinsic and intrinsic
parameters of the camera–projector system, a tri-dimensional
cloud of points in ðx,y,zÞ is computed, representing the shape of
the reconstructed surface. A posterior filtering step reveals
necessary due to some erroneous matchings that originate out-
liers in the 3D cloud of points. To this end, two different filtering
steps are applied.

3D statistical filtering. In the 3D space, the outliers are char-
acterized by their extremely different 3D coordinates regarding
the surrounding points. Therefore, pixels having 3D coordinates
different than the 95% of the coordinates of all the points are
considered for suppression. This is done in two steps for all the
points in the 3D cloud. First the distance to the centroid of the
cloud is computed, for every pixel. Afterwards, those pixel having
a distance to the centroid greater than two times the standard
deviation of the cloud of points are considered as outliers.

Bilateral filtering. Still, there can be some misaligned points
after applying the statistical filtering. In this case it would be
profitous to apply some anisotropic filtering that filters the data
while preserving the slopes. To this end, an extension to 3D data
of the 2D bilateral filter proposed by Tomati and Manduchi [25]
was implemented. The bilateral filter is a non-recursive aniso-
tropic filter whose aim is to smooth the cloud of points (up to a
given value) while preserving the discontinuities, by means of a
nonlinear combination of nearby point values. The proposed 3D
sponding slits line position (in green). On the right, the wrapped section before and

nces to color in this figure caption, the reader is referred to the web version of this
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bilateral filtering is described as

Gðx,yÞ ¼ expð�ððx�xcÞ
2
þðy�ycÞ

2
Þ=ð2ns2

1ÞÞ ð11Þ

HðzÞ ¼ expð�ðz�zcÞ
2=ð2ns2

2ÞÞ ð12Þ

where x,y,z are the 3D coordinates of a given point, Gðx,yÞ is the
distance mask, H(z) is the height mask, and both s1 and s2 are
values to set empirically. The algorithm works as follows: given a
set of points X,Y ,Z around the selected 3D point, the correspond-
ing masks Gðx,yÞ and H(z) are computed, providing the filtered
results. This modified the height of those isolated pixels having a
3D coordinates much different than their vicinity, while preser-
ving the slopes.
Fig. 8. Normalized error on reconstructed depth positions for different values

of noise.

Table 1
Quantitative results. The headings are: author’s name of the technique, average

deviation of the reconstructing error, standard deviation of the reconstructing

error, number of 3D points reconstructed, and number of projected patterns.

Technique Average (mm) Stdev (mm) 3D points Patterns

Monks et al. 1.31 1.19 13,899 1

Posdamer et al. 1.56 1.40 25,387 14

Guhring 1.52 1.33 315,273 24

Pribanic et al. 1.12 0.78 255,572 18

Carrihill and Hummel 11.9 5.02 202,714 1

Proposed technique 1.18 1.44 357,200 1
4. Results

The proposed algorithm was implemented and tested in both
simulated and real data. Moreover, a comparison with other
representative SL algorithms was pursued. To this end we used
the techniques present in the work of Salvi et al. [10]. They
correspond to the main groups existing in SL, not only in dense
but also sparse reconstruction. The setup used for the tests was
composed of an DLP video projector (Epson EMP-400W) with a
resolution of 1024�768 pixels, a camera (Sony 3 CCD) and a frame
grabber (Matrox Meteor-II) digitizing images at 768�576 pixels
with 3�8 bits per pixel (RGB).The baseline between camera and
projector was about 60 cm. Experiments were computed in a desk-
top computer, Intel Core2 Duo CPU at 3.00 GHz and 4 GB RAM
memory. The algorithms were programmed and ran in Matlab 7.3. It
is important to mention the methods used for comparison were re-
programmed from the corresponding papers, since at the best of our
knowledge source codes were not available.

4.1. Simulation results

The peaks function available in Matlab (shown in Fig. 7) has
become a benchmark for 3D reconstruction in SL, specially in fringe
pattern analysis, as stated in [10]. A noised version with gaussian
random noise having zero mean and standard deviation of 0.05%,
0.1%, 0.15% and 0.2% was reconstructed and compared with the
input. Moreover, a comparison with the other one-shot techniques
selected in [10] was done. The results are shown in Fig. 8.

As can be observed, the algorithm of Carrihill and Hummel
performs the worst, due to the high sensitivity to signal noise
caused by the short distance between codewords of adjacent
pixels. Su et al. algorithm performs optimally for low noise values
thanks to the nature of the 2D frequency analysis, which
smoothes the incoming data. This occurs also for the proposed
Fig. 7. Peaks signal and recovered pattern for th
pattern. However, for noised images having std40:1 the 1D
unwrapping step of Su et al. introduces discontinuities in the
recovered phase, leading to errors in the pixel position. Besides,
Monks algorithm suffers the low amount of reconstructed points,
which penalizes the errors produced in the slits position. Finally,
the proposed algorithm provides a much denser reconstruction
with 2D fourier analysis and no need to perform any phase
unwrapping. This fact is reflected in the results, performing the
best among the three tested techniques.
4.2. Empirical results

Quantitative results were analyzed reconstructing a white
plane at a distance of about 80 cm in front of the camera. Principle
Component Analysis (PCA) was applied to obtain the equation of
e proposed algorithm and noise of std¼0.1.



Fig. 9. For every object: on the left, input image. On the center the rectified extracted colors channels, and the slits and fringes patterns. On the right the recovered 3D

cloud of points.
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the 3D plane for every technique and for every reconstruction.
PCA is used to span the 3D cloud of points onto a 2D plane defined
by the two eigenvectors corresponding to the two largest eigen-
values. The results of the experiment are shown in Table 1.

Note that the algorithm of Su et al. [26] is conceived to
measure deviation of smooth surfaces with respect to the refer-
ence plane, therefore a plane is not conceived to be reconstructed
by depth deviation. As can be observed, the proposed technique
obtains one of the best accuracy results in terms of average and
Fig. 10. 3D retrieval of a Macbeth checker plane. 1st row: original and color rectified im

DeBruijn color slits and WFT wrapped phase. 4th row: retrieved 3D plane. (For interpre

web version of this article.)
standard deviation of the error, only overcome by the method of
Pribanic et al. [27], which requires a total of 18 projected patterns.
Among the one-shot projection techniques, the proposed techni-
que obtains the best accuracy results jointly with another DeB-
ruijn based technique, the sparse reconstruction algorithm
proposed by Monks et al. [3]. Regarding the computing time it
can be observed that methods obtaining dense reconstructions
(the case of Guhring, Pribanic et al., Su et al., and Carrihill and
Hummel and the proposed algorithm) need to compute more 3D
age. 2nd row: RGB channels before DeBruijn and WFT analysis. 3rd row: extracted

tation of the references to color in this figure caption, the reader is referred to the
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points, requiring higher computational time. However, our pro-
posal does not need to compute many images, nor any unwrap-
ping algorithm is required. This makes our technique faster in
terms of computational time. Among methods providing sparse
reconstruction the color calibration step makes Monks et al.
algorithm slower than Posdamer et al. (also affects the proposed
technique) despite it preserves the same order of magnitude. Still,
real time response is achievable working with the appropriate
programming language and firmware.

Finally, Qualitative results were pursued reconstructing several
3D objects. The lambertian objects were placed at a distance of
about 80 cm to the camera. Results of 3D reconstruction are shown
in Fig. 9. The first reconstruction corresponds to a bended piece of
sheet. The second reconstruction is a piece of manufactured cork.
Third and fourth reconstructions are ceramic figures of a ‘hello kitty’
and a horse, respectively. As can be observed the objects are
reconstructed optimally. Only the ‘hello kitty’ present some points
missing, as the filtering suppressed 3D outliers associated to the low
illuminated and blurred regions present in the recovered image.

Moreover, a test on color resistance was pursued. When
projecting onto a color surface, the color of the fringes get
distorted by the original color of the object. Therefore, the
identification of the color sequence by the DeBruijn decoding
algorithm may present some errors. This phenomena has been
tested for a real colored object. The aim was to reconstruct a
planar surface having different colors, in different positions not
related with the orientation of the fringes. A Macbeth color-
checker with 24 different colors, originally proposed by McCamy
et al. [28], was used to this end. The results of scanning and 3D
reconstruction are shown in Fig. 10.

As can be observed, the reconstruction fails in dark regions, as
the reflected illumination is not high enough to detect the fringe
colors in the DeBruijn algorithm. This causes big holes in the
reconstruction after the filtering is applied. However, the struc-
ture of the plane in the bright color areas is preserved.
5. Conclusion

This paper proposes a new technique for one-shot dense 3D
surface reconstruction, which combines the accuracy of DeBruijn
spatial multiplexing with the density of frequency multiplexing in
fringe projection. One-shot projection allows the algorithm to
reconstruct moving objects, or to be used for a post-processing 3D
retrieval of a dynamic environment. The proposal has been
implemented and compared both quantitatively and qualitatively
with some representative techniques of Structured Light. Simula-
tion results and empirical quantitative results show the good
performance of the proposed technique in terms of resistance to
noise and accuracy of a reconstructed plane. Among the com-
pared techniques, the proposed method is only overcome by the
time multiplexing shifting approach proposed by Pribanic et al.
[27], which is only valid for static scenarios. Among one-shot
techniques, our proposed method achieves the best results in
terms of accuracy, comparable with other DeBruijn-based spatial
coding. Moreover, dense reconstruction and absolute coding is
assured with the proposed technique. Besides, other frequency
multiplexing methods provide dense reconstruction for moving
scenarios, but present high sensitivity to details in the surface,
and can fail under presence of big slopes. Finally, 3D reconstruc-
tion of some real objects has been pursed. For lambertian surfaces
the algorithm works effectively in terms of density and perceived
quality of the one-shot reconstruction. For colored surfaces, the
algorithm still works under colored bright regions but fails under
dark regions. Most of the works presented in SL during last years
have been concerned into frequency multiplexing approaches,
trying to increase the robustness in the decoding step and the
resistance to slopes under the constraint of moving scenarios
[29,16]. Under this scenario, the proposal made in this work of
merging DeBruijn and frequency-based one-shot patterns
achieves a dense reconstruction with the robustness in the
decoding step provided by frequency analysis, jointly with the
accuracy given by spatial DeBruijn-based patterns. This combina-
tion gives us an accurate one-shot absolute dense pattern able to
work in moving scenarios.
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