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Abstract: Laser range finder and omnidirectional cameras are becoming a promising combination of sensors to extract rich
environmental information. This information includes textured plane extraction, vanishing points, catadioptric projection of
vertical and horizontal lines, or invariant image features. However, many indoor scenes do not have enough texture
information to describe the environment. In these situations, vertical edges could be used instead. This study presents a sensor
model that is able to extract three-dimensional position of vertical edges from a range-augmented omnidirectional vision
sensor. Using the unified spherical model for central catadioptric sensors and the proposed sensor model, the vertical edges
are locally projected, improving the data association for mapping and localisation. The proposed sensor model was tested
using the FastSLAM algorithm to solve the simultaneous localisation and mapping problem in indoor environments. Real-
world qualitative and quantitative experiments are presented to validate the proposed approach using a Pioneer-3DX mobile
robot equipped with a URG-04LX laser range finder and an omnidirectional camera with parabolic mirror.
1 Introduction

Reliable self-localisation and mapping plays an important role
in autonomous robot navigation. Indoor environments are the
scenario where service robots move for surveillance,
inspection, delivery and cleaning tasks. The perception
system of a mobile robot must provide accurate information
of the robot environment, taking advantage of its
surroundings in order to reconstruct a consistent
representation of the environment. In many applications,
this environment representation is not known and the
mobile robot has to locate itself while it is doing a mapping
using a set of sequential observations. This problem is
called simultaneous localisation and mapping (SLAM),
which has been studied throughout many years [1, 2].
The most relevant solutions to SLAM are focused on the

feature-based approach, where feature descriptors are
extracted from laser scans or images to solve the problem
of matching observations to landmarks. Other alternative
approaches are as follows: In [3] two-dimensional (2D) raw
range data is used to extract saliency using the iterative
closest point (ICP) [4] algorithm regardless of the
geometric representation of the environment; [5] computes
the camera pose and the scene structure considering
illumination changes using the entire image intensities to
extract saliency regions, and then perform a non-linear
minimisation. Despite the fact that the authors in [5]
consider the illumination changes, this hypothesis is valid
only locally.
In recent years, appearance-based mapping and localisation

has gained special attention, since these methods use a richer
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description of the environment giving more cues to improve
robot mapping and localisation [6, 7]. These approaches are
featured-based (e.g. SIFT, SURF, Harris corners etc.) and
they present a probabilistic framework to build
appearance-based topological maps, assuming environments
with enough texture to extract the image features. In [7], the
authors include the laser scans in their probabilistic
framework in order to extract the environment topology in
the presence of poor textured environments.
Appearance-based methods also exploit the environment
structure given mainly by vertical and horizontal edges,
such as doors, planes and so on, to obtain a better
representation of the robot surroundings. In this sense,
Wongphati et al. [8] proposed a solution using
omnidirectional images and bearing information of vertical
edges to solve SLAM, but this approach needs two
consecutive frames to extract the position of the vertical
edges, delaying the robot pose estimation. The authors in
[9] proposed a vertical edge descriptor that robustly
matches catadioptric vertical edges. The descriptor proposed
in [9] is valid locally, requiring two or more views to
extract the scene vertical edges position.
Besides, common available laser range finders (LRFs)

work in a plane parallel to the ground, and then it limits the
environment representation to 2D. Combining vision
sensors with LRF increases the perceptual information, but
monocular or stereo cameras have limited field of view,
affecting their perception because of occlusions and feature
lifetime observation. Omnidirectional cameras have received
special attention recently because of its long-term landmark
tracking, its wide field of view, its robustness to occlusions
135
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and its ability to be fused with range data. Therefore
combining an omnidirectional camera with a LRF has many
advantages: all the laser trace can be used to extract
environment features on the image plane, depth information
can be embedded into the omnidirectional image, 3D
feature information can be recovered, and once the
calibration between these sensors is performed, for first
time, it can be used in real time. A seminal work in this
sense was proposed by Biber et al. [10], where the SLAM
problem is solved with the LRF and the appearance of the
environment is captured using the omnidirectional camera.
In [11], a system based on a LRF and an omnidirectional
camera is described to obtain a map of the environment
using scan matching and vertical edges; however, the
authors neither solve the SLAM problem nor define a data
association method. In [12], a hybrid sensor is presented
and is composed of an omnidirectional camera and a LRF,
where the laser trace is projected onto the omnidirectional
image and it is used to extract salient features on the image
plane using 1D intensity signals around the detected vertical
edge as a local data association method; however, pixel
intensity-based methods need short base-line movements to
be used with custom similarity metrics and do not produce
discriminative enough features for data association.
In this paper, we present a sensor model based on the

extrinsic calibration between a LRF and an omnidirectional
camera [13], in order to robustly extract the 3D position of
vertical edges in indoor environments and use them to solve
the SLAM problem. Data association is very important for
probabilistic frameworks that deal with mapping and
localisation. Our approach uses a two-step algorithm to
solve data association: First, a joint compatibility branch
and bound (JCBB) test [14] is performed; second, a
geometric constraint based on the catadioptric projection of
the scene vertical edges and a rigid transformation is
considered in order to resolve the ambiguous associations
obtained from the JCBB test. The experimental validation
was performed by integrating our sensor model into the
FastSLAM [15, 16] framework and using a data set
collected in the indoors of the University of Girona.
This paper is organised as follows: Section 2 describes the

extrinsic calibration between the LRF and the omnidirectional
camera. Section 3 concerns the description of the sensor
model, vertical edge position estimation and data
association. Section 4 describes the scenario and the
experimental results. The paper ends with conclusions.

2 LRF/omnidirectional camera calibration

A central catadioptric camera consists of a perspective or
orthographic camera and a mirror. The latter can be conic,
hyperbolic or parabolic. Projective models for these
cameras have been developed by [17, 18]. In the remainder
of this paper, we adopt the model described in [18],
because it is related to the toolbox described in [19], and it
was used to calibrate our central catadioptric camera.
The URG-04LX 2D LRF used in this work was previously

calibrated in order to decrease the range error following the
procedure described in [13]. The raw 2D laser scan data are
previously processed using a median filter to discard
spurious readings. Our approach was tested using a data set
with the robot in motion; for this reason motion
compensation is performed in the 2D laser scan data. For
self-containment, the following are the main steps
136
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performed to find the extrinsic calibration parameters
between the omnidirectional camera and the LRF.
Fig. 1 depicts the extrinsic calibration between the

omnidirectional camera and the LRF. There are three
coordinate systems: those of the laser, the calibration
pattern and the camera. The problem focuses on finding R
and T, the rotation and translation matrices of the camera
with respect to the LRF, so that laser points PL can be
represented in the camera coordinate system, and then
projected onto the omnidirectional image. According to
[13], the laser points (PL) that belong to the calibration
plane satisfy a geometric constraint based on the distance
between the camera and the calibration plane. This
constraint can be expressed by (1)

NC RPL + T
( ) = N2

C (1)

where NC = R3,C × RT
3,C TC

( )
is a vector parallel to the

normal vector of the calibration plane extracted from the
omnidirectional camera calibration; R3,C and TC correspond
to the third column vector of the calibration plane extrinsic
rotation matrix and its translational vector, respectively; R
and T are the parameters to estimate; and PL is a laser
point. Using (1), a non-linear minimisation function that
simultaneously estimates R and T can be expressed as in
(2) and (3).

f R, T , PL

( ) = NC RPL + T
( )− N2

C (2)

∇Q,T f R, T , PL

( ) = NC

[∇RQ,PL
∇nQ, I3x3

]
(3)

where ∇Q,Tf R, T , PL

( )
PL is the gradient of the

minimisation function using quaternions, ∇RQ,PL
is the

quaternion’s gradient evaluated at point PL, and ∇nQ is
the gradient of the quaternion’s normalisation factor. A
Levenberg–Marquardt algorithm was used to minimise (3),
which need an initial guess. In [13], three different ways to
obtain it were presented; however, the best results were
obtained using the linear least squares version of (2) applied
to two different calibration planes. Afterwards, the initial
guess gave a rank-2 rotation matrix, since the resulting
matrix is not a proper rotation matrix, because it does not
satisfy RRT = I. This happens because the laser points are

Fig. 1 Omnidirectional camera and LRF extrinsic calibration
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constrained on a plane. For this reason, the nearest rotation
matrix was found as proposed in [20]. At the end of the
non-linear minimisation process, and using 14 calibration
planes, the following results were obtained: T = [−0.0069 ±
0.0007, −0.2100 ± 0.0017, 0.5557 ± 0.027]T in meters and
0.7644° ± 0.002°, −4.5928° ± 0.0005° and −105.0235° ±
0.033° for the Roll, Pitch and Yaw angles of R.

3 Sensor model

Once the extrinsic parameters of the LRF and the
omnidirectional camera were obtained, the laser points can
be projected onto the omnidirectional image using the
projection model described in [19]. The sensor model
proposed uses the laser points and the vertical edges on the
omnidirectional image to obtain a set of observations in
terms of range, azimuth and elevation of the scene vertical
edges. Section 3.1 presents the vertical edge extraction; the
observation model is presented in Section 3.2 and the data
association method in Section 3.3.

3.1 Vertical edge detection

For edge detection, we used a modified version of [21].
Popular solutions consider the Hough transform; however,
these solutions require a sampling of the search space and
the accuracy depends on it. On the other hand, the method
proposed in [21] allows computing the edges analytically,
which is needed for our proposal as it will be further
explained in Section 3.2. For self-containment, the main
idea of the method proposed in [21] is described. This
algorithm starts detecting edges in the image (e.g. using
Canny or Sobel detectors) and building chains of connected
edge pixels. Then these chains are projected onto the
sphere, where the great circle constraint is verified to be
considered as an edge. Otherwise, it is iteratively cut into
two sub-chains until a sub-chain is considered as an edge or
its length is too small. Afterwards, a merging step is
applied because an edge might be decomposed into more
than a single chain. The approach presented in [21] detects
any edge; hence we modified the pipeline process in order
to detect only the vertical edges. First, instead of validating
an edge using the normal vector extracted from the extreme
points, which is inaccurate since it does not keep in mind
the other edge points, our implementation of the algorithm
considers an improved geometric constraint shown in (4). It
comes from the relationship between the normal vector of a
plane and the points belonging to this plane.

x1 y1 z1
. . . . . . . . .

xn yn zn

⎡⎣ ⎤⎦NS = A× NS = 0 (4)

where PS = [xn yn zn] is a point on the sphere, n is the total
number of points belonging to a chain, and NS is the
normal vector. Using a singular value decomposition of
A =USVT, ordering the eigenvalues of S in decreasing
order, the third column of V contains the least-squared
solution of (4). Secondly, once the edge was validated, an
additional constraint given by the cross-product between the
normal vector of the edge NS and the normal ground plane
z = [0 0 1]T was added. This allows detecting only the
vertical edges, since their dot product is close to zero. Last,
to improve the computing time the edge and chain detection
were implemented in MEX files; and using the camera
IET Comput. Vis., 2013, Vol. 7, Iss. 2, pp. 135–143
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calibration a look-up table was computed to accelerate the
image point projection onto the sphere.

3.2 Vertical edge position estimation

The vertical edge position computation with respect to the robot
frame takes place as follows: First, the LRF data are divided
into line segments using a Kalman-based breakpoint detector
and a split-and-merge approach; afterwards, using the
omnidirectional camera projection model, the extrinsic
calibration described in Section 2, the line projection model
[22] and the intrinsic camera parameters, the laser segments
are projected as conics on the image plane. Despite the fact
that the LRF trace is compensated for the robot motion, the
LRF trace does not exactly coincide with the scene vertical
edges as depicted in Fig. 2a. For this reason, a robust data
association is implemented and described in the following
stages. Secondly, using the projection model the breakpoint
uncertainties are projected onto the image plane as depicted in
(5)–(8)

SI
Ci = JKJDJSJRJP

s2
r 0 0

0 rs2
uCi

0
0 0 0

⎡⎢⎣
⎤⎥⎦JT

PJ
T
RJ

T
SJ

T
DJ

T
K (5)

JP =
cos uCi

( ) −sin uCi
( )

0
sin uCi

( )
cos uCi

( )
0

0 0 0

⎡⎣ ⎤⎦ (6)

JS = 1

rp(zs + jrp)2

×
rpzs + j y2s + z2s

( ) −jxsys −xs rp + jzs

( )
−jxsys rpzs + j x2s + z2s

( ) −ys rp + jzs

( )
⎡⎣ ⎤⎦

(7)

JK = g1 sg1
0 g2

[ ]
(8)

where s2
r and s2

uc are the variances of the range and
orientation of the LRF, respectively, ρ is the range of the ith
breakpoint in the LRF frame, JP is the Jacobian of the polar to
Cartesian coordinate transformation, θCi is the breakpoint

Fig. 2 Vertical edge position estimation

a Vertical edges and their LRF corner associations
b Vertical edge position measurement
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orientation in the LRF frame; JR is the Jacobian of the
standard Roll–Pitch–Yaw rotation matrix obtained in
Section 2 (not shown for reasons of space); JS is the
Jacobian of the projection function to the image plane at
infinity, ζ is the mirror parameter, [xS yS zS]

T is the point on
the sphere, and rP its magnitude; JD is the Jacobian of the
distortion function which was taken from [19]; JK is the
Jacobian of the camera projection function, and γ1, γ2 and s
are the intrinsic camera parameters.
Thirdly, using the conic projections on the image plane [22]

corresponding to the LRF segments, the intersecting points with
the vertical edge are computed solving the second-order
equation given by PT

LCImPL = 0, where PL is the intersection
point that resides on the conic defined by CIm. By doing this,
two intersects are yielded for each vertical edge. Fourthly, the
data association between the projected breakpoints and the
vertical edge intersects is performed using the JCBB test.
Unlike [11], where no details were described with respect to
the vertical edge position estimation, the method presented
here robustly associates each vertical edge to a range/bearing
pair in the camera frame. Fig. 2a shows an example of the
resulting data association described above. In this figure, the
conic intersects are shown in circle-shaped points and the
associated LRF breakpoints are shown in star-shaped points.
The remaining LRF breakpoints are also shown in
diamond-shaped points. Lastly, considering Fig. 2b, where
BL1 corresponds to the XY position of the vertical edge with
respect to the camera frame, the 3D ending point AL1 and the
3D initial point CL1 are computed using the associated range
and bearing information and the projection of the vertical
edge onto the sphere. These points can be expressed as
depicted in (9) and (10).

AL1 =
xA
yA
zA

⎡⎣ ⎤⎦ =
rCicos uCi

( )
rCisin uCi

( )
rCi

tan p− uA1
( )

⎡⎢⎢⎣
⎤⎥⎥⎦ (9)

CL1 =
xC
yC
zC

⎡⎣ ⎤⎦ =
rCicos uCi

( )
rCisin uCi

( )
rCi

tan p− uC1
( )

⎡⎢⎢⎣
⎤⎥⎥⎦ (10)

where rCi and θCi are the associated range and bearing of the
vertical edge with respect the camera, respectively, and θA1
and θC1 are the angles of the ending and initial points with
respect to the Z-axis of the camera frame. Using these scene
points and the inverse transformation of the extrinsic
calibration parameters (Section 2), the observation model with
respect to the LRF frame can be computed as depicted in (11).

Zn =
rn
un
cn

⎡⎣ ⎤⎦ =

���������������������������������
(mx − xR)

2 + (my − yR)
2 + m2

z

√
atan2

my − yR
mx − xR

( )
− uR

cos−1 mz

rn

( )

⎡⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎦ (11)

where rn, θn and ψn are the observed range, azimuth and
elevation of the middle point mL1 = [mx, my, mz] of edge L1
given the current robot position Xt = [xR, yR, θR], which is
assumed the same frame as the LRF. In Section 4.1, the
linearisation of the measurement model with respect to
the feature coordinates and the robot state will be needed. The
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Taylor approximation of this measurement model is depicted
in (12).

zt Xt, mHt

( )
≃ zt Xt , mHt ,t−1

( )
+ Jt mHt

− mHt ,t−1

( )
(12)

Jt =

dx

rn

dy

rn

dz

rn
−dy

d

dx

d
0

dx

d f

dy

d f

−1���������
d − dz2

√

⎡⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎦ (13)

zt Xt, mHt

( )
≃ zt Xt, mHt

( )
+ Ft Xt − Xt

( )
(14)

Fk
t =

−dx

rn

−dy

rn
0

dy

d

−dx

d
−1

−dx

d f

−dy

d f
0

⎡⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎦ (15)

where Jt is the Jacobian with respect to the feature coordinates,
Xt is the robot state, mHt ,t−1 is the feature mean location in the
previous time step, dx = mx − xR, dy = my − yR, dz = mz,

d = (mx − xR)
2 + (my − yR)

2 +mz
2 and f =

�������������
d/dz2
( )− 1

√
,

Ft is the Jacobian with respect to the robot state (Xt), and X t
is the predicted robot state.

3.3 Data association

In our implementation, we considered the JCBB test to solve
the data association problem [14], such that the correlations
between innovations are explicitly taken into account to
determine the joint compatibility of a set of pairings. The
sensor model proposed in this paper is focused on finding
the range, azimuth and elevation of the vertical edge middle
point. However, JCBB associate features depending on the
innovations, their covariance and the innovation gate
distance metric used (Mahalanobis distance), which are no
longer valid when the uncertainty becomes important.
Therefore in this paper, we propose a method for
distinguishing vertical edge features which are close to each
other when the measure of uncertainty is not sufficient to
obtain a better data association.
First, the JCBB test is used. If a current vertical edge

feature is associated with two or more landmarks in the
map, the second step is performed. Fig. 3 shows a typical
situation, where two views are involved: the current view
with one observation associated with two map landmarks.
This view is placed at the predicted robot pose OC, where a
scene vertical edge ZLn is observed and projected onto the
sphere as ZLns using the unified projection model; a plane is
defined between ZLns and OC, which can be parameterised
by the normal vector Nns, since for all points ZLk belonging
to ZLns the dot product property (ZLk

T)·(Nns) = 0 is satisfied.
On the other hand, two landmarks candidates (i.e. mLi and
mLj) corresponding to the map view placed at Om have their
analogous spherical projections (i.e. mLis and mLjs) and
planes parameterised by the vector normal mNis and mNjs,
respectively. In our implementation, the robot pose in
which a feature was seen for the first time is saved; this
allows us to relate OC and Om through a transformation
defined by R and T.
IET Comput. Vis., 2013, Vol. 7, Iss. 2, pp. 135–143
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The intuitive idea behind our method is – given the current
observation parameterised by the vector normal Nns and the
map landmarks candidates, in this case parameterised by
mNis and

mNjs in the map view – associate the observation
ZLns with the closer landmark map parameterised by the
transformed vector normal CNis and CNjs in the current
view. This is formally described by (16).

ci = min
i

∑FZ
k=1

LT
kNns − CLTC

i,k Nis (16)

where F is the total number of points of the observed feature, ZLk
is the kth observed point, CLi,k is the kth point of the ith landmark
candidate with respect to OC and ci is the resulting associated
map feature index. Equation (16) selects the landmark
candidate with the minimum difference between the projection
of the observed points ZLk on the plane parameterised by Nns,
and the projection of the ith map feature on the plane
parameterised by CNis as the final feature association.

4 Results

As we mentioned in the introduction, mapping and
localisation for mobile vehicles is a challenging task, which

Fig. 3 Resolving ambiguous data association
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depends on the filter (EKF, UKF or particle filter [1]), but
in which the sort of perception system used and the method
to extract the salient features are crucial. This reason
motivates us to integrate our sensor model within a popular
SLAM algorithm as FastSLAM described in Section 4.1,
which presents our test platform and the data set collected.
Section 4.2 concerns the resulting map obtained using our
approach, which are qualitatively compared with the
resulting map using a standard scan-matching technique [4],
and quantitatively through the robot pose error with respect
to the G2O framework [23].

4.1 Experimental conditions

We tested our approach on a Pioneer 3DX mobile robot
equipped with an onboard computer at 1.5 GHz, an
omnidirectional vision setup composed of a RemoteReality
parabolic mirror with a diameter of 74 mm, a UI-2230SE-C
camera with a resolution of 1024 × 768 pixels, and a
URG-04LX LRF (Fig. 4a).
We collected our data set at the PIV building of the

University of Girona, which has three floors. These data
sets include the LRF readings, the corresponding
omnidirectional images and the robot odometry. Fig. 4b
shows two columns of omnidirectional images, each
column corresponding to the first and third floor of the PIV
building, respectively. These images show the
environmental conditions in which the data sets were
collected. It can be observed that there are illumination
changes and occlusions caused by pedestrians assuring in
this way a real-world experiment. The data set
corresponding to the first floor has a path length of ∼ 80 m
and that on the third floor a length of ∼ 55 m.
In general, the SLAM problem can be solved using the

iterative methods (Kalman filters, particle filters and
occupancy grids), or using the global minimisation methods
(Bundle adjustment and expected maximisation) [1, 2]. The
global minimisation methods require the entire data set,
which is not acceptable for real-time operation, besides
these methods have data association issues [12]. The family
Fig. 4 Experimental conditions

a Robot platform and experimental setup
b Omnidirectional images samples taken from the collected data set. Each column corresponds to the first and third floor of the PIV building, respectively
139
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of Kalman filters assumes a high-dimensional Gaussian
distribution of the error source, the robot pose and the map
features, however, the mapping and localisation problems
involve non-linear functions and unknown error sources, the
latter cannot be modelled using an exact mathematical
representation. In this context, particle filters can handle
these kind of problems sampling from an estimate
probabilistic distribution and improving it recursively. In
this paper, we used the FastSLAM [15, 16] algorithm,
which uses particle filtering and we have adapted it to
support our sensor model.
In our implementation, the system state is composed of the

robot position X = [xR, yR, θR] and the vertical edge positions
(M). The observations are that the range, azimuth and
elevation of the vertical edges (Z) and the control data (U)
are obtained from scan matching [4]. As conditional
independence can be assumed given the robot poses, the
posterior can be factored as depicted in (17).

p xt, M |z1:t, u1:t
( ) = p xt|z1:t, u1:t

( )∏N
n=1

p mn|xt, z1:t
( )

(17)

where t is the current time step and N is the current number of
features. In FastSLAM, each particle is denoted by
ykt = xkt , m

k
1,t, S

k
1,t, . . ., m

k
N ,t, S

k
N ,t, where k is the particle

index, xkt is the robot position estimate, and mk
n,t and Sk

n,t are
the mean and variance of the Gaussian representing the nth
landmark location of the kth particle, which are estimated
using independent Kalman filters. The filtering process
overview is explained as follows:

Getting measures: Vertical edge positions with respect to the
LRF are gathered: zn,t = [ρn,t φn,t ψn,t]

T, where ρn,t, φn,t and ψn,t

are the range, the azimuth and elevation of the nth vertical
edge at time t (Section 3.2).
Sampling new poses: A new pose xt is sampled according to
the motion posterior xkt p̃ xkt |xkt−1, ut

( )
, where xkt−1 is the

previous estimate for the robot location in the kth particle,
and ut is the command motion obtained from scan-matching.
Data association: Given the current set of landmarks for the
kth particle, the current set of observations zt and the
current predicted pose xkt , the data association vector Ht is
computed (Section 3.3).
Update observed features: For each observed feature in each
kth particle, the standard EKF expressions were applied to
obtain the mean (mk

Ht ,t
) and covariance

(
Sk
Ht ,t

)
of these

features as shown (18), (19) and (20).

Kk
t =

∑k
Ht ,t−1

J kT
t J k

t

∑k
Ht ,t−1

J kT
t + Qt

( )−1

(18)

mk
Ht ,t

= mk
Ht ,t−1 + Kk

t zt − ẑkt
( )

(19)

∑k
Ht ,t

= I − Kk
t J

k
t

( ) ∑k
Ht ,t−1

(20)

where J k
t is the Jacobian of the measurement model with

respect to the feature coordinates (see Section 3.2) and Qt is
the sensor uncertainty.
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Re-sampling: We use a low variance re-sampling method,
where the importance factor of each particle depends on
their measurement probability.

4.2 Real experiments

Fig. 5 shows two maps, the first one (Fig. 5a) was built using
scan matching and the second one (Fig. 5b) depicts our
estimated map, both on the CAD map of the first floor of
the PIV building in order to see their correspondence. Our
estimated map shows the robot path and the landmarks
estimated positions of the best particle. By comparing both
the maps, it is clear that our approach obtains a better
match with respect to the CAD drawing. The data set was
taken in the presence of pedestrians, who are shown by the
arrows in both maps. Despite of this fact, our approach
obtains a coherent representation of the environment.
Considering the first column of Fig. 4b, it is worth to note
that the omnidirectional images correspond to the first loop
at the left of Fig. 5, the first corridor above the office No.
005 and the back exit of PIV building below the office No.
015, respectively.
Fig. 6 shows the results for the second experiment, the scan

matching-based map (Fig. 6a) and our estimated map
(Fig. 6b). The main goal of the second experiment was to
test our approach along long corridors, since it is well
known that scan-matching techniques have a tendency to
estimate shorter displacements than expected. This fact can
be observed in Fig. 6a enclosed using discontinuous circle.
However, our approach corrects this error and the rotation
error introduced after the 180° rotation performed by the
robot on the top-right part of the map. The data set was
taken in the presence of walking people; despite of this fact,
it can be observed that our approach shows that the robot
path and the environment representation are in consistent
with CAD map of this floor.
Fig. 7a shows a zoomed region of Fig. 6a. This figure

shows the consistency between the laser scan and the
corresponding vertical edges in the scene. Using our
approach, one omnidirectional image and the corresponding
LRF trace are only needed in order to obtain a local 3D
reconstruction of the scene. This has many advantages: it
avoids dealing with the scale factor problem when only a
vision sensor is used, it gives metric information in real
time and it solves disambiguation caused by dynamic
environments.
In the same way as before, Fig. 7b shows a zoomed region

of the third floor map in order to visualise the consistency in
the vertical edge positions with respect to the laser scan.
Observing Fig. 7b, it can be noted when groups of vertical
edges put together, these edges correspond to those detected
in the frame doors. One of the improvements we are
working out is using this information and the LRF trace in
order to obtain the 3D planes corresponding to the scene,
instead of obtaining them only from the catadioptric image
analysis as the approach proposed by [21].
Despite the fact that vertical edges are widely present in

indoor scenes, using them as observations in a SLAM
framework has some drawbacks: the changes in the
illumination play an important role in detecting them, which
introduces repeated features increasing the data association
computation time (see Figs. 7a and b); in many situations,
the vertical edges appear so close to each other (e.g. door
jamb) or parallax, since in our experimental setup the LRF
is not placed right above the omnidirectional camera. These
IET Comput. Vis., 2013, Vol. 7, Iss. 2, pp. 135–143
doi: 10.1049/iet-cvi.2011.0214



www.ietdl.org
Fig. 5 First experiment: SLAM at the first floor of PIV building

a Scan matching map
b Estimated map using our approach
situations cause data association failures and then the robot
position error increases. This was another reason to select
the FastSLAM algorithm, since in these situations
EKF-based SLAM solutions make the EKF filter to diverge
[1]. Although the FastSLAM framework holds as many
hypotheses as particles exist, however, after the first
increment in the robot position error, the probability of
further errors increases, temporarily degrading the map
quality, but not causing the filter to diverge.
To obtain the ground truth data, we used the G2O

framework [23]. This algorithm provides a solution for
batch optimisation of graph-based non-linear error
IET Comput. Vis., 2013, Vol. 7, Iss. 2, pp. 135–143
doi: 10.1049/iet-cvi.2011.0214
functions. We introduced the robot trajectory of the first
experiment as a graph, including nodes, edges and
constraints. The output of the algorithm is an estimate of
the robot trajectory obtained after a non-linear minimisation
using Levenberg–Marquardt. Using this output, we were
able to extract the X–Y error and the heading error of the
robot along its path (Fig. 8). Observing the X–Y and
heading errors shown in Figs. 8a and b, it is worth noting
the error decreasing at steps 50, 150 and 225 approximately
because of the loop closure, as depicted in Fig. 5 within the
circles with solid line. After step 240 approximately, the
particle filter depends on the sensor model to accurately
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Fig. 6 Second experiment: SLAM at the third floor of the PIV building

a Scan matching map
b Estimated map using our approach
Fig. 7 Zoomed region of third floor map

a Details of Fig. 5 with 3D vertical edges
b Detail of Fig. 7 with 3D vertical edges
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Fig. 8 X–Y error and the heading error of the robot along its path

a X–Y error in meters along the robot trajectory
b Heading error in radians along the robot trajectory
IET Comput. Vis., 2013, Vol. 7, Iss. 2, pp. 135–143
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detect the vertical edges and associate them with map
features. This can be observed in the shape of the error
graphs, since periodically there is a rise and fall of the X–Y
and heading errors because of vertical edge features coming
into and leaving from the field of view.

5 Conclusions

We have presented a sensor model based on a
range-augmented omnidirectional vision sensor and used it
to solve the SLAM problem. The proposed sensor model is
based on the extrinsic calibration of a LRF and an
omnidirectional camera. Using this calibration, the 3D
position of vertical edges were extracted and considered as
observations in our implementation of the FastSLAM
algorithm. Our approach provides metric information and
appearance-based environmental description using one
omnidirectional image and the corresponding LRF trace.
Using our approach, two problems are solved: the scale
factor and the data association disambiguation based on the
unified spherical model for catadioptric cameras in dynamic
environments where the uncertainty becomes important.
Observing the results achieved, alternative research

directions can be considered in order to improve the
proposed approach, such as exploiting other landmark
attributes that could be useful for data association; taking
advantage of the metric relationship between the 3D vertical
edges and the LRF trace in order to extract the local 3D
planes; and improving the loop closure detection using the
feature management method proposed in [24, 25], instead
of relying only on the data association performance; finally,
hierarchical SLAM methods as described in [26] can be
used to improve the map consistency in large-scale
environments.
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