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Point cloud matching is a central problem in Object Modeling with applications in Computer Vision and
Computer Graphics. Although the problem is well studied in the case when an initial estimate of the rel-
ative pose is known (fine matching), the problem becomes much more difficult when this a priori knowl-
edge is not available (coarse matching). In this paper we introduce a novel technique to speed up coarse
matching algorithms for point clouds. This new technique, called Hierarchical Normal Space Sampling
(HNSS), extends Normal Space Sampling by grouping points hierarchically according to the distribution
of their normal vectors. This hierarchy guides the search for corresponding points while staying free of
user intervention. This permits to navigate through the huge search space taking advantage of geometric
information and to stop when a sufficiently good initial pose is found. This initial pose can then be used as
the starting point for any fine matching algorithm. Hierarchical Normal Space Sampling is adaptable to
different searching strategies and shape descriptors. To illustrate HNSS, we present experiments using
both synthetic and real data that show the computational complexity of the problem, the computation
time reduction obtained by HNSS and the application potentials in combination with ICP.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

Laser Scanners or range finders are widely used in industrial
applications such as reverse engineering, mould fabrication and
quality control. Point clouds are one of the most frequent outputs
of laser scanners as they capture the shape of objects with high
precision, can be used as the starting point of more complex object
representations (planar patches and union of surfaces of superior
order) and are used as the input of many object modeling algo-
rithms (object alignment (Mian et al., 2006), merging of views
(Matabosch et al., 2008; Wei et al., 2010) and manufactured
piece-model comparison (Salvi et al., 2008)). The goal of point
cloud matching is to find the Euclidean motion(s) between two
(or more) range images of a given object in order to represent these
images in the same coordinate system. Following the classification
provided in Salvi et al. (2007), we divide matching methods in two
groups: fine and coarse matching.

In fine matching, an initial alignment is required (Xie et al.,
2010) and the goal is to converge to the most accurate matching
possible. This is achieved by iteratively minimizing the distances
between temporal correspondences (also known as closest points).
Important issues in all these algorithms include the use of efficient
nearest-neighbour search structures, the matching strategy, the
distance considered and the robustness in terms of noise and false
ll rights reserved.
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correspondences. ICP (Iterative Closest Point), introduced by Besl
and McKay (Besl and McKay, 1992) experienced several improve-
ments dealing with matters such as robustness (Trucco et al.,
1999), algorithm speed up (Zinsser et al., 2003) and the use of hier-
archy in data (Jost and Hügli, 2002; Turk and Levoy, 1994). Overall,
ICP is the most common fine matching method and has been
shown to get very good results. However, ICP usually presents
problems of convergence, is sensitive to noise in data and might re-
quire expensive running times. Also, in some cases it converges to
local minima and fails to provide the desired solution.

On the other hand, coarse matching can compute an initial esti-
mate of the motion between two point clouds that are quite apart.
The main difference with fine matching is that coarse matching is
generally non-iterative in the sense that it does not converge to the
best possible solution. Coarse matching is usually the first step to a
posterior fine matching. A popular approach is to compute motion-
invariant features (or descriptors) for both sets in order to further
describe the objects and speed up the search for matching. Coarse
matching algorithms differ on shape feature descriptors (for exam-
ple Point Signature (Chua, 1997) or Spin Image (Johnson, 1997))
and on the matching methods used to stablish correspondences
between objects (Genetic Algorithms (Brunnström and Stoddart,
1996), Principal Component Analysis ‘‘PCA’’ (Chung and Lee,
1998) or RANdom Sample And Consensus ‘‘RANSAC’’ (Fischler
and Bolles, 1981)). Coarse matching suffers from high computa-
tional costs, needs to avoid local minima and its performance drops
when data is noisy. PCA, additionally, cannot be used if the per-
centage of overlap between the two sets is low, although it is
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Fig. 1. Matching sample, initial position (left), output estimated pose (right). Point clouds are presented with a superimposed texture for better visualization.
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sometimes regarded as the standard method when noise in data is
low and the overlap is high.

In order to address these problems, we present a speed-up tech-
nique for coarse matching algorithms and apply it in the RANSAC
approach. RANSAC was first proposed by Fischler and Bolles (Fisch-
ler and Bolles, 1981). The problem that RANSAC solves is to esti-
mate the parameters of a certain model starting from a set of
data that contains an ‘‘outlier’’ subset that, if used to determine
the model, does not lead to a correct solution. RANSAC has been
extensively used both in fine (Masuda and Yokoya, 1995) and
coarse (Aiger et al., 2008) matching.

Let A ¼ fa1; . . . ; ang and B ¼ fb1; . . . ; bmg be two sets of points
with ai; bj 2 R3. Our goal is to determine a rigid transformation that
brings B closer than a given threshold to A (see Fig. 1 for an exam-
ple). The matching threshold, expressed in terms of Sum of
Squared Differences (SSD), is set beforehand and must be sufficient
for the subsequent fine matching to succeed (see details in Sec-
tion 3). In order to determine the rigid motion we need to find at
least two corresponding triplets (ðai1; ai2; ai3Þ; ðbj1; bj2; bj3Þ with
aik 2 A; bjl 2 B). The rigid motion is then computed by SSD mini-
mization between both triplets using singular value decomposition
(Sorkine, 2007). In some cases, more than three points per set are
used (Aiger et al., 2008).

RANSAC applied to point cloud matching consists in finding
these corresponding triplets taking into account that some ‘‘out-
lier’’ points do not lead to a solution. RANSAC samples randomly
the motion space. Enumerating all possible motions stands for
choosing the two corresponding triplets needed to determine each
of them. This represents a computational cost of O (n3m3) that,
although mitigated by the random sampling of RANSAC, may easily
be unusable in practice. A key observation is that coarse matching
Fig. 2. HNSS Overview: HNSS schema
does not really need to traverse all this huge search space. Instead,
the goal is to search for a sufficiently good solution (not necessarily
the best) and to stop the algorithm as soon as such a solution is
found.

Existing speed-up solutions for RANSAC-based coarse matching
include the use of descriptors (Chua, 1997; Johnson, 1997) and
Normal Space Sampling (NSS) (Rusinkiewicz and Levoy, 2001).
Descriptors prune the search space by eliminating non-related
couples in terms of shape, while the goal of NSS is to scale down
the problem by using vectors locally normal to the surface de-
scribed by the point cloud. NSS selects more points in those regions
with less frequent normals and downsamples regions with uni-
form normals. However, should the sampling include too few
points, it might prevent the finding of a correct matching. Addi-
tionally, NSS does not interact with the subsequent search, so the
question: ‘‘how many points to sample?’’ becomes both determi-
nant for the result and very difficult to answer without human
intervention.

We address all these problems in detail in Section 2. Section 3
contains the experimental results obtained using both synthetic
data and real data. The paper ends with the conclusions in
Section 4.
2. HNSS for Coarse matching

In this section we present the Hierarchical Normal Space Sam-
pling (HNSS), a new and more efficient organization of data. HNSS
organizes data in a hierarchy (Fig. 2, right) of sets of increasing car-
dinality taking into account the surface normal vectors at every
surface point. HNSS can be used in combination with any RAN-
(left), and data hierarchy (right).



Table 1
Time reduction due to use of data hierarchy.

SET RANSAC HNSS 4 levels

#IT tresðsÞ ttotalðsÞ Last level #IT tresðsÞ ttotalðsÞ Last level

T100 390 � 0:01 0.01 0 123 � 0:01 0.01 2
C1000 12117.5 0.02 1.3 0 373.5 0.01 0.09 1.1
T1000 313005 1.67 33.65 0 2652 0.01 0.27 1.5
C5000 1079520.8 1.68 460.2 0 1850.31 0.14 0.44 1.9
T5000 66477531.8 420.9 27640 0 3312.9 0.13 0.54 2.1

HNSS 7 levels HNSS 10 levels

#IT tresðsÞ ttotalðsÞ Last level #IT tresðsÞ ttotalðsÞ Last level

T100 403.8 � 0:01 0.01 4 467.2 � 0:01 0.01 7.0
C1000 132.8 � 0:01 0.03 2.9 1046 0.01 0.88 6.2
T1000 1178 0.02 0.12 3.3 20003.4 0.04 0.75 4.8
C5000 937.1 0.08 0.3 4.2 42663.1 0.89 1.27 5.2
T5000 487.4 0.07 0.14 5.1 187438.6 0.74 5.77 6.6
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SAC-based coarse matching algorithm, possibly using descriptors,
such as (Aiger et al., 2008). In order to focus on the improvements
given by HNSS and not on the advantages of a chosen descriptor or
search strategy, we present results of HNSS with a RANSAC schema
without descriptors.

HNSS improves the search for matching: First, the use of
descriptors and HNSS allows the identification of search space
areas that are more likely to produce better results. Second, HNSS
is able to refine partial results, so it can dig ‘‘deeper’’ in those parts
of the search space where interesting results are found. HNSS is
also a way to make use of NSS in a fully automated way that does
not require decision on how many points to sample. Bearing in
mind that the goal is not to find the best possible matching, but
to provide a ‘‘good enough’’ initial guess for fine matching to start,
we claim that exploring the (huge) search space with HNSS is dis-
criminant, very adaptable and more efficient. Section 3 experimen-
tally supports these claims.

Following NSS, we classify the surface points according to their
normals, but we sort and group them in levels according to singu-
larity. For example, the topmost level contains the points with
more singular normals. The lowermost level of the hierarchy con-
tains all the points, but the goal of HNSS is to direct the search
through the higher levels that contain less points (See Table 1, Sec-
tion 3.1 for details). The idea of organizing data hierarchically has
been widely used in combination with ICP (Jost and Hügli, 2002;
Turk and Levoy, 1994). However, this is, to the best of our knowl-
edge, the first time it is used in combination with NSS.

The data hierarchy is traversed using a 3-point RANSAC algo-
rithm for every hierarchy level (Fig. 2, left). This corresponds to a
search for matching amongst points with normals that are similar
in terms of singularity. Potential correspondences of triplets of
points in A to triplets of points in B are checked. Every time a cor-
respondence is determined, the corresponding rigid motion in
terms of SSD is computed (Hoppe et al., 1992; Sorkine, 2007)
and, if it is considered good enough the search stops. The hierarchi-
cal organization of data makes it possible to explore first the points
in set A that are more promising in terms of their normals. We can
say thus, that the hierarchy of set A guides the search for promis-
ing triplets of points ai1 ; ai2 ; ai3 2 A. Promising triplets are those
that induce at least one motion between the sets. On the other
hand, when a promising triplet of points is found, the algorithm
may explore subsequent levels in the hierarchy in order to refine
the matching. Consequently, the hierarchy of set B allows the algo-
rithm to find the best correspondence for promising triplets and,
thus, spend more computing time in the areas where interesting
results are being found.

Concerning theoretical complexity, the total cost of the classical
RANSAC algorithm can be shown to be Oðn3m4 log n). HNSS trans-
forms the problem into a series of smaller ones with asymptotic
cost

Pl
i¼kOðjAij3jBij4 logðjAijÞÞ, (where l is the level where the

matching is found). This asymptotic cost is the same than classical
RANSAC as full sets conform the basis of the hierarchy. Actual run-
ning time, however, depends mainly on the level where the match-
ing in found. Section 3 shows how HNSS does help reduce
computation time (see Table 1 for levels explored and Section 3.2
for computation time reduction).

Hierarchy construction
We focus on the decomposition of set A, resulting in the hierar-

chy:A0ð¼ AÞ;A1; . . . ;Ak. The number of hierarchy levels is kþ 1, as
k levels are built on top of the base setA. The topmost levelAk con-
tains, in light of the existing literature (Rusinkiewicz and Levoy,
2001), bn=100c points. The lowermost level A0 ¼ A, contains all n
points. Intermediate levels increase their cardinality from top to
bottom following: jAij ¼ b n

100c þ ðn� b n
100cÞ

k�i
k for 0 < i < k. Having

less points in the higher levels is chosen over having many points
with lots of redundant information. Section 3 presents results for
hierarchies with varying number of levels.

Points in each level of the hierarchy are chosen considering that
points with less frequent normals are more distinctive and should,
thus, appear in higher levels of the hierarchy. First, the normals for
all points inA are computed. The normal at each point is estimated
as the normal to the fitting plane obtained by applying the total
least square method to the k-nearest neighbours of the point (Hop-
pe et al., 1992). For the choice of k we used (Mitra et al., 2004).
Then, following (Rusinkiewicz and Levoy, 2001), unitary normals
are considered in the unit sphere. Using spherical coordinates, reg-
ular angle buckets are built by dividing the �0;2p½��0;2p½ parame-
ter space in regular cells. Every point is assigned to its
corresponding angle bucket. Finally, the points in each level are
chosen:

� First we decide how many points are sampled from every
bucket: The average contribution per bucket is noted c1 ¼ jAi j

128.
Those buckets that have less than c1 points contribute all their
points. Then we iterate the process and compute the average
contribution c2 for the remaining buckets and number of points.
Again, buckets with less than c2 remaining points contribute all
their points and the rest advance to the next iteration. The pro-
cess stops when we reach the desired total contribution. Notice
how points in buckets with lots of points are less likely to be
sampled.
� Once we know the point contribution per bucket, we perform a

uniform spatial sample with a random component to choose the
points. For each bucket, we store points in a uniform 3D grid.
This grid is made up of regular, axes-parallel, 3D cubical cells.
Each of these cells contributes the same number of points so
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the sample is uniform in space. Inside each grid cell, the points
to be contributed are sampled randomly. Points not yet chosen
for previous levels are sampled first. Only if not enough such
points exist may points already present in other levels be cho-
sen. There are two reasons for this type of sampling. First, to
ensure that downsampled areas do not disappear in lower lev-
els and second to have points as different as possible in each
level.

The bucketing of angles results in down-sampling those buckets
that have more points and, thus, focusing on those more descrip-
tive in terms of normals. Sampling uniformly in each bucket helps
us maintain a global approach and sample points from all over the
set. This allows us to capture more details from the shape of set A.
Each level represents an NSS instance (Rusinkiewicz and Levoy,
2001).

RANSAC for point cloud matching
In this section we present details on the RANSAC algorithm used

to illustrate the contribution of HNSS. Given any rigid motion l we
consider two parameters in order to characterize how good the
matching between the point clouds is:

� The fraction of points in lðBÞ that have a ‘‘matching’’ neighbour
in A. Specifically, given a dmax limit value, a point lðbjÞ 2 lðBÞ is
considered matched if 9ai 2 A such that dðai;lðbjÞÞ < dmax; d
being the Euclidean distance. We note the objective value finalp.
� The second value corresponds to the average residue in terms of

SSD for the matched points: The residue of a rigid motion l is

defined as: resðlÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

k¼1
contributionðlðbkÞÞ2

p
#matched points where
contributionðlðbkÞÞ¼
ðdðal;lðbkÞÞ if ðdðal;lðbkÞÞ<¼dmax

0 otherwise

�

and l holds that ðdðal;lðbkÞÞ <¼ dðai;lðbkÞÞ80 < i <¼ n. The objec-
tive value is finalres.

These two objective values (finalp; finalres) tailor the search
depending on the type of matching expected: In some cases most
of the points in set B are expected to be matched (‘‘surface-to-
model’’ matching). Alternatively some parts of one of the objects
might not appear in the other, decreasing the required matching
percentage (‘‘surface-to-surface’’ matching). Demanding a lower
residue will further limit the matchings accepted. Setting a maxi-
mum value for the nearest neighbour distance is important to pre-
vent isolated points that do have a closest neighbour although it is
comparatively very far away, distorting the residue. See Section 3
for details on experimental values for dmax; finalp and finalres.

Descriptors
In some situations it is clear that one particular point ai 2 A

does not correspond to a certain bj 2 B. This happens, for example,
when the local shapes around the points are not similar. Descrip-
tors characterize the shape of the surface locally. Many descriptors
exist as, for example, Point Signature (Chua, 1997) or Spin Image
(Johnson, 1997). In order to focus on the main contributions of
HNSS, we have not pruned the search using descriptor information.
Notice, however, how HNSS advantages are also preserved when
using descriptors.

RANSAC – HNSS interaction
HNSS permits to search for matchings automatically and to de-

cide when a certain area of the search space has to be explored
deeper. These decisions are guided by: (1) how descriptive points
are in terms of normals and (2) when promising results are found.
HNSS data hierarchy considers the first aspect. The second aspect is
expressed by the parameters that describe the quality of matching
(percentage of matched points and residue).
Several RANSAC instances are run using the sets in the HNSS
hierarchy. For every particular RANSAC (Ai;Bi), the percentage of
randomly sampled points decreases with i. For the topmost level
an exhaustive search is performed (100% RANSAC sampling for
the most descriptive points). The percentage decreases linearly
up to 10% (classic RANSAC over the full set). By adaptively adjust-
ing these percentages the algorithm pays more attention to points
that stand out in terms of normals. Additionally, HNSS also im-
proves promising matchings. This behavior is coded in the ‘‘Refine
Matching’’ function in Algorithm 1: Whenever a triplet of points
ai1 ; ai2 ; ai3 2 A induces at least a motion between the sets, this
triplet is considered to be promising. When one of this promising
triplets is found the algorithm goes down one level or, if the per-
centage of matched points is closer to 10% of finalp, it descends
to the bottom level. The algorithm then runs with the fixed
ai1 ; ai2 ; ai3 triplet in the following level to improve the matching.
The algorithm will invoke ‘‘Refine Matching’’ again if it manages
to improve the percentage of matched points in this following le-
vel. Notice how the specific behavior of this function (concerning
the percentage or the hierarchy level from which to start refining)
can be fine-tuned for every particular application.

HNSS outline
HNSS looks for two triplets of points ðai1 ; ai2 ; ai3 Þ 2 A,

ðbj1 ; bj2 ; bj3 Þ 2 B (defining three couples ðai1 ; bj1 Þ; ðai2 ; bj2 Þ; ðai3 ; bj3 Þ)
so the objective residue and matched point percentage are met
(Algorithm 1 presents an overview). In addition to using of normals
and descriptors, we further prune the search space by considering
distance restrictions. For example, if ðai1 ; bj1 Þ is a couple, then:
dðai1 ; ai2 Þ ¼ dðbj1 ; bj2 Þ. Considering noise (Section 3) dðai1 ; ai2 Þ �
dðbj1 ; bj2 Þ.

In order to save computing time during residue computations
we use a Monte-Carlo (Black, 1999; Rajeev and Prabhakar, 1995)
approach. We randomly choose a percentage of the points and ob-
tain approximate values for the residue and for the percentage of
matched points. When the algorithm is close enough to finalp

and finalres, full residue computations are performed. The percent-
age of sample points chosen was 10% in light of existing literature
(Rusinkiewicz and Levoy, 2001).

Algorithm 1. Search for matching (Ai;Bi)
for all Points ai1 2 Ai

for all Points bj1 2 Bi which are descriptor compatible with ai1

for all Points ai2 2 Ai

for all Points bj2 2 Bi which hold dðai1 ; ai2 Þ � dðbj1 ; bj2 Þ and
bj2 is descriptor compatible with ai2

for all Points ai3 2 Ai

for all Points bj3 2 Bi which hold dðai1 ; ai3 Þ � dðbj1 ; bj3 Þ
and dðai2 ; ai3 Þ � dðbj2 ; bj3 Þ and
bj3 is descriptor compatible with ai3

{Compute the Rigid Motions l that brings ðbj1 ; bj2 ; bj3 Þ
as close as possible to ðai1 ; ai2 ; ai3 Þ in SSD terms,
Compute the residue and percentage of matched

points for l}
if l is an acceptable matching, output l and STOP
else Refine Matchingði; ai1 ; ai2 ; ai3 Þ

end

3. Results and discussion

This section presents experiments (Johnson, 2002) to support
the claims made throughout the paper. Experiments consider both
real and synthetic data and where run on a desktop computer with
4 Intel i3 2,93 GHz nuclei and 8 RAM GByte (of which no more than
10% was needed during the execution of the algorithms). In order



Fig. 3. Examples of the data used in synthetic experiments (a) chicken_view15 (b) Trex_full.
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to focus on the novel algorithmic aspects, all executions where
kept serialized and without compiler optimizations. C++ source
code is available at: http://eia.udg.edu/�qsalvi/HNSSCODE.zip.
We have used the public data (AJMAL) made available by Dr. Ajmal
S. Mian (Mian et al., 2006; Ajmal Mian et al., 2006). Details on the
sets used are provided at each experiment to ensure the reproduc-
ibility of results.

Sections 3.1 and 3.2 use synthetic data so that ground truth is
known and noise tuned. Specifically:

� We chose a ‘‘real-life’’ A dataset among those at (AJMAL). We
used mainly ‘‘Trex_full.ply’’ with 176508 points and ‘‘chicken_-
view15.ply’’ with 21280 points (see Fig. 3), as well as several
uniform smaller samples of them noted Tx, Cx (x indicating
cardinality).
� We built the synthetic dataset B as a random rigid transforma-

tion of A. The rotation angle was considered random in the
interval ð0;2pÞ and the translation ensured no initial overlap-
ping between the two sets.
� We added a fixed, small, quantity of random noise. Although

several noise values were considered, unless stated otherwise
the maximum noise in experiments is 10% of the average near-
est neighbour distance (Van Wamelen et al., 2004). This is
higher than representation and rounding errors but still not
big enough to be considered impractical and we consider it to
represent the general tendencies observed for the noise values
tested.

In order not to be mislead by particular results, every calcula-
tion was repeated 10 times with different random motions. Aver-
age values are reported. Concerning dmax (maximum allowed
nearest-neighbour distance), we considered it to be twice the aver-
age neighbour distance, following (Van Wamelen et al., 2004).

Section 3.3 contains a study on the behavior of HNSS in 105 real
life scenarios. All sections deal with full matching scenarios (see
Fig. 1 for an example).
3.1. Run time reduction due to Hierarchical Normal Space Sampling

This test supports the claim that using HNSS reduces computing
time and quantifies this reduction. In order to focus in the effect of
the HNSS data hierarchy we considered the RANSAC sampling per-
centage to be 10% (Rusinkiewicz and Levoy, 2001) in all levels.
Matchings were not refined to make the comparison fair for the
classic RANSAC (which cannot do so). Best matching percentages
for our sets usually were between 98% and 100% (see Section 3.2).
In this case, we established a 90% matching percentage in order to
set up a not-so-demanding situation.

Table 1 presents results obtained by classic RANSAC compared
to HNSS with 4, 7 and 10 hierarchy levels. We present the number
of sextets examined by each algorithm (#IT column), time needed
for residue computations (tresÞ, total time ttotal and the level (0
being the lowermost) where the matching was found (‘‘Last level’’).
As results are averages of 10 executions ‘‘Last level’’ is often not an
integer. Computing times are in seconds. Sets were kept of small
cardinality due to the huge computation times required by classic
RANSAC.

HNSS reduces average computing time in all executions. In the
most extreme, this reduction is of more than 25000 s (seven
hours). We have observed how the time (even taking into account
the 10 repetitions) depends greatly on when a good enough sextet
is found, so sets of the same cardinality might present quite differ-
ent computing times. Hence, it is important to search the parame-
ter space in a way that permits the fast location of such sextets.

From the 49 datasets considered, the classic Ransac was faster
only in one (involving T100), in the remaining 48 HNSS algorithms
run faster. This shows the usability of HNSS. Moreover, the vari-
ability of the average level where matchings were found highlights
the difficulty to decide beforehand how many points to take for a
classic NSS.
3.2. Does HNSS matching reach ‘‘far enough’’?

Being HNSS a sampling strategy, a reasonable concern is
whether it misses meaningful solutions. To show how that is not
the case, in this experiment we executed HNSS with varying num-
ber of levels setting highly demanding requirements for the match-
ing. As set B is basically a rigid motion of set A with added noise,
the maximum percentage of matched points was expected to be
high. In order to get a precise ground truth alignment, we picked
three known corresponding couples and computed the percentage
of matched points and residue of the associated motion. Values
higher than 95% of matched points were generally obtained.

We executed HNSS with the improvements described through-
out the paper (adaptive hierarchy with varying numbers of levels
and monte-carlo residue calculation). Fig. 4 shows compared com-
puting times (average values for 10 executions). The left subfigure
corresponds to subsets of varying cardinality of the ‘‘chicken_-



Fig. 4. Performance of HNSS with different number of levels (synthetic data) and for different samples of two different objects: chicken_view_15 (left) and TREX_full (right).
Horizontal axes depict the number of points in the set and vertical axes show computing time (in seconds).

Fig. 5. HNSS + ICP with real data. Percentage of success (gray) and of best matching (black) (left), average residue in successful alignments (right).

2132 Y. Diez et al. / Pattern Recognition Letters 33 (2012) 2127–2133
view_15’’ object. The right subfigure depicts data of the TREX_full
object.

Results of standard RANSAC was left out of Fig. 4 in order to fo-
cus in HNSS (as stated in Section 3.1 RANSAC was much slower
than HNSS). HNSS with a two level hierarchy, which stands for a
classical 1% NSS worked ‘‘very fast’’ in approximately 29% of the
cases, as it managed to find a matching in the first level and ‘‘very
slowly’’ in the remaining 71%, as it resorted to a classical RANSAC
exploration. This shows how HNSS is a more robust alternative to
NSS. To sum up, we can say that HNSS performs faster than RAN-
SAC and is also more accurate than NSS.
3.3. Performance in real-life situations

Finally, we tested HNSS using real data to illustrate how coarse
matching is a necessary initialization for ICP: We demonstrate ho-
w,unless a good enough initial alignment is known, ICP might con-
verge to a local minimum or might not converge at all. Computing
times and insight on the strengths and challenges of HNSS-based
algorithms are also presented.

We used 15 views of to the chicken object available at (AJMAL).
Considering them in pairs yielded to 105 matching data sets. The
algorithms tested were:

� ICP without previous coarse matching. This stood for an execu-
tion of ICP with a ‘‘naive’’ initial guess.
� 7 level HNSS hierarchy + RANSAC coarse matching algorithm

followed by ICP. This represents a typical use of coarse match-
ing as ICP initialization.
ICP improvement
A few of these ‘‘naive’’ alignments were good initial approxima-

tions for ICP. The rest caused ICP not to converge or stall at local
minima (see Fig. 1 for an example). Specifically, ICP failed to con-
verge in 57 out of the 105 data sets. Concerning local minima,
ICP gave a solution in 48 data sets though the overlap percentage
and average residue was improved by using HNSS in 47 of them.
Consequently, HNSS has been successfully used in a real-life exper-
iment to enhance the application scope of ICP and improve the re-
sults obtained.

HNSS performance analysis
For these real data sets ground truth is not available. Moreover,

every matching data set was expected to have its own optimal
matched point percentage and average residue. Consequently,
the evaluation of results becomes more difficult. We tested a 7-le-
vel HNSS hierarchy in the 105 data sets requesting matching per-
centages from 15% to 50% in 5% increments.

Intrinsic to any coarse matching, in some cases the overlap re-
quested was not demanding enough and in others it was too
demanding to be reached. In the first, HNSS was fast but risked
not being a good enough initial approximation causing ICP not to
converge or stall at a local minimum. In the second, the adaptable
search was wasted looking for a solution that was not there.

Fig. 5 (left) shows the percentage of successful alignments over
the 105 data sets and the percentage of these alignments that rep-
resented the best alignment possible. As expected, ICP with naive
alignment is greatly improved by HNSS. HNSS obtains better re-
sults and we observe how the percentage of best matching in suc-
cessful alignments is higher for higher percentages of requested
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overlap. This shows how, whenever an alignment exists, HNSS is
able to find better solutions. The highest concentration of best
matchings is found in the 30%–40% range of requested matching
percentage, which is consistent with our own observation of the
data.

Additionally, Fig. 5 (right) depicts box plots of the average res-
idues for successful alignments. Demanding higher matching per-
centage gave alignments with smaller average residue.
Consequently, setting the right matching percentage results in
finding a better solution.

4. Conclusions

In this paper we have presented a new speed-up technique for
coarse matching called HNSS (Hierarchical Normal Space Sam-
pling). The code can be downloaded at: http://eia.udg.edu/�qsal-
vi/HNSSCODE.zip. We have shown its effectiveness compared to
classical RANSAC.

HNSS is an improvement of Normal Space Sampling (NSS) that
relies on normal sampling and distance restrictions to explore
the search space in a way that finds results much faster and, as
we are dealing with a threshold problem, stops the search earlier.
HNSS refines the matchings found in order to spend more time in
the areas of the search space that show better expectations. HNSS
runs faster than the classic RANSAC. In Section 3.1 we have pre-
sented examples when computations of seven hours were reduced
to less than a second. Another characteristic of HNSS is its capacity
to adapt automatically to different sets without human
intervention.

HNSS performed better than NSS in the sense that, while the
NSS had to resort to working with the full sets in 71% of the cases,
HNSS algorithms did not need to do it in any of them. Besides, the
reduction in computation time achieved by HNSS does not mean
that the search is less effective. In Section 3.2 we have seen how
HNSS performed well even in very demanding situations.

In Section 3.3 we have tested HNSS in real life. We have shown
how ICP with naive alignment is often unable to converge. Addi-
tionally, even when ICP converges, an initial alignment given by
HNSS managed to increased the matched point percentage and de-
crease the average residue in 104 out of 105 data sets. This shows
the necessity of HNSS. We have also explored the effect of a right
choice of the overlap percentage and shown how HNSS adapts to
find the best alignment in terms of average residue.

Finally, some ideas that will guide our future work: HNSS could
benefit from using state of the art shape descriptors as well as from
parallel computing and also from the combination with other RAN-
SAC-based algorithms such as (Aiger et al., 2008).
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