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In this workwe propose a stereo computationmethodwhich initially borrows structured light strategy based on
single phase shifting approach. An accurate phase shifting code allowed us to considerably decrease the candi-
date set of points compared to passive stereo matching. Then, once the most similar match was found using
area based matching, we re-use the accurate wrapped code to refine the initially found disparity value. Our
method is extremely simple to implement and in that sense very promising for real time applications. Shown
comparison results demonstrate that we can produce accuracy comparable with the state-of-the art methods
in stereo matching.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Stereo matching is the process of taking two or more images and
estimating a 3D model of the scene by finding matching pixels in the
images and converting their 2D positions into 3D depths [1]. As a rule
there are two approaches available for matching: area based and feature
based [2]. The former algorithms match small image windows centered
at a given pixel, assuming that the grey levels are similar. They yield
dense depth maps, but typically experience serious problems in the
vicinity of 3D depth boundaries and fail within occluded areas and/or
poorly textured regions. The later algorithms, feature based, heavily
rely on feature extraction (e.g. edges, lines, corners) and although they
provide more robust features for matching, unfortunately they also
provide a sparse depth map ([3, 4]). Besides, many feature descriptors
work using multiple resolution images [5], but they are also interesting
improvements which tend to be more computationally efficient [6].
Nowadays a vast majority of research is devoted to area based matching
algorithms where the main contributions are offered to cope with the
threemajor problems: i) occlusion areas, i.e. areas near 3D depth discon-
tinuities ii) textureless regions iii) a substantial computational time
needed for high quality depth maps using global optimization [7].

A powerful alternative to passive stereo matching is the use of active
illumination within a framework known as structured light (SL) [8]. SL
assumes projection of one or more patterns on the 3D scene. The task
of pattern(s) is to eventually provide camera image(s) of the 3D scene
with the identifiable features on it (i.e. a unique code for matching)
thus providing an efficient way to solve the correspondence problem

either between cameras or a single camera and a source of illumina-
tion — commonly a video projector [9]. Considering various SL strategies
it seems that the best assurance to solve afore mentioned problems,
typical for passive stereomatching, is provided by some of the timemul-
tiplexing strategies [10]. A well defined time multiplexing strategy is a
single phase shifting (PS) method which can provide a very accurate
code [11]. In regard to other SL strategies, PS has the following main
advantages. PS is a pixel based SL strategy, meaning that to compute a
code for certain pixel it is only necessary to consider the gray level of
that particular pixel only (no neighboring image pixels are considered).
In addition, to compute a pixel code one only needs to use relatively sim-
ple image processing operations such as straightforward addition and
multiplications of gray level values. Such feature being simple and thus
attractive by itself, has a further potential for a parallel implementation
of the image processing (code computation) algorithm. Finally PS can
provide rather accurate subpixel code and in theory it is robust to
albedo/color. Still, due to a periodic nature of projected patterns and
phase shifting, a provided code is also periodic and said to be wrapped
within module 2·π. Thus, such code is still potentially ambiguous,
unless slowly varying 3D surface is in the context. Typically multiple
phase shifting approach orGray code combinedwith a single phase shift-
ing will allow unwrapping procedure and eventually unambiguous code
([8,10,12]). The biggest disadvantage in those cases is the need to project
a fair amount of additional patterns in order to unwrap unambiguous
code for straightforward matching. Therefore, it is certainly advan-
tageous to provide an unambiguous SL code with as few patterns as
possible and yet to assure its robustness for color/albedo, occlusions
and sharp changes in 3Ddepth, alongwith a short computation. Actually,
there are contributions which use very few patterns aimed at real time
applications (including even 3D reconstruction of dynamic scenes), due
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to the development of a high speed pattern projection hardware and/or
assumption about relatively slow moving objects ([13-15]).

Apart from the using a projector to provide a texture on the scene,
based on the various published work on stereo matching ([8,16-19])
it seems there are no contributions which try to combine the best
features of active and passive stereo matching. As it will be shown
below, our method thanks to ambiguous, but period wise relatively an
accurate phase shifting code for some pixel on first image, successfully
extracts only a small amount of candidates to match against on the
second image. Such approach simultaneously reduces all mentioned
problems for a passive stereo matching. Once we have found the best
match out of small amount of candidates, we have effectively bracketed
our initial solution within a small image area and then we re-use an
accurate phase code to refine our disparity estimates.

2. Brief overview of stereo matching, challenges and solutions

For a given image location on the first (left) image (xL, yL), stereo
matching algorithms try to find disparity value d which will yield a
correspondent image location on the second (right) image (xR, yR).
If camera pair images are rectified [20], the following condition holds:

xR ¼ xL−d yR ¼ yL ð1Þ

As observed in [7], a procedure to compute disparity d usually
demands four steps: a) matching cost computation b) cost aggregation
c) disparity computation (optimization) and d) disparity refinement. A
common area (window) based costs assume squared or absolute differ-
ences between individual pixels (step a)) which is then summed
(aggregated) across some window area (step b)) [16]. Alternatively
and also popular, cost measures like normalized cross correlation and
rank transform combines step a) and step b) [1]. For the local
algorithms after step b), given some image point (x, y) we have for
each disparity candidate (within considered range dmin and dmax) an
aggregated cost C(x, y, d) (Fig. 1).

To resolve step c) local algorithms employ winner-take-all (WTA)
strategy where the minimum cost directly points to the disparity
computed value. On Fig. 1 point A represents solution according to
WTA. However, point A is so called ‘weak’minimum since there is clear-
ly another point Bwhich could have been the true solution instead, but
due to noise it did not turn out to be. Moreover, the entire range of dis-
parity values, marked as Δ on Fig. 1, is questionable and in practice any
point from Δ could have been perhaps picked up by WTA also. There-
fore, a true solution can be quite off from the correct one (A vs. B)
and/or it could be hard to discriminate from many neighboring values
(Δ interval) which have very much similar costs. Besides in the later
case, a subpixel disparity computation, by approximating the cost func-
tion locally using a parabola, is clearly prevented. Mentioned problems
on Fig. 1 are very common in practice due to several causes [3]:first, due
to unavoidable photometric and projective distortions. Second, lack of
texture or even repetitive texture. Third, points near the boundaries

are hard to identify and a fixed support window used for cost aggrega-
tion will include pixels not belonging to the same depth, but eventually
the acquired cost could have a undesired low cost value. Forth, half-
occluded points (point seen from one camera and not from the other)
which theoretically should have a large minimum cost value, but due
to similar texture in images and large disparity range considered will
eventually end up with having small cost. To cope with the mentioned
problems (sometimes as part of step d)) various solutions are proposed.
For instance, employing more sophisticated cost functions, e.g. normal-
ized cross correlation,were expected to give amore robust and discrim-
inative cost values in the case of photometric distortion [16]. Shiftable
windows, varying size windows, multiple windows were all aimed at
determining themost appropriate aggregation support size, particularly
for points near the depth border [18]. Proposing 3D support computa-
tion is an attempt to handle slanted surfaces [21]. Using unconstrained
window shapes and/or associating different weights to window points,
were additional ideas targeted to compute correct disparities [22]. Ini-
tial color segmentation should also help out detection of 3D object
boundaries (i.e. problematic points nearby) but introducing a rather
strong assumption that object depth segments will coincide with the
object color segments [23]. In addition, different physical constraints
were imposed, e.g. a reduced disparity range considered, ordering con-
straint (the relative orientation of two points on the one image should
be the same for their correspondences on the other image), left-right
consistency check are some ideas which should identify a large number
of initially incorrectly assigned disparities [7].

In comparison to local algorithms, more sophisticated solutions
were offered in the form of global optimization algorithms ([24,25]).
These algorithms are less sensitive to initial disparity solutions and in
principlemore powerful, but usually require considerablymore amount
of memory storage, computational time etc. which makes a real-time
application hardly conceivable. In fact, even real time applications
based on local algorithms are quite constrained with respect to image
resolution and disparity range considered [17].

3. Proposed method

Except for idea that explicitly restricts a disparity range (note that is
not always either practical or possible), a common feature to all above
mentioned proposed solutions is that they usually operate on a large
set of candidate points. However, we were inspired by the preference
from the early days where featured based stereo was prevailing. It
was partly due to insufficient computer processing power and it was
partly motivated by the fact that less point candidates to consider will
significantly reduce the chance of wrong matches [1]. At the same
timewewere not comfortablewith the fact of having a sparsematching
solution, butwe rather decided to retain a possibility of densematching.
Therefore we decided to mix two types of stereo matching, passive and
activewithin a scope known as structured light. SL offers a large number
of pattern projection strategies [8]. We have chosen a phase shifting
largely due to its robustness to object albedo/color and the fact that
every pixel is coded based only on its own gray level values, therefore
not affected by any (occluded) neighborhood [10]. The phase shift
method typically assumes a projection of periodic sinusoidal patterns
N times, where between projections a sinusoidal pattern is shifted by
an amount of φi, equally covering the entire period:

φi ¼
2⋅π
N

⋅i i ¼ 0;1; ::N−1 ð2Þ

It can be shown that for N≥3 and based solely on camera pixel
detected gray level intensity Ii after each projection, it is possible to
compute for every pixel a wrapped phase φ:

φ ¼ atan −
XN−1

i¼0

Ii⋅ cos φið Þ;
XN−1

i¼0

Ii⋅ sin φið Þ
 !

ð3Þ

Disparity 

Cost 

dmin dmax

A

B

Fig. 1. Cost vs disparity. Point B and Δ interval are likely to cause problems in determin-
ing assumed point A as a correct solution.
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where atan is the four-quadrant inverse tangent function. Thus, PS
assigns to every image pixel a unique code (either along horizontal
or vertical coordinate) within a certain period, i.e. image portion.
Fig. 2 shows an example of original camera image, its periodic PS
counterpart and change of periodic PS code (wrapped value within
2·π) along one horizontal line. Therefore, for any point on the line
we know its wrapped value and we know for fact that its correspond-
ing point on the second image must have the same wrapped value.
The only problem is that, similarly as more than one point on the
original image have the same wrapped phase (in theory number of
periods determines how many points along the horizontal direction
have the same wrapped phase), there are also more than one point
on the second image (on the corresponding epipolar line) which
have (almost) the same wrapped phase. To resolve this ambiguity,
given some point on the first image and its wrapped phase φ1 we
pick from the second image all those points having wrapped phase
φ2 satisfying:

φ1−εbφ2bφ1 þ ε ð4Þ

where ε is an arbitrary set threshold due to the fact that on realistic
noisy images it is very unlikely to find correspondent points having
exactly the same wrapped phases. Extracting all points on the second
image having φ2 according to Eq. (4) yields eventually several group
of points, each group belonging to a different period on PS image. We
emphasize that the total number of such candidate points is rather
small compared to the size typically used during a traditional passive
stereo matching. On this set of points, relatively modest in size, we
perform passive stereo matching using absolute differences as a cost
measure and WTA approach. Then, finding the candidate point from
the second image that is the most similar to the point from the first
image, we know the period where our solution is. Following a tradi-
tional stereo matching we would normally stop here. Recall that is
quite realistic that our found correspondent point is dubious one

from the Δ interval as explained on Fig. 1. Luckily, PS is known for
providing a very accurate code, i.e. image location. Therefore we
interpolate wrapped phase curve from candidate points within a
period where initial match was found, and subsequently we find
with subpixel accuracy a point on the second image which has the
same wrapped phase as the point from the left image. In fact, such
interpolation in terms of accurate correspondences is always advan-
tageous, not only in the case of Δ interval ambiguous matches (Fig. 1).

4. Evaluation and discussion

In order to facilitate as fair as possible comparison between our
approach and various others, our evaluation methodology is analogous
to the one adopted on the well known Middlebury Stereo Evaluation
site [26], where four images sets are used for analysis: Tsukuba,
Venus, Teddy, and Cones. We compare estimated disparities against
ground true disparities for regions near depth discontinuities (disc;
according to definition on [26] that includes half occluded points as
well), nonoccluded regions (nonoc) and all regions (all=nonoc U
disc). An estimated disparity is considered correct if it is within a ground
truth disparity ±1. Our proposed approach includes the use of
structured light, i.e. wrapped phase images acquired from PS (Fig. 2
b)). Unfortunately, those are not available on [26], however we have
synthesized wrapped phase images ourselves from the ground truth
data. We defined a projector as it were placed on the half of camera
pair baseline and pointing in the same direction as camera's optical axis.

Stereo matching algorithms are quite known to have variable per-
formance if relevant algorithm parameters are not tuned properly
([7,16]). One of the most sensitive ones is the window size, particu-
larly for the local methods. On one hand, one is tempted to work
with small windows to preserve object boundaries. On the other
hand, to confidently measure a similarity between corresponding
pixels neighborhoods we need to have sufficiently large areas to
match. Basically, an optimal window size is hard to a priory specify
for general scenery. It turns out that an optimal window size for

ba

c

Image width 

Wrapped 
phase 

Fig. 2. a) Original ‘cones’ image b) Wrapped phase image acquired from PS c) change of wrapped phase for particular horizontal line marked on a) and b).
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this evaluation set and in the case of fixed square window is around
5×5 (near depths discontinuities) and around 17×17 in nonoc-
cluded areas [17]. Evidently, it is very hard to tune the system simul-
taneously for both nonoccluded and near depth discontinuities image
areas, unless additional processing is undertaken which aims to
detect areas near depth discontinuities. We tested our approach for
various window sizes as well (Fig. 3). It seems that our approach
favors larger windows. It is after a certain point quite robust with
respect to a window size, both in case of nonoccluded and near
depth discontinuities image areas, with no additional processing
related to window size, position, shape and/or weights adjustments
[17]. In the remainder of this document we use 31×31 window size.

One of the key aspects in our approach is the number of periods p
used for periodical sinusoidal pattern to carry out PS method. In the
trivial case where we have single period no unwrapping procedure
is required since there is no ambiguity caused by periodicity. Howev-
er, within the context of SL it is known that increase in the number of
periods significantly improves the overall accuracy ([8,10]). Within a
context of this work more periods means more candidate points that
will satisfy condition (4), i.e. more points to be tested for matching
using passive stereo matching. Thus, starting with the modest value
for p and then gradually increasing it, we would expect to experience
an improvement in accuracy up to certain point where the effect of
relatively large total number of candidates points would undo a ben-
eficial effect of an accurate PS code. Actually, even excessive values for

p alone would start decreasing accuracy due to the fact that then it is
no longer possible to produce reliable wrapped phases [10]. Table 1
shows error rates (percentage) for our method in the case of various
periods p considered while ε was kept fixed at 0.020. It appears that
optimum value for p is around 8, in particular for generally consid-
ered more complex scenes, Teddy and Cones [18].

For our method to show its best, the number of candidates that will
satisfy (4) should be kept to minimum. More precisely, from every
period several points should be chosen for a reliable initial passive
stereo matching and for a subsequent (optional) subpixel disparity in-
terpolation (once the initial match is bracketed within several neighbor
candidates). In order to do that we need to tune the parameter ε from
(4). A detailed analytical analysis of ε dependence on a system noise is
out of the scope of this work. However, our experiments show that, at
least for given data sets, keeping ε within range [0.015, 0.030] shows
about equally good performance (Table 2).

Image evaluation set used in this work has been extensively used
by numerous researches where results for comparisons are not only
available in the corresponding papers, but also the performance result
of more than 100 methods is readily available on a Middlebury stereo
evaluation. Out of some 100 methods, Table 3 replicates performance
scores for the best ranked methods (according to average rank; see
table on [26] for more details). We emphasize that basically all
those methods include global optimization and/or other significant
data processing such as color segmentation. At the same time we

Fig. 3. Error rates with respect to various window sizes. Solid line: non occluded areas. Dash dotted line: near discontinuities areas. Dotted line: all areas (half occluded points
included).

Table 1
Performance of the proposed approach in terms of accuracy for a various number of periods. The window size was 31×31 and parameter ε was 0.02.

Number
of
periods

Tskuba Venus Teddy Cones

Nonoc All Disc Nonoc All Disc Nonoc All Disc Nonoc All Disc

5 0.30 1.88 0.70 0.43 1.21 1.49 2.01 5.15 4.12 1.90 5.65 4.39
6 0.18 1.89 0.44 0.35 1.15 1.52 2.06 5.20 3.87 2.20 5.91 5.45
7 0.24 1.95 0.74 0.32 1.15 1.65 2.32 5.48 4.36 2.33 6.00 5.99
8 0.21 1.89 0.43 0.22 1.03 1.04 1.64 4.84 3.14 1.74 5.39 4.57
9 0.41 2.73 0.60 0.27 1.08 1.22 1.25 4.48 3.03 1.71 5.41 4.94
10 0.42 2.76 0.87 0.28 1.09 1.21 1.41 4.66 3.44 2.62 6.35 5.56
11 0.43 2.75 0.89 0.36 1.20 1.49 1.43 4.70 3.70 3.04 6.87 6.28
12 0.44 2.82 0.75 0.48 1.34 2.07 1.65 4.96 4.14 3.10 7.20 6.39
13 0.48 2.80 0.85 0.61 1.51 2.65 1.99 5.31 5.04 3.80 7.94 8.13
14 0.53 2.83 1.03 0.66 1.57 2.76 2.70 6.05 6.56 4.09 8.41 8.90
15 0.55 2.89 0.86 0.81 1.76 3.13 5.14 8.35 7.45 3.66 8.00 7.67
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recall that our method employs straightforwardWTA approach. How-
ever due to inclusion of PS we are able to produce results which, for
the large range of parameters (Table 1), are quite competitive with
the state-of-the-art in stereo matching (Table 3). For completeness,
we also compare our method with the best results for local methods
as reported in [18] (Table 4). In that case, our proposed approach
clearly outperforms other local methods, especially in the cases of
Teddy and Cones which are regarded as the most demanding and
realistic scenes ([16,18]).

For a qualitative comparison we provide Fig. 4, where the appear-
ance of computed disparity maps can be compared with the ground
truth. It can be noticed that basically the most discrepancies from
the ground truth values takes place near depth discontinuity bound-
aries, i.e. in occluded areas. That's expected since our method does
not use an explicit mechanism for an occluded area detection.

To further appreciate shown results we note that very often dispar-
ity range to be considered is defined in advance [16]. That is usually
done in order to speed up processing, save memory requirements,
and largely to prevent errors in matching due to a large number of can-
didates considered. For example, sometimes a rationale to determine a
half-occluded point is relatively low similarity measure value [21].
Clearly, even for occluded point matching against lot of candidates on
the second image (i.e. considered disparity range >>) with a variable
texture it is possible to acquire a highly similar measure. Our approach
does not restrict any disparity range in advance. Inmore detail for every
point on the left image having abscissa coordinate xL we initially

consider the entire theoretically possible range of points on the right
imagewhich have abscissa value xRbxL andwhich of course satisfy con-
dition (4), as explained earlier.

We have designed our algorithm to be as simple as possible, attract-
able for a software parallel implementation and thus in large part aiming
at real time applications [17] (Currently our code iswritten inMatlab and
timing evaluation is left for future work). However, we point out that we
did not propose any additional disparity refinement, frequently applied
by other algorithms (e.g. invalidation of small disparity segments,
median-filtering clean up, left-right consistency check [1]), since we be-
lieve our results are already rather appealing within a context of passive
stereo matching. Of course, strictly speaking our method cannot be
regarded as a typical stereo matching method. In fact, one may classify
it as a structured lightmethod (but using in this case uncalibrated projec-
tor though), howeverwith embedded a passive stereomatching strategy,
to circumvent a rather challenging task of phase unwrapping (typically
solved through an additional patterns projection and processing). In
that sense we feel it would be appropriate to compare our method
against structured light methods, and that is one of our further works.

Actually, onemay argue that we evaluated our method on the actual
images only when it comes down to the passive stereo matching part of
evaluation, whereas the structured light data (i.e. wrapped phase im-
ages) are synthesized as explained above. While that is true, we note
that our primary objective in this work was to compare our combined
method with a typical passive stereo approaches which performance
on the popular data sets is available on [26]. Nevertheless, we feel that
generally drawn conclusion about advantages of our proposed method
will still hold even in the case of noisy structured light data. In fact, in
our future work we do intend to provide a comparison involving the
real noise structured light scanning as well. Besides, we note that the
ground truth data for many evaluation sets available onMiddlebury Ste-
reo site are actually computed using structured light as explained in [27].

5. Conclusion

In this work we have proposed a stereo computation method which
initially borrows SL strategy, based on single phase shifting approach.
However, the unwrapping of unique codes is avoided using traditional
area based techniques for passive stereo matching. In that sense our
proposedmethod can be also viewed as a contributionwithin a context
of phase unwrapping.

Table 2
Performance of the proposed approach in terms of accuracy for a various values of parameter ε. The number of periods was set to p=8 and window size was 31×31.

ε Tskuba Venus Teddy Cones

Nonoc All Disc Nonoc All Disc Nonoc All Disc Nonoc All Disc

0.01 0.92 3.43 0.68 0.30 1.29 2.01 1.08 4.59 2.91 1.85 5.27 3.67
0.015 0.38 2.93 0.53 0.17 1.06 1.47 0.99 4.38 2.69 1.67 5.09 3.62
0.02 0.32 2.63 0.46 0.13 0.94 0.97 1.00 4.26 2.52 1.28 4.91 3.44
0.025 0.21 1.89 0.43 0.22 1.03 1.04 1.64 4.84 3.14 1.25 5.39 4.57
0.03 0.27 1.95 0.58 0.37 1.19 1.38 2.16 5.32 4.23 2.12 5.80 5.35
0.035 0.38 2.14 0.72 0.41 1.20 1.36 2.28 5.43 4.42 2.34 6.11 5.78
0.04 0.44 2.44 0.82 0.47 1.25 1.52 2.34 5.49 4.58 2.52 6.35 6.13
0.05 0.75 2.85 1.36 0.64 1.39 2.07 2.87 6.00 5.64 3.07 6.95 7.27

Table 3
Performance in terms of accuracy for top ranking methods, as evaluated by Middlebury stereo site [26], which employ a significant additional processing in the form of (global)
optimization and/or color segmentation.

Method Tskuba Venus Teddy Cones

Nonoc All Disc Nonoc All Disc Nonoc All Disc Nonoc All Disc

ADCensus [31] 1.07 1.48 5.73 0.09 0.25 1.15 4.10 6.22 10.9 2.42 7.25 6.95
AdaptingBP [32] 1.11 1.37 5.79 0.10 0.21 1.44 4.22 7.06 11.8 2.48 7.92 7.32
CoopRegion [33] 0.87 1.16 4.61 0.11 0.21 1.54 5.16 8.31 13.0 2.79 7.18 8.01
DoubleBP [34] 0.88 1.29 4.76 0.13 0.45 1.87 3.53 8.30 9.63 2.90 8.78 7.79

Table 4
Performance in terms of accuracy for top ranking methods, as reported in [18], which
use plain WTA framework.

Method Tskuba Venus Teddy Cones

Nonoc Disc Nonocc Disc Nonoc Disc Nonoc Disc

Segment support
[28]

2.28 7.50 1.21 5.88 10.99 22.01 5.42 11.83

Adaptive weight
[22]

4.66 8.25 4.61 13.30 12.70 22.40 5.50 11.90

VariableWindows
[29]

4.10 10.79 10.66 9.94 13.93 25.53 7.24 13.86

Reliability [30] 5.14 18.31 3.86 11.51 16.96 30.62 13.52 21.55
ShiftableWindows
[24]

6.53 21.80 6.60 13.54 16.16 30.19 9.55 22.99
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The use of an accurate phase shifting code allowed us to consider-
ably decrease the candidate set of points for matching. Once the most
similar match was found using area based approach we re-use the
accurate wrapped code to refine initial disparity value. In terms of
cost used for a stereo matching phase we employed a straightforward
fixed rectangular window, which size is found to be quite robust both
for nonoccluded and near depth discontinuities image areas. Besides
we do not put any restrictions on a disparity range considered, we do
not employ any additional processing for false match detection. Thus,
our method is extremely simple to implement and in that sense very
promising for real time applications. Shown comparison results demon-
strate that we can produce accuracy comparable with the state-of-the
art methods in stereo matching.
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Fig. 4. First row: left view images: Tsukuba, Venus, Teddy and Cones. Second row: ground truth disparities. Third row: regions near depth discontinuities (white), occluded and
border regions (black), and other regions (gray). Forth row: wrapped phase images. Fifth row: proposed method disparities. Quantitative error results for this example are provided
in Table 1, a row where the number of periods is p=8.
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