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Abstract— This paper presents a method to build large-scale
mosaics adapted to underwater sonar imagery. By assuming
a simplified imaging model, we propose to address the regis-
trations between images using Fourier-based methods which,
unlike feature-based methods, prove well suited to handle
the characteristics of forward-looking sonar images, such as
low resolution, noise, occlusions and moving shadows. The
registration between spatially and temporally distant images
resulting from loop-closing situations or registrations in fea-
tureless areas are feasible, overcoming the main difficulties of
feature-based methods. The problem is cast as a pose-based
graph optimization, taking into account the uncertainties of the
pairwise registrations and being able to incorporate navigation
information. After the optimization, a consistent mosaic from
different tracklines is generated with increased resolution and
higher signal-to-noise ratio than the original images, while the
vehicle motion in x,y and heading is also estimated.

I. INTRODUCTION

A great number of monitoring and mapping tasks in
underwater scenarios are carried out in turbid waters and
highly-cluttered environments like ship hull and dam in-
spections or mapping of harbors, lakes and rivers. In these
contexts, vehicles equipped only with optical cameras are
constrained by their limited visibility range. However, the
ongoing development of two-dimensional forward-looking
sonars (FLS) opens the possibility of mapping these envi-
ronments regardless of the visibility conditions.

Similarly to the mosaics built from video frames, a com-
posite view obtained from acoustic images is of high interest
since it provides a global overview of the surveyed area
and the spatial arrangement of targets or elements to be
studied. A key step in mosaicing is the registration of the
images according to an underlying transformation model. In
video images, the traditional workflow consists on extracting
common salient points from two frames and matching them
to find the transformation that aligns one to the other.

However, the characteristics of the FLS images pose a
challenging problem to the common registration methods
used on photo-mosaicing. FLS images have lower resolution
and lower signal-to-noise ratio (SNR) with respect to video
images. Besides they can be affected by inhomogeneous
insonification and intensity alterations due to the change of
the sonar’s viewpoint.
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Recently, researchers have approached the problem of
registering FLS imagery using feature-based methods. In
[1] spatially and temporally close image pairs from DID-
SON sonar [2] are registered by using a Harris corner
detector. Similarly, in [3] Harris features extracted at the
third and fourth level of a Gaussian pyramid scale are
matched with cross-correlation and used within a mosaicing
algorithm. In [4] the complexities of registering FLS images
are highlighted showing the difficulty of establishing correct
matches using the popular SIFT detector [5]. The difficulties
to accurately extract stable features are exacerbated when
dealing with spatially or temporally distant sonar images.
In this situations, performing a correct alignment employing
features at pixel level becomes unfeasible. Consequently, the
possibilities of identifying loop closures, which are necessary
to enforce global consistency on the final mosaic, are heavily
reduced. Other works [6] approach the problem by extracting
dense features not at pixel level, but large-scale features
obtained from previously segmented and clustered intensity
points. This yields more stable features that allow to identify
loop closures and use the registration results as constraints in
a sonar-aided navigation system. Nevertheless, as all feature-
based methods, it requires the presence of highly distinctive
features, thus reducing its reliability in featureless areas.

Consequently, it seems natural to explore area-based regis-
tration methods which instead of using sparse features make
use of the whole information of the images to minimize
ambiguities in registration. In this work we propose to take
advantage of the Fourier-based methods to register FLS
images. The particularities of these methods suggest that they
might be appropriate for the registration of FLS imagery
since they are, by design, robust to noise, illumination
changes and occlusions.

To the best of the authors’ knowledge, this is the first
work proposing the use of Fourier-based methods to register
2D-FLS images. To enable its applicability, we consider a
simplified model of the sonar’s imaging geometry under
reasonable assumptions and we embed the pairwise registra-
tions in a pose based graph to enforce global consistency.
We present results on real data, including mosaics from
different vehicle tracklines and corresponding to different
motion types (lateral, forward and circular). The mosaics
are shown to be consistent even in the presence of highly
uniform areas where feature-methods would definitely fail.
Furthermore, the presented work shows also the potential use
of Fourier-based registration to provide position estimates
based on sonar imagery which could be integrated within a
sonar-aided navigation framework.
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Fig. 1: Imaging sonar geometry (r: range, θ: azimuth, φ:
elevation).

The rest of the paper is organized as follows. The next
section specifies the imaging geometry of the 2D FLS that
will be considered throughout the paper. Section 3 reviews
the basics of Fourier-based registration methods highlighting
its particularities when dealing with FLS images. Section
4 describes the formalization of the problem into a pose-
based graph optimization. Mosaics and estimated motion
trajectories obtained for different datasets are reported and
discussed in section 5. Finally section 6 provides concluding
remarks.

II. IMAGING GEOMETRY OF 2D
FORWARD-LOOKING SONARS

In order to register different frames of a FLS it is necessary
to understand the image formation process and find out a
suitable model to describe the imaging geometry of the sonar.
Although the operating frequency, acoustic beamwidth and
frame rate varies depending on the particular sonar model,
the principle of operation is the same for all of them: the
sonar insonifies the scene with an acoustic wave, spanning
its field of view in azimuth (θ) and elevation (φ) directions,
and the acoustic return is sampled by an array of transducers
as a function of range and bearing (Fig. 1). However,
given a particular range and bearing it is not possible to
disambiguate the elevation angle of the acoustic return since
the reflected echo could have originated anywhere along the
corresponding elevation arc.

Previous research has analyzed the transformation that
relates two acoustic images and has identified the imaging
geometry of a FLS. Following the approach of [7], [6] we
identify here a simplified model that, though being only an
approximation, is suitable to describe the image formation
process and to set the basis for the subsequent registration
process.

A. Orthographic Projection Approximation

Without loss of generality, we assume the sonar center
at the origin of the world reference frame (Fig. 2). Then,
a 3D point with spherical coordinates (r, θ, φ), where r
corresponds to the sonar’s range and θ and φ to the azimuth
and elevation angles respectively, can be defined by the
following Cartesian coordinates:

xw =

 x
y
z

 =

 rcosθcosφ
rsinθcosφ
rsinφ

 (1)
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Fig. 2: Sonar projection model.

The projected point p in the image plane follows a
nonlinear model:

p =

[
rcosθ
rsinθ

]
(2)

The projection described in Eq.2 can be approximated as
an orthographic projection onto the image plane. Therefore,
the projection p of a point xw is approximated by the
orthogonal projection p̂ (Fig. 2). The reader can refer to
[7] for the details of the derivation from the nonlinear
model to the linear approximation. Essentially it is based on
the fact that the nonlinear part is introduced as a function
of the elevation angle. Thus, the narrow elevation angle
that typically characterizes FLS imposes a tight bound to
this non-linear component. Bringing this narrow elevation
approximation to the limit yields a linear model in which
the sonar can be seen as an orthographic camera. As pointed
out by Walter et al., the approximation holds as long as
the scene’s relief in the elevation direction is negligible
compared to the range. It is worth to notice that the imaging
geometry under a typical operation scenario falls within this
approximation since the sonar device is normally tilted to a
small grazing angle to cover a larger portion of the scene.

Hence an orthographic projection model can be defined
for the sonar imaging geometry, which can be seen as an
affine transformation followed by a parallel projection on the
image plane (Eq. 3). A 3D world point xw = [x, y, z, 1]T ,
in homogeneous coordinates, is projected into a point uI =
[u, v, 0, 1]T in the sonar image by applying the orthographic
matrix ITw:

uI ≈


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1


 R t

01×3 0
01×3 1

xw = ITwxw, (3)

ITw =


r11 r12 r13 tx
r21 r22 r23 ty
0 0 0 0
0 0 0 1

 (4)

where rij are the components of a 3D rotation matrix R that
defines the rotation of the sonar relative to the world frame
and tx and ty are the x and y components of the translation.

Given two different locations of the sonar device, one
aligned to the world frame and the other located at an
arbitrary transformation (R, t), we can then relate the two
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sonar image projections I1 and I2 by:

I2TI1 = I2Tw(I1Tw)
−1

=


r11 r12 0 tx
r22 r23 0 ty
0 0 0 0
0 0 0 1

 (5)

Since the z coordinate of the projections lies on the image
plane, we can simplify I2TI1 and obtain the relation that
maps the points from one sonar image to the other. uI2

vI2
1

 =

 r11 r12 tx
r22 r23 ty
0 0 1

 =

 uI1
vI1
1

 (6)

Johannsson et al. present in [6] a study on how this image
formation model affects the accuracy of the registration of
two frames. Basically, under a translation of the sonar the er-
ror introduced by the orthographic projection approximation
is a function of the distance in the x,y plane and the vertical
distance to the point. Under a suitable imaging configuration
this error is normally of few cm, and decreases as the targets
are situated further from the sonar’s origin. On the other
hand, the projection preserves the change in azimuth angles
so if the sonar rotates respect to its vertical axis (z) the
projection on the sonar images rotates by the same angle.
Rotation around pitch, usually not present or controlled by
a tilt unit, affects the limits of the imaged area and the
reflected intensities but does not introduce a change on the
projection of the points. On the other hand, changes in roll
would introduce an error as deviating from the horizontal
planar assumption, but we can consider it negligible due to
the usual stability of the underwater vehicles in this degree
of freedom.

Hence, under the aforementioned assumptions and ensur-
ing a proper imaging configuration, the geometry model
relating two sonar views can be simplified down to a
Euclidean transformation, which is comprised inside the
scope of transformations that Fourier-based methods can
resolve. By considering this model, the determination of
the translation and rotation parameters between two sonar
images provides the transformation to register them, but
also gives a direct estimate of the sonar translation in
x,y directions and its heading angle. This holds under our
assumptions except when the sonar changes the tilt angle
between images. In that case, the estimation of the x,y
position can not be directly related, but still can be estimated
if the perpendicular distance of the sonar to the reference
plane is known. The ability to estimate the vehicle heading
and x, y position from the sonar imagery is of particular
interest in the context of sonar-aided navigation since those
are typically the measurements that suffer from bias or drift,
while the depth, pitch and roll measurements can be more
reliable estimated from pressure and gravity sensors.

III. FOURIER-BASED REGISTRATION

Fourier-based methods, and in particular the well-known
phase correlation algorithm [8][9] that will be explained
hereafter, have been employed successfully in several image

processing tasks such as image registration, pattern recog-
nition, motion compensation or video coding, to name a
few. These techniques allow registrations up to similarity
transformations with a high computational efficiency due
to the implementation of the Fast Fourier Transform (FFT)
algorithm. In a similar problem to the one we tackle in
this work, phase correlation has been applied to register
underwater optical images in order to build photomosaics
[10][11]. However, when dealing with video images, feature-
based methods are generally more popular since their high
resolution and SNR allow to easily extract stable features
and estimate more general transformations such as projective
homographies.

On the other hand, the literature regarding the application
of Fourier based methods on sonar imagery is not extensive.
Some authors have pointed out the phase correlation method
as potentially useful in the registration of side-scan sonar
images [12][13] and some other works have employed it in
the registration of 2D or 3D sonar range scans [14][15].

A. Phase Correlation Method

According to the Fourier shift property, a shift between
two functions (e.g. images) is transformed in the Fourier
domain into a linear phase shift.

Let f(x, y) and g(x, y) be two images related by a 2D
shift (x0, y0), namely

f(x, y) = g(x− x0, y − y0) (7)

then their 2D Fourier transforms, denoted by F(u,v) and
G(u,v) are related via

F (u, v) = G(u, v)e−i(ux0+vy0) (8)

Their normalized cross power spectrum is given by

C(u, v) =
F (u, v)G∗(u, v)

|F (u, v)G∗(u, v)|
= e−i(ux0+vy0) (9)

where ∗ is the complex conjugate. The normalizing de-
nominator in this equation is equivalent to a pre-whitening of
the signals, making the phase correlation method inherently
robust to noise that is correlated with the images, such
as uniform variations of illumination or offsets in average
intensity. These effects are indeed present in FLS images
which are commonly affected by inhomogeneous intensity
patterns due to different sensitivity of the lens or transducers
according to their position in the sonar’s field of view [1].
The most common way to solve Eq. 9 for (x0, y0) is to apply
the inverse Fourier transform to C(u, v), which will give
the so-called phase correlation matrix as PCM(x, y). In the
ideal case, this corresponds to a 2D impulse (Dirac function)
centered at (x0, y0), that directly leads to the identification of
the integer displacements (Fig. 3a). In the presence of noise
or other perturbations in the images the phase correlation
matrix will be noisier but as long as it contains a dominant
peak the offsets can be retrieved.

The method can be extended to estimate the rotation and
scaling parameters between two images [16][9] by applying
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Fig. 3: (a) Basic phase correlation workflow to detect trans-
lational shifts. (b) Workflow used for the estimation of ro-
tations and translations. The rotation is estimated separately
as a linear shift in the polar transform of the FT magnitude.
Then, phase correlation is applied again with the rotation-
compensated image to retrieve the translational offsets.

the same procedure to the log-polar magnitude of the Fourier
Transforms of the images. In the log-polar coordinates, the
differences of the images in rotation and scale are represented
by linear shifts. According to the properties of the Fourier
transform, its magnitude is invariant to the translation so,
the rotation and scaling parameters can be determined in a
manner invariant to translation. In our case, since the sonar
images do not present the scale ambiguity, it is only neces-
sary to determine the rotation parameter. The full algorithm
flow is illustrated in the diagram of Fig. 3b.

Out of this phase correlation principle we can find nu-
merous algorithm variations in the literature. Most of them
are concerned with finding sub-pixel displacements after the
maximum correlation peak has been determined in the spatial
domain within integer accuracy [17][18]. Other attempt the
use of high order statistics such as the bispectrum instead of
the power spectrum to achieve higher resiliency to noise [19].
Some authors propose also variations on the way to detect
rotations without the use of polar transforms [20]. Finally, a
substantially different kind of approaches try to recover the
offsets by working only in the frequency domain by looking
at the shifts as the slopes of a plane fit to the phase difference
data [21]. Although we have implemented the most relevant
of these methods and we are currently evaluating them when
dealing with FLS images, here we are interested in verifying

the general applicability of the Fourier-based methods in FLS
image registration. Therefore, from now on we will refer to
the standard phase correlation algorithm.

B. Accuracy of Phase Correlation for FLS Image Registra-
tion

The accuracy of the phase correlation algorithm is highly
influenced by the nature of the FLS images. Its inherent low
SNR, non-uniform resolution in Cartesian space, intensity
changes due to different viewpoints or shadow variations
result in noise that is introduced as arbitrary peaks in the
phase correlation matrix, reducing the amplitude of the true
registration peak. While a more detailed study of these
factors and their particular effect would be of interest, what
we want to verify is that despite their presence the method
is able to latch to the correct registration point.

Additionally, there are a series of factors, not linked to
the image nature itself that affect also the accuracy of the
registration under Fourier-based methods. The most critical
one is the aliasing due to the edge effects. The phase corre-
lation theory described previously holds for periodic signals
and continuous Fourier Transforms. In the discrete case,
the FFT is used to approach the infinite Fourier transform,
imposing a cyclic repetition of finite-length images that can
cause the so-called boundary effects. The abrupt transitions
generated between the edges when the images are tiled
result in high-frequency components appearing in the Fourier
spectrum which may also be aliased to lower frequency com-
ponents altering substantially the phase correlation matrix.
In a similar manner, the boundaries generated by the non-
rectangular field of view of the FLS images in Cartesian
coordinates can introduce a rotationally independent aliasing.
According to the Fourier properties, a rotation in the spatial
domain rotates the corresponding Fourier spectrum by the
same amount. However, the high-frequency components of
the image boundaries do not depend on the image content
and do not rotate, introducing a strong false peak around
the 0◦ rotation that can hide the location of the true peak.
In order to minimize these effects it is typical to perform
a windowing operation before the FFT is performed. In our
case, a mask that tapers the boundaries of the FLS images
in Cartesian coordinates is applied to the images prior to
any FFT computation and a Hamming window is applied to
the magnitude spectra before computing again the FFT to
estimate the rotation.

Other factors that also impact the registration accuracy are
the interpolation errors introduced by the polar transform of
the FT magnitude or the errors derived from the approxima-
tion to the Euclidean model. The content of non overlapping
areas in the image is also an error source. However it is
worth to highlight the robustness of the phase correlation
method when registering images with low-overlap content.
This is explained by the fact that the phase correlation matrix
is a 2D discrete Dirichlet function whose distribution is
highly non-Gaussian, whereas the noise process due to non-
overlapping areas is highly Gaussian [22]. It is thus possible
to identify the signal even in high noise power, which enables
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the registration of a high number of non-consecutive image
pairs.

In order to evaluate quantitatively the registration accuracy
of the phase correlation method we would need ground
truth data of sonar frame-to-frame registrations. Without
it, we adopt an evaluation scheme similar to [23]. From
a large dataset of FLS images acquired during a vehicle
trajectory we construct smaller closed trajectories by picking
overlapping images along similar path lengths, in a way that
the first and last image coincide. Hence, the comparison
between the first and last position and angle can be used to
assess the accuracy of the registration method. To this end,
we compute the errors of 20 trajectories of about 10 images
describing an arbitrary path of approximately 3 meters each.
The average image rotation and translation errors are less
than 0.7◦ and 2 pixels, which according to the resolution of
our Cartesian sonar images is equivalent to 2.5cm.

IV. POSE-BASED GRAPH OPTIMIZATION

The registration method described so far is intended to
compute the relative transformation between pairs of over-
lapping images. In order to generate a mosaic it is necessary
to map all the images into a common reference frame. This is
normally accomplished by concatenating the transformations
of successive images so that the transformation between non-
consecutive views is obtained. However, it is well-known
that chaining transformations over long sequences is prone
to cumulative error [24]. With the aim of obtaining a globally
consistent set of transformations to compose a mosaic, the
problem is reshaped into a pose based graph optimization.
We formulate a least squares minimization problem to es-
timate the maximum likelihood configuration of the sonar
images based on the pairwise constraints between consecu-
tive and non-consecutive frames. As our main interest here
is the mosaic generation, we adopt an off-line approach.
However if the registration constraints were to be used in
a motion estimation framework, they could be integrated
within efficient on-line methods that have been developed to
optimize pose-based graphs, such as incremental smoothing
and mapping (iSAM) [25] .

A. Graph De�nition

Each vertex of the graph represents the position of the
sonar image on the mosaic plane and the registration con-
straints are represented as edges linking the two corre-
spondent vertices. Let x = (x1, ..., xn)T be a vector of
parameters, where xi = (xi, yi, θi) describes the position
(in pixels) and orientation of the vertex i. The initial po-
sitions of the vertices can be estimated using the chained
transformations between consecutive image pairs. Let zi,j
and Ωz

i,j be respectively the mean and information matrix of
the transformation of node i from node j obtained from the
registration algorithm on the image pair (i, j).

Then we can define an error function of the following
form:

e(xi,xj , zij) = zi,j 	 (xj 	 xi) (10)

where 	 is the inverse of the usual motion composition
operator in the 2D euclidean space:

xj 	 xi =

 (xj − xi)cosθi + (yj − yi)sinθi
−(xj − xi)sinθi + (yj − yi)cosθi

normAngle(θi − θj)

 (11)

Essentially the error function measures how well the
position blocks xi, xj satisfy the constraint zij . The problem
is cast in a least-squares minimization of the error function
taking into account the information matrices as shown in
[26]. If a good initial guess of the parameters is known,
Levenberg-Marquardt algorithm [27] can be used to obtain a
numerical solution. Therefore, if enough constraints can be
extracted using pairwise registrations we can reach a solution
relying solely on the sonar images. However, navigation
information is typically available and it can be employed.
Assuming the model presented in section II the translations
and heading of the sonar map into translations and rotations
of the projected points in the images. Thus, the navigation
increments between the different vehicle poses can be con-
verted into pixels by using the resolution of the sonar images
and used to initialize the graph vertices x. If the navigation
data is accurate, this will give a better starting point for the
optimization rather than the poses obtained from chaining
the consecutive image transformations.

B. Discrimination of Successful Registrations

A measure is required to discriminate whether a registra-
tion is successful or not, to avoid introducing false constraints
(e.g. in the case of two images that are not overlapping at
all). Recalling the description of the method in section III, the
amplitude of the peak can be used as a direct measure of the
degree of congruence between the two images. Intuitively, we
need a measure to quantify how much the peak stands from
the rest of the data in the phase correlation matrix. To this
end we normalize the phase correlation matrix and compute
a peak-to-noise ratio (PNR) [28] through the following
equation:

PNR =
Apeak

1−Apeak
, Apeak = max

x,y
(PCM(x, y)) (12)

Fig. 4 shows the PNR measure while we attempt to
register a frame with progressively more distant frames. The
last correctly registered frame (number 45) has translated
91 pixels with respect to the reference one, which in this
particular case and given the non-rectangular FOV of the
images correspond to a 32% of overlap. After this point
the images fail to register and it can be observed that the
PNR measure remains small. Hence, setting a threshold on
the measure above that value allows to discriminate between
successful or failed registrations.

According to the PNR value, we will only include the valid
registrations in the graph. However, given the high refresh
rate of the FLS sonars (typically around 10Hz), it would be
highly computationally expensive to attempt the registration
of each frame to all the rest of a sequence’s frames. Hence,
for each image we only try to register those frames that have
been acquired within a pre-established range.
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Fig. 4: PNR measure along the registration of progressively
distant frames.

Fig. 5: Determination of the uncertainty of a pairwise regis-
tration from the phase correlation matrix values.

C. Determination of the Registration Uncertainty

For those pairs of images that are actually overlapping
it is required to define an uncertainty measure to quantify
how trustworthy is their registration. The amplitude and
extent of peak values located in the surroundings of the main
peak account for localization inaccuracies of the registration.
Hence, at a given amplitude the phase correlation surface is
cut and we extract the variances in x and y directions from
the contributing peaks above the cut, as shown in Fig. 5. The
cut height has been empirically set to half the amplitude of
the main peak. The obtained variance values are afterwards
inverted and used to fill in the information matrix Ωz of our
pose-graph formulation.

V. RESULTS

Several experiments have been carried out on real data to
evaluate the performance of the method.

A. Ship Hull Inspection

The first experiment uses the data of a ship hull inspection
performed with a DIDSON sonar. The vehicle executed a
trajectory of several tracklines across the side of the hull
collecting a total of 4420 sonar images during 45 minutes.
The tilt of the sonar is changed along the experiment so as
to adapt the images to the curvature of the hull and facilitate
better conditions for the planar assumption. Since the vehicle
is moving basically in surge and heave degrees of freedom,

the model under consideration is an Euclidean transformation
with only the two translational components. Small deviations
from this model can be corrected by the global optimization,
by allowing it to accommodate for small rotations. Fig. 6
shows the result of the mosaic built after the optimization.

To reduce computational costs and unnecessary computa-
tions we have used one out of every five images of the full
dataset, that have been attempted to register pairwise with its
neighbor images inside a 2m distance radius. Hence, about
850 frames from different tracklines have been successfully
registered providing a visually coherent image of the hull
which supports the applicability of the method. For visu-
alization purposes the inhomogeneous insonification pattern
present in the images has been identified by averaging all
the dataset frames and subsequently subtracted from all of
them. Additionally, a blending process based on averaging
the intensities of the overlapping pixels has been applied to
generate a seamless composite view.

The average runtime per registration under a MATLAB
environment is 0.12 seconds using a Intel Core Duo 3.4Mhz,
thus taking about 1 hour to compute the full set of links (up
to 23214) for the whole dataset. The optimization, carried out
using the General Graph Optimization (g2o) framework [26]
has converged with less than 40 iterations taking a total of
2.6 seconds. In this case, no navigation information has been
used to set the initial locations of the vertices, thus relying
solely on the information extracted from the registrations.
However, when navigation is used, the optimization leads to
a similar solution.

The vehicle position, which we consider here centered
at the sonar’s location, can be derived from the result of
the optimized image poses. Since the sonar has undergone
changes in tilt, its x, y position is not directly derived from
the resulting image poses, but it can be estimated under
our planar assumption since we know the range values and
the distance from the vehicle to the hull. Since no ground
truth is available, a comparison of the resulting motion
estimation is performed with the trajectory derived from the
navigation sensors on-board (Fig. 6b). As it is well-known,
the trajectory computed from the navigation data might suffer
also from errors and drift, but all in all and in absence of
ground truth it is still a good reference. As can be seen, the
two trajectories are closely similar, which again testifies the
accuracy of the method. Actually, if we map the images over
the navigation positions, several mismatchings occur whereas
using the resulting optimized poses the mosaic presents a
higher coherence which suggest that our method is able to
correct the small errors in the navigation.

B. Mosaicing a Featureless Area

The purpose of this experiment is to prove the ability of the
method when dealing with featureless areas. In the employed
dataset the vehicle performs a trajectory passing over some
circular grids, those being the only prominent features in all
the vehicle’s path. Fig. 7a shows the final mosaic, built from
one out of every five images of the total 2100 frames of the
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Fig. 6: (a) Mosaic of the ship hull comprising 844 frames. (b) Comparison between the navigation data and the estimated
trajectory.
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Fig. 7: (a) Mosaic of a featureless dataset with 388 frames.
(b) Comparison between the navigation data and the esti-
mated trajectory.

full dataset. No navigation information has been used to set
the initial locations of the vertices.

Due to the lack of salient features, one could argue that it is
difficult to know from the mosaic whether the images are cor-
rectly registered or not. However, the estimated motion from
the registrations gives again a coherent trajectory compared
to the navigation data, as illustrated in Fig. 7b. Although
some drift is present, which could possibly be due to the
dead-reckoning, the main trend of the estimated motion is in
agreement with the navigation data. This shows the potential
of the method to perform mapping in turbid environments
such as rivers, lakes or harbors, characterized by the lack of
distinguishable objects and prominent shapes.

Fig. 8: Mosaic under a rotational movement

C. Mosaic Under Rotations

Although the common vehicle trajectories when perform-
ing mapping consist in straight trajectories we want to
show also the ability of the method to register FLS images
under rotational movements. Unfortunately, we do not have
a large dataset where the FLS images are affected from big
rotational movements. However, we used a small dataset
from BlueView Technologies [29] where the sonar undergoes
a rotation around some bridge footers. Fig. 8 shows the
generated mosaic from 147 frames. Although small, the
mosaic proves the method’s capability to align the frames
giving a composite view from the bridge footers.

D. Super-resolution

The outcome of averaging the overlapping sonar images
yields to a denoising of the final mosaic, achieving an
improvement in terms of SNR compared to a single image
frame (see Fig. 9). However, since the obtained transforma-
tions lead to a subpixel alignment of the images, we can
perform super-resolution and achieve also improvements in
terms of the resolution of the final mosaic. This is of special
interest given that a pixel on the sonar’s sampling space
(range, bearing) maps to a collection of pixels with the same
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Fig. 9: (a) Single frame (b) Mosaic at the same resolution
as the individual frames (c) Mosaic four times the resolution
of the individual frames.

intensity in the Cartesian frame, resulting in a nonuniform
resolution that degrades the visual appearance. Therefore,
making a finer grid and applying the subpixel transformations
to the images leads to an overall enhancement. Fig. 9c shows
a portion of a mosaic generated with four times the original
image resolution where the improvement on the details can
be clearly appreciated.

VI. CONCLUSIONS

The registration of FLS images poses a serious challenge
onto the traditional feature-based registration techniques
commonly employed on video images. Under reasonable
assumptions the imaging geometry of the FLS has been
simplified down to an Euclidean transformation thus enabling
the application of the Fourier-based methods for registration.
The phase correlation technique has been applied to the
alignment of consecutive and non-consecutive sonar frames
proving to be robust and accurate despite the noisy nature of
the images and the lack of abundant features.

By integrating the pairwise registrations into a global
alignment we are able to generate a consistent composition
of the acoustic images. The obtained mosaic offers a global
view of the surveyed area while at the same time presents an
overall improvement with respect to the individual images in
terms of SNR and resolution.

Furthermore, the results support the use of Fourier-based
registration in the field of sonar-aided navigation. The
method could be integrated within an on-line framework to
provide motion estimates from the sonar imagery with the
aim of bounding the navigation drift.
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