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Abstract

This paper presents a novel approach to simultaneously

compute the motion segmentation and the 3D reconstruc-

tion of a set of 2D points extracted from an image sequence.

Starting from an initial segmentation, our method proposes

an iterative procedure that corrects the misclassified points

while reconstructing the 3D scene, which is composed of

objects that move independently. This optimization pro-

cedure is made by considering two well-known principles:

firstly, in multi-body Structure from Motion the matrix de-

scribing the 3D shape is sparse, secondly, the segmented

2D points must give a valid 3D reconstruction given the ro-

tational metric constraints. Our formulation results in a

bilinear optimization where sparsity and metric constraints

are enforced at each iteration of the algorithm. The final

result is the corrected segmentation, the 3D structure of the

moving objects and an orthographic camera matrix for each

motion and each frame. Results are shown on synthetic se-

quences and a preliminary application on real sequences of

the Hopkins155 database is presented.

1. Introduction

The inference of the 3D position of moving objects in a

scene is one of the most important tasks in Computer Vi-

sion. In complex scenarios where several bodies rigidly

move, it is first necessary to cluster the motion belonging to

different objects before performing any other reconstruction

task. In particular, Motion Segmentation (MS) from fea-

ture trajectories consists of segmenting the trajectories that

move with different motions throughout a video sequence.

MS is a low-level task and it is a fundamental step for any

further motion analysis. Its importance is denoted by the

active research within this field since the beginning of com-

puter vision to date. Different strategies have been used to

tackle MS as described in [17]: image difference, statistics,

wavelets, Optical Flow, Layers and Manifold clustering to

cite a few. Recently the Hopkins155 database [14] has be-

come a standard benchmark for the evaluation of MS tech-

niques. A few algorithms [7, 9, 18] reported low misclas-

sification rates on the Hopkins155 database which testifies

that MS algorithms are becoming more reliable.

Once a segmentation is available with image trajectories

assigned to each object, other higher level tasks such as 3D

reconstruction can take place. In particular, uncalibrated

Structure from Motion (SfM) is often required for several

applications. Given one object that moves throughout a

video sequence and given its 2D tracked features the aim of

SfM is to recover both the 3D coordinates of the points (up

to a scale factor) and the motion description of the whole

structure for each frame (up to an arbitrary initial rotation).

Numerous techniques have been proposed to solve the SfM

problem, one of the most successful approaches has been

the Tomasi and Kanade’s factorization algorithm [12] de-

veloped in the early 90’s. The key idea of their method is

to express the geometric invariants present in the data as

a bilinear model of its 3D shape and motion components.

Tomasi and Kanade’s algorithm extracts these components

globally by using the whole information contained in the

trajectory matrix of the moving shape. The algorithm was

later extended to work with more general camera models

for rigid objects [4, 10, 13] and more recently to deal with

non-rigid objects [2]. All these techniques share a common

assumption: there is only one object moving in the scene.

In order to perform multiple reconstruction, it is necessary

to rely on a MS technique that feeds the SfM algorithm with

one object at a time or to develop a different framework for

multi-body SfM.

1.1. Related works on multibody SfM

The early attempts to solve multi-body SfM tried to

tackle the problem using algebraic approaches [5]. After

algebraic approaches, which are very sensitive to noise, re-
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searchers started to take into account the geometry of the

problem and to exploit the epipolar geometry constraints,

like in [8]. Pure epipolar geometry constraints however, are

also sensitive to noise and to outliers. A simplified situation

using only 2-views and noise-free sequences is presented

in [16]. Extension of epipolar geometry to the 3-views case

mixed with algebraic tools can be found in [15]. In [11]

a scheme for n-views multi-body SfM with a perspective

camera has been presented. The method mixes two-view

epipolar geometry with statistical considerations that are

used to link the motions found in the two-views through-

out the sequence.

In summary, most of multi-body SfM algorithms so far

tried to solve the MS intrinsically with the SfM. Mainly

they tried to exploit epipolar geometry mixing algebraic or

statistical tools. The main limitation has always been the

presence of noise and outliers. Nowadays the advantage we

have, besides the knowledge gained thanks to the previous

studies, is that MS algorithms provide rather good solutions.

Therefore, this initial segmentation can be exploited to help

to solve the multi-body SfM problem, which in turn can pro-

vide unexploited constraints to correct the segmentation.

1.2. Our contribution

Our proposed approach defines a novel optimization pro-

cedure in order to remove the errors of an initial segmenta-

tion and simultaneously solve the multi-body 3D SfM. We

present a generic framework that can be applied to correct

the result of any MS algorithm and goes in the direction

of merging the problems of MS and SfM. Given an initial

segmentation, we develop an iterative bilinear optimization

algorithm that, at each iteration, enforces two constraints

that arise from SfM and multi-body SfM theory: the met-

ric constraints given the camera projection matrices and the

sparsity of the matrix that contains the 3D shapes of all the

moving objects. Thanks to this optimization we are able to

correct the errors for the initial segmentation and solve the

multi-body SfM problem.

The remainder of the paper is organized as follows. In

section 2 we introduce the background and the notation of

the SfM framework. Our proposed bilinear MS and SfM

approach is then presented in section 3. The summary of the

algorithm and some implementation choices are explained

in section 4. The experiments on synthetic and real data sets

which validate our approach are shown in section 5. Finally,

conclusions are given in section 6.

2. Background

2.1. Singlebody SfM

The first step of SfM consists of storing in the trajectory

matrix W ∈ R
2F×P , the coordinates of the P 2D features

tracked throughout a video sequence of F frames. From

SfM theory we know that, given one single motion, it is

possible to factorize the trajectory matrix into a motion ma-

trix and a shape matrix. The shape matrix is defined up to a

scale factor, therefore, W can be normalized as follows:

W̄ = (W− T)/γ. (1)

where T ∈ R
2F×P is a translation matrix that registers the

coordinates to the image centroid1 and γ ∈ R
+ is the scale

factor computed as the sum of the maximum x and y values

in (W−T). At this point it is possible to compute the camera

motion and 3D shape such that:

W̄ = MS, (2)

where S ∈ R
3×P is the shape matrix and M ∈ R

2F×3 is the

motion matrix further defined as:

M =







R1

...

RF






, (3)

Rf , for f = 1, . . . , F , being orthographic camera matrices

of size 2 × 3.

The common principle underlying all the previously

mentioned SfM techniques is that in order to have a valid 3D

reconstruction the metric constraints have to be enforced,

which means that:

RfR
T
f = I, ∀f = 1, . . . , F, (4)

where I is the identity matrix of size 2 × 2.

2.2. Extension to multibody SfM

Let us extend equation (2) to the multi-body case in pres-

ence of N motions, assuming for the moment that the cor-

rect segmentation is known. The trajectory matrix W̄ is now

defined as:

W̄ = [W̄1|W̄2| . . . |W̄N ], (5)

where W̄ ∈ R
2F×P while W̄n ∈ R

2F×Pn , for n = 1, . . . , N ,

is the trajectory matrix that contains only the points of mo-

tion n, and Pn is the number of points that belong to mo-

tion n, therefore P =
∑N

n=1
Pn. Equation (2) holds, but

the structure of the matrices involved changes. Specifically,

the aggregate motion matrix M ∈ R
2F×3N is composed as

follows:

M = [M1| . . . |MN ] =







R11 . . . R1N

...
...

...

RF1 . . . RFN






, (6)

where Rfn, for f = 1, . . . , F and n = 1, . . . , N , is a 2 × 3
orthographic camera matrix that has to satisfy the metric

1The matrix T is given by T = ~t ~1T

P
where ~1P is a vector of P ones.

Thus the 2F -vector ~t contains the 2D shape centroid at each frame.



constraints (i.e. RR
T = I), equation (4). ¿From equa-

tions (2) and (6) it follows that the aggregate shape matrix

S ∈ R
3N×P is:

S =













S1 0 . . . 0

0 S2 0

...
... 0

. . . 0

0 . . . 0 SN













, (7)

where Sn, for n = 1, . . . , N , is the shape matrix of the

motion n and it has size 3×Pn. As can be seen from equa-

tion (7), the aggregate shape matrix S is highly sparse.

3. Bilinear MS and SfM

Despite the fact that the mathematical model for SfM

can be extended to multi-body SfM, it cannot be directly

used in order to find a unique solution. However, if one can

start from an already good, but not necessarily perfect, seg-

mentation then the metric constraints of each of the motion

matrices, and the sparsity structure of the aggregate shape

matrix could be exploited in order to correct the segmenta-

tion and perform a multi-body SfM.

We propose an iterative method that exploits the initial

segmentation provided by any MS algorithm. The proposed

approach is an alternation approach that first imposes the

metric constraints, given the camera matrix, and then en-

forces the sparsity of the 3D structure matrix S. In the fol-

lowing we are describing each step in more detail.

3.1. Enforcing metric constraints

Starting from an initial segmentation, the matrices Mn

and Sn, for n = 1, . . . , N , can be computed independently

for each motion by any SfM algorithm. Clearly, the motion

matrix and the shape matrix obtained, called M̃n and S̃n, will

not be the exact Mn and Sn (i.e. the real motion and shape

matrices), nevertheless, if it is true that the majority of the

points Pn belong to motion n, M̃n and S̃n are good initial-

izations for further refinements.

We define:

M̃ = [M̃1| . . . |M̃N ], (8)

and

S̃ =













S̃1 0 . . . 0

0 S̃2 0

...
... 0

. . . 0

0 . . . 0 S̃N













, (9)

as being the initial values, and the bilinear form is now:

W̃ = M̃S̃. (10)

At this stage we have a first multi-body SfM solution where

the metric constraints have been enforced for each motion

by applying a single-body SfM algorithm.

3.2. Exploiting S sparsity

It is at this step that we exploit the sparse structure of S

(S being the ground truth of the aggregate shape matrix). In

fact, we want to refine the initial solution provided by M̃ and

S̃ so that ||W̄ − M̃S̃||2 is minimized but, in order to limit the

solution space, we want also to impose that the final S̃ has to

be sparse. As the majority of points in each motion n should

be correctly segmented, it is reasonable to assume that M̃ ≈

M (M being the ground truth motion matrix), therefore, it is

easier to focus, at this step, only on S̃. The refining problem

can be formulated as a basis pursuit denoising problem [3]:

min
Ŝ

||Ŝ||1 subject to ||W̄− M̃Ŝ||2 ≤ ǫ, (11)

where ǫ ∈ R
+ and the initial value for Ŝ = S̃. At the end of

the sparse optimization step we define:

Ŵ = M̃Ŝ. (12)

The minimization problem of equation (11) focuses on im-

posing the sparsity of Ŝ and on keeping the reprojection er-

ror small, but it does not enforce the metric constraints as

in the previous SfM step. Hence, it cannot be expected that

Ŝ = S. Our assumption is that because of the sparse min-

imization the misclassified points will experience a bigger

change, with respect to the correctly classified ones, in their

3D position. Such change should allow the misclassified

points to obey the (metric) motion enforced in the previous

step. In general we observed that the columns of the matrix

Ŝ associated to a misclassified point will vary more than the

columns of a correctly classified point. The main issue now

is to find a correct criteria to identify such points.

3.3. Identifying candidate errors

In order to identify the candidate errors we compare the

trajectory matrices W̃, equation (10), and Ŵ, equation (12).

First we align the 2D data and bring them to a common

scale, since sparse and SfM optimisations perform arbitrary

normalization of the trajectory matrix. Hence, we trans-

late and normalize the 2D homogeneous points of W̃ and

Ŵ so that the centroid is at the origin, and their mean dis-

tance from the origin is
√

2. After this normalization step,

the 2D distance between W̃ and Ŵ, for each point n and for

each frame f , can be computed. We define two measures

to identify the candidates: 1) the point p1 with the highest

2D reprojection difference for any of the F frames, 2) the

point p2 with the highest mean 2D reprojection difference

over all the F frames. Most of the time p1 = p2, however,

occasionally they may be different. The candidate point(s)

can now be removed from W̄ and the process can start again

to compute the SfM for each motion.



4. Implementation details

4.1. Summary of the algorithm

The three steps described in the previous sections (en-

forcing metric constraints, exploiting sparsity and identify-

ing candidate errors) are summarized in the iterative Algo-

rithm 1. The termination criteria depends on the specific

application and on the a priori knowledge that may be avail-

able. In our experiments we wanted to evaluate the reliabil-

ity of our proposal independently from the stop condition.

Therefore, we allow the algorithm to iterate for a maximum

of 3 × X times, where X is the number of misclassified

points. If after 3 × X iterations there is still at least one

misclassified point we consider that sequence not corrected.

Algorithm 1 Simultaneous MS and SfM

1: Compute an initial MS, arrange W̄ as in equation (5).

2: X = number of misclassified points.

3: iterations = 0. done = 0.

4: repeat

5: iterations = iterations + 1.

6: ∀ motion n = 1, . . . , N compute SfM: W̄n ≃ MnSn.

7: Build M̃ and S̃, as in equations (8) and (9).

8: if iterations > 3 ×X or sequence corrected then

9: done = 1.

10: else

11: Compute Ŝ via sparse minimization, equation (11).

12: Compute W̃ = M̃S̃ and Ŵ = M̃Ŝ and normalize them.

13: ∀ points p = 1, . . . , P and ∀ frames f = 1, . . . , F
compute 2D distance D(p, f) between W̃ and Ŵ.

14: Find p1 = maxp(D(f, p)) ∀f = 1 . . . F .

15: Find p2 = maxp(
∑F

f=1
D(f, p)/F ).

16: Remove p1 and p2 (if p2 6= p1) from W̄.

17: end if

18: until done == 1

Notice that the main three algorithms involved in our pro-

posal, MS, SfM and sparse minimization, can be seen as

three generic tools. In the following sections we will de-

scribe more in detail our specific implementation and the

algorithms we have chosen for the SfM and the sparse min-

imization steps.

4.2. Structure from Motion step

For the SfM step we decided to use a Bilinear Aug-

mented Lagrangian Multipliers (BALM) [6] method which

has the property of enforcing exact metric constraints and

the ability to deal with a high ratio of missing data. This

last feature can be exploited for a further extension of our

optimization algorithm. Besides, BALM is a generic bilin-

ear optimizer, thus it could be used also for non-rigid and

articulated SfM.

4.3. Sparse minimization step

For the sparse minimization step we decided to use

SALSA [1] for its faster performances compared with other

sparse optimization tools. SALSA requires three main pa-

rameters to be tuned: ǫ, µ1 and µ2.

The parameter ǫ defines the constraint of the optimiza-

tion problem, equation (11). As explained in [1], ǫ has to be

proportional to the noise variance, therefore, it can be auto-

mated once the noise variance of the tracked points has been

estimated. Nevertheless, ǫ plays a fundamental role in the

minimization problem, as too small an ǫ may cut away the

real solution to the problem. Therefore, it is safer to provide

an upper bound of the noise level rather than estimate it ex-

actly. In our experiments we let SALSA estimate ǫ given an

upper bound noise variance that is fixed to the equivalent of

5 pixels in the normalized space. We believe that 5 pixels

is a reasonable limit after which the whole algorithm may

become unreliable.

The other two parameters, µ1 and µ2, are the weights of

quadratic constraints as a result of the variable splitting al-

gorithm used in SALSA. As there is no a-priori knowledge

about these two parameter values we empirically found a

combination that allows for good performances without the

need to change them for each sequence. We performed ex-

tensive tests with 421 different combinations of µ1 and µ2

on our synthetic database and all the results that we present

in this paper have been obtained with the same fixed com-

bination: µ1 = 0.1 and µ2 = 0.01.

5. Experiments

The experiments were first performed on synthetic video

sequences, followed by real sequences from the Hop-

kins155 database [14].

The synthetic sequences contain cubes, with 56 tracked

features each, that randomly rotate and translate. Specifi-

cally, each synthetic sequence is 50 frames long. The whole

database is composed by 80 different sequences with a vary-

ing number of independent motions and noise. In more de-

tail, we tested 5 randomly generated motions with 2, 3, 4
and 5 independently moving objects (cubes) obtaining a to-

tal of 20 sequences. Gaussian noise with standard deviation

of 0, 0.5, 1 and 1.5 pixels was added at each sequence. An

example of a synthetic frame (which, for clarity, is plotted

with just a few tracked features) is shown in Fig. 1(a).

We ran different tests with an increasing number of mis-

classified points (randomly selected). The basic test was

performed with only 1 misclassified point per sequence.

In this setup each experiment converged to the correct so-

lution. This allowed us to verify that our algorithm was

able to detect the misclassified point given the whole set

of points in the sequence. The next tests were performed

with a higher number of misclassified points: 1%, 2%, 3%,



(a) Synthetic (b) Hopkins155 (articulated)

Figure 1. Example of an input frame and some trajectories of a synthetic and a real sequence.

4%, 5% and 10% of the total number of points in each se-

quence. In Fig. 2 it is possible to observe: (a) the percentage

of error-free sequences that resulted from application of the

algorithm (i.e. sequences whose misclassified points were

all identified and removed, in the plots this is represented

by a + symbol), (b) the percentage of identified errors (i.e.

how many misclassified points were identified as a percent-

age of all the original misclassified points, in the plots a

◦ symbol), (c) the percentage of false positives (i.e. how

many points our algorithm removed even if they were cor-

rectly classified, in the plots a × symbol). The results show

that until a misclassification rate of 5% almost all of the se-

quences are completely corrected. Clearly the higher the

noise, the number of motions and the percentage of mis-

classification, the higher the percentage of false positives

tends to be. However, even when some sequences are not

completely corrected, the high percentage of misclassified

points identified (◦) shows that our proposal is reliable and

robust against noise and an increasing number of motions.

For example, even in the case of an initial misclassification

of 10% the percentage of detected errors in the segmenta-

tion is always above 90%, including the sequences with 5

motions and the highest noise level. To summarize, our al-

gorithm is able to greatly reduce the initial misclassification

rate of the input sequences even in the most challenging

conditions. In fact, after the application of our algorithm

the majority of the sequences become error-free.

We also applied our algorithm (using the same input pa-

rameters) to the real sequences of the Hopkins155 database.

As we did for the synthetic tests, we first applied our al-

gorithm on the database where only 1 point per sequence

was misclassified, then we extended the test using an ini-

tial misclassification rate of 1%. The Hopkins155 database

(an example of a real frame is shown in Fig. 1(b)) con-

tains 104 checkboard sequences, 38 traffic sequences and

13 other sequences (among which are sequences with artic-

ulated motions). As our algorithm assumes independence of

the motions, the Hopkins155 database is a very challenging

test. Nevertheless, with 1 misclassified point we are able to

correct 77 sequences. When the misclassification rate rises

to 1% we are able to completely correct 61 sequences. It

should be noted that for remaining sequences, which are

not completely corrected, the initial misclassification rate is

at least halved. This suggests that allowing the algorithm to

perform more iterations could increase the total number of

error-free sequences. Another way for improving the per-

formance of our algorithm would be to tune the SALSA

parameters µ1 and µ2.

As far as the computational time is concerned, the major-

ity of the resource is spent for the sparse minimization. On

the whole Hopkins155 database with 1 error per sequence

the algorithm required approximatively 3 hours (Matlab im-

plementation on Quad-Core @ 2.4GHz, with 16 GB RAM).

6. Conclusions

In this paper we have presented a new approach to per-

form motion segmentation and 3D reconstruction of 2D

points extracted from an uncalibrated image sequence. Our

method takes advantage of an initial segmentation to it-

eratively correct the misclassified points and compute the

multi-body 3D structure of the analyzed scene. The pro-

posed iterative bilinear optimization first enforces rotation

metric constraints on the camera matrices, and then opti-

mizes the reprojection error while maintaining the sparsity

of the 3D shape matrix. Our proposal can be applied to any

initialization provided by a standard MS algorithm.

The experiments on synthetic sequences and real data

from the Hopkins155 database have shown the validity of

our approach which was able to correct different amounts

of segmentation errors. It should be noted that our approach

does not require any parameter apart from the µ1 and µ2 that

are needed by the SALSA sparse optimization tool, which

were fixed for all of the experiments.
Future work will involve the study of a better automatic

stopping condition to our iterative algorithm. Moreover,
at present the points identified as errors are removed from
the trajectory matrix, however, we are developing a re-
classification strategy, which will allow reassignment of the
removed points to the correct motion.
Acknowledgement. Spanish Ministry of Science projects



Figure 2. Results of our algorithm applied to the synthetic database. On the x-axis the initial amount of misclassified points. + is the

percentage of sequences whose segmentation was completely corrected. ◦ is the percentage of the removed misclassified points over all

the misclassified points. × is the amount of false positive points as a percentage of all the removed points.
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