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Several non-rigid structure from motion methods have been proposed so far in order to recover both the
motion and the non-rigid structure of an object. However, these monocular algorithms fail to give reliable
3D shape estimates when the overall rigid motion of the sequence is small. Aiming to overcome this lim-
itation, in this paper we propose a novel approach for the 3D Euclidean reconstruction of deformable
objects observed by an uncalibrated stereo rig. Using a stereo setup drastically improves the 3D model
estimation when the observed 3D shape is mostly deforming without undergoing strong rigid motion.
Our approach is based on the following steps. Firstly, the stereo system is automatically calibrated and
used to compute metric rigid structures from pairs of views. Afterwards, these 3D shapes are aligned
to a reference view using a RANSAC method in order to compute the mean shape of the object and to
select the subset of points which have remained rigid throughout the sequence. The selected rigid points
are then used to compute frame-wise shape registration and to robustly extract the motion parameters
from frame to frame. Finally, all this information is used as initial estimates of a non-linear optimization
which allows us to refine the initial solution and also to recover the non-rigid 3D model. Exhaustive
results on synthetic and real data prove the performance of our proposal estimating motion, non-rigid
models and stereo camera parameters even when there is no rigid motion in the original sequence.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

Most biological objects and natural scenes vary their shape un-
der the effect of external and internal forces, i.e. human bodies may
articulate and deform, sheets of paper and clothes may bend under
pressure and strains, living cells may change abruptly their topol-
ogy during biological interactions. During the last years several
works have presented extensions of the Tomasi and Kanade’s
structure from motion (SfM) algorithm to deal with the reconstruc-
tion of non-rigid objects (Bregler et al., 2000; Brand, 2001; Xiao
et al., 2004; Torresani et al., 2008; Paladini et al., 2009). These
methods are based on the fact that any configuration of the shape
can be explained as a linear combination of basis shapes that de-
fine the principal modes of deformation of the object. Moreover, al-
most all these non-rigid methods assume the case of images
acquired under weak perspective viewing conditions, useful when
the relief of the object is small compared to the distance to the ob-
ject. In this work we are interested in the case when the images are
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acquired at closer distances, with a wide field of view or when the
scene is large in space and perspective distortions appear. In this
situation, the assumption of weak perspective projection no longer
holds and these methods provide distorted reconstructions. Differ-
ent monocular approaches have already been proposed to deal
with the reconstruction of 3D deformable shapes under the full
perspective camera case (Xiao and Kanade, 2005; Vidal and Abre-
tske, 2006; Hartley and Vidal, 2008). However, the main constraint
of all these SfM approaches is that a reliable model can only be ex-
tracted if the image sequence includes a large rotation component.
In the deformable case, this constraint is even more critical since
deformations have to be properly disambiguated from the motion
component given by the imaging device (i.e. perspective distortion
and camera motion).

Using a stereo rig is a straightforward solution which may over-
come this limitation and improve the 3D estimation when the
shape exhibits weak rigid motion. Nowadays, the two-view stereo
cameras start to be available in the market and the development of
image analysis and 3D reconstruction methods for these systems is
growing fast with applications such as image-based modeling, hu-
man–computer interaction and vision-based control. Not to men-
tion the recent revamp of stereo professional cameras in the film
industry which are already affecting a novel set of consumer prod-
ucts (Ronfard and Taubin, 2010). The problem of recovering 3D
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structure using a stereo rig moving in time or a stereo rig looking at
a moving object has been defined for the rigid case as the stereo-
motion problem (Waxman and Duncan, 1986; Stein and Shashua,
1998; Dornaika and Sappa, 2009). As stated by Ho and Chung
(1997) there are two visual cues that have to be taken into account
when formulating the stere-motion reconstruction problem: the
motion cue, in which 3D structure is recovered from the relative
motion between the scene and the camera, and the stereo vision
cue, in which 3D structure is recovered from the stereo pair images
of the same scene. Ho and Chung (1997) were the first to formulate
this stere-motion problem within the rigid SfM scenario, present-
ing a framework that combined the advantages of both cues to pro-
vide more accurate reconstructions. Recently, a stereo approach
with deformable shapes was successfully used for the affine cam-
era case (Del Bue et al., 2006). This SfM method imposes the extra
constraints that arise from the fact that both stereo cameras are
viewing the same non-rigid 3D structure. However, a method
which deals with the full perspective camera case has not yet been
proposed.

With the aim to overcome the well-known intrinsic limitation
of the monocular SfM methods of having enough overall rigid mo-
tion in the sequence, which can occur frequently (e.g. modeling the
deformations of a human face), we present in this paper a projec-
tive approach for the 3D Euclidean reconstruction of deformable
objects observed by a stereo rig. We show that the use of two cam-
eras allows us to recover 3D non-rigid models even when the over-
all rigid motion of the sequence is small.

The main idea of our proposal is the following. Our approach
first calibrates automatically the stereo system and it computes
the metric 3D rigid structure from every pair of views (i.e. using
two images). Afterwards, the algorithm computes a rigid registra-
tion of all the 3D shapes to a reference view using a RANSAC
algorithm (Fischler and Bolles, 1987). This step requires the
assumption that some of the object points remain rigid over the se-
quence (Del Bue et al., 2006; Lladó et al., 2010; Wang and Wu,
2008). Given this registration, we can compute the mean shape
of the object and also to select a set of rigid points which will be
employed to perform a frame-wise registration and to robustly ex-
tract the motion parameters from frame to frame. Note that epipo-
lar geometry can not be directly applied from frame to frame due
to the fact that the object is deforming at each frame. Instead of
computing the deformable metric model from the independent ri-
gid shapes obtained for each stereo pair, we propose in this work a
non-linear optimization process which allows us to integrate both
motion and shape constraints from the spatial and temporal acqui-
sitions (i.e. structure and deformation coefficients are shared by
left and right cameras). All the extracted information – stereo cam-
era parameters, mean shape, and motion between frames – is used
as initial estimates of the non-linear optimization where the objec-
tive function to be minimized is the image reprojection error. This
bundle adjustment (BA) step allows us to refine the initial solution
and also to recover the non-rigid 3D model of the deformable ob-
ject which benefits from the integration of spatial and temporal
stereo acquisitions. We present different synthetic experiments
in order to evaluate the behavior of our approach when using dif-
ferent ratios of rigid/non-rigid points in the object, different de-
grees of deformation, and different rigid motion in the sequence.
Experimental results using real data are also presented. The rest
of the paper is organized as follows. In Section 2 we introduce
the background on non-rigid perspective SfM methods, presenting
the non-rigid model obtained by these methods. Section 3 de-
scribes our proposal (introduced in Lladó et al., 2008) for the
non-rigid metric shape and motion recovery from stereo se-
quences. In Section 4 we show experiments on different synthetic
and real data sets which validate our approach. Finally, conclusions
are given in Section 5.
2. Background on monocular non-rigid SfM

The key idea of the monocular structure from motion methods
is to gather the 2D image coordinates of a set of P points tracked
throughout F frames into a measurement matrix W2F�P. Assuming
affine viewing conditions, the measurement matrix can be ex-
pressed analytically as a bilinear product of two matrices: W = M S

where M is a 2F � 3 motion matrix which expresses the pose of
the camera and S is the 3 � P shape matrix which contains 3D loca-
tions of the reconstructed scene points. Therefore, the rank of the
centered measurement matrix – where the translation is removed
– is constrained to be r 6 3. Exploiting this rank constraint and
enforcing metric constraints on the rotation matrices one can re-
cover the motion and the 3D shape (Tomasi and Kanade, 1992).

Using a perspective camera model, a 3D point Xj
1 is projected

onto image frame i according to the equation �wij ¼ 1
kij
P iXij, where

�wij and Xij are both expressed in homogeneous coordinates (i.e.

�wij ¼ ½uijv ij1�T ¼ wT
ij1

h iT
and �Xj ¼ ½XjYjZj1�T ), Pi is the 3 � 4 projec-

tion matrix and kij is the projective depth for that point. The projec-
tion camera is defined mathematically as Pi = Ki[RijTi], where the
3 � 3 rotation matrix Ri and the translation vector Ti represent the
Euclidean transformation between the camera and the world coordi-
nate system respectively and Ki is a 3 � 3 upper triangular matrix
which contains the intrinsic camera parameters. Scaling the image
coordinates of all the points in all the views by their corresponding
projective depth gives a 3F � P rescaled measurement matrix �W ¼ MS,
where S ¼ ½�X1; . . . ; �XP � is a 4 � P shape matrix which contains the
homogeneous coordinates of the P 3D rigid points and M is a
3F � 4 matrix which contains the perspective cameras for each
frame (Sturm and Triggs, 1996). In the case of rigid structure and
assuming the projective depths kij are known M and S are at most
rank 4. Therefore, the rank of the scaled measurement matrix �W is
constrained to be r 6 4.

When an object is deforming, its 3D structure changes from
frame to frame where �Xi ¼ ½�Xi1; . . . ;XiP� is a (4 � P) matrix repre-
senting the shape at frame i in homogeneous coordinates. In order
to express the deformations of the 3D shape in a compact way, Bre-
gler et al. (2000) introduced a simple linear model where the 3D
shape of any specific configuration is approximated by a linear
combination of a set of D basis shapes Bd with d = 1, . . . ,D, which
represent the principal modes of deformation of the object. In
the projective case the 3D vectors are expressed in homogeneous
coordinates and so the shape may be written (Xiao and Kanade,
2005) as:

Xi ¼
PD
d¼1

lidBd

1T

2
64

3
75 �Xi 2 R4�P

Bd 2 R3�P; ð1Þ

where Bd are the 3 � P basis shapes, lid are the corresponding defor-
mation coefficients and 1 is a P-vector of ones. Note that the first ba-
sis shape corresponds to the mean shape of the 3D model.

Xiao and Kanade (2005) were the first proposing a two step SfM
algorithm for reconstruction of 3-D deformable shapes under the
full perspective camera model. From this initial work several ap-
proaches such as the works of Vidal and Abretske (2006), Del
Bue et al. (2006), Wang et al. (2007), Wang and Wu (2008), Bartoli
et al. (2008) and Hartley and Vidal (2008) have also been proposed.
All these projective SfM methods are able to recover non-rigid
shape models from a single video camera. However, all of them
share the well-known SfM constraint of having enough rigid mo-
tion during the sequence in order to provide reliable 3D deform-
able models.
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3. Our non-rigid stereo approach

In real situations the monocular SfM requirement of having a
sufficient overall rigid motion may not be possible. For instance
in a human face performing different facial expressions, the under-
going rigid motion – mainly rotation – is usually very small. More-
over, in the full perspective camera case, the perspective distortion
may be wrongly considered as deformations (and viceversa). Aim-
ing to solve this problem, we propose a novel approach for recov-
ering non-rigid models from a stereo rig, where the two cameras
remain fixed relative to each other throughout the sequence. In
this stereo case all the measurement requires not only the tempo-
ral tracks of points in the left and right image sequences but also
the stereo correspondences between left and right image pairs
(see Fig. 1). In this paper the correspondence issue is not tackled,
assuming that the complete stereo measurements are correctly
matched and available. Hence, we adopt the assumption that all
scene elements are visible from both cameras and we do not deal
with the problems associated with occlusions and missing data.
However, we will show in the experimental results a real sequence
where the measurement matrix is automatically obtained by using
a stereo tracker algorithm (Ferrer and Garcia, 2008). It is important
to mention that a stereo approach requires both cameras to be syn-
chronized. However, if this were not the case, it could be elegantly
solved using the solution proposed by Tresadern and Reid (2009)
for the synchronization of stereo video sequences in an uncali-
brated scenario.

The use of a calibrated stereo pair is a common and practical
solution to obtain reliable 3D reconstructions. In its simpler formu-
lation, once the stereo rig is calibrated, the depth of points in the
image is estimated by applying triangulation (Hartley and Zisser-
man, 2000). In order to obtain accurate depth estimates, the cam-
eras are usually separated from each other by a significant baseline
thus creating widely spaced observations of the same object. The
disadvantage of this configuration though, is that having a wide
baseline makes the matching of features between pairs of views
a more challenging problem (Delponte et al., 2006). Note that in
Fig. 1. Stereo-motion setup. A point is moving in space and its position in 3D is
shown for each time instance as X1, X2, and X3. The three points are then projected
onto the respective image frames obtaining the image coordinates �wL

1;1, �wL
2;1 and

�wL
3;1 for the left camera and �wR

1;1, �wR
2;1 and �wR

3;1 for the right one. The dotted lines
connecting the points represent the 2D trajectory in time of the point in the left and
right images. Since the position of the cameras is fixed, the relative orientation Rrel

and camera displacement Trel between the camera centers OL and OR are considered
constants in time.
this situation features often have a very different appearance be-
tween views or are not even visible in both cameras, thus making
spatial correspondence difficult.

On the other hand, the task of computing temporal tracks from
the single camera sequences is relatively easier since the images
are closely spaced in time. As a drawback, disparities between con-
secutive frames may be insufficient to obtain a reliable depth esti-
mation and, as a result, longer sequences are needed to infer the 3D
structure. Particularly, in the case of non-rigid structure, a suffi-
cient overall rigid motion is necessary to allow the monocular algo-
rithms to correctly estimate the reconstruction parameters. Hence,
a question of relevant interest is the feasibility of an approach that
efficiently fuses the positive aspects of both methods. In this sense,
Del Bue et al. (2006) have recently proposed a stereo-motion ap-
proach able to recover deformable shapes for the affine camera
case.

Affine cameras are only an approximation of the real viewing
conditions affecting the projection of a body onto the image plane.
Therefore, these models are generally effective when the relief of
the object is small compared to the distance from the camera cen-
ter. When these assumptions weaken, for instance in the case
when the images are acquired at closer distances, the use of a per-
spective camera model is necessary to obtain a correct 3D recon-
struction of the object. Our stereo approach presented in the
following sections deals with the recovery of deformable shapes
for the projective camera case, aiming also to overcome the limita-
tion of having a sufficiently large overall rigid motion for the mon-
ocular SfM methods.

3.1. Obtaining estimates from the stereo rig

In the first step, our stereo system is automatically calibrated
using the captured data. This is done computing the fundamental
matrices from each pair of views and using the Kruppa equations
to recover the intrinsic camera parameters KL and K

R (focal lengths
for both left and right cameras) (Faugeras and Luong, 2001). Since
the relative orientation and position between the left and right
cameras is fixed, we have expressed the rotation and translation
of the right camera in terms of the relative rotation Rrel and trans-
lation Trel (see Fig. 1). Exploiting the relationship between the fun-
damental matrix and the essential matrix, both Rrel and Trel are
automatically recovered (Faugeras and Luong, 2001). Once the cal-
ibration of the stereo system is obtained, we then compute the
metric rigid shape for each pair of views by applying triangulation
(Hartley and Zisserman, 2000). Note that one fundamental matrix
yields two Kruppa equations; therefore we are able to recover two
intrinsic parameters assuming that the rest are known. In this
work, we consider cameras which have zero skew, unit aspect ra-
tio, and known principal points for doing the automatic calibration.
This automatic calibration step could be avoided if the stereo cali-
bration is already known by using a separate calibration procedure
based on standard techniques such as the ones described in (Arm-
angué et al., 2002). This will be shown in the experimental section
with a real stereo sequence where the full stereo system calibra-
tion was available beforehand. The key issue that is important to
remark is that one could not apply epipolar geometry at each sin-
gle camera to recover the frame-wise motion (i.e. rotation and
translation) since the points on the structure are varying non-rig-
idly with time and therefore violating the epipolar constraints.

3.2. Frame-wise motion estimation

In order to solve for the motion between frame to frame we
adopt the reasonable assumption that some of the object points re-
main rigid over the sequence. This assumption was already intro-
duced in (Del Bue et al., 2006; Wang et al., 2007). The idea
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behind this assumption is twofold. Firstly, to use a RANSAC algo-
rithm (Fischler and Bolles, 1987) which considers non-rigid points
as outliers in order to register all the shapes to a reference view.
This way we are able to compute the mean shape over the se-
quence which will be then used as initialization of the mean shape
(first basis shape B1) of the non-rigid model. Secondly, to select a
set of rigid points from the 3D shapes in order to compute the
frame-wise motion estimation more robustly.

The procedure to align the 3D shapes to a reference frame is
based on a RANSAC process over Horns’ absolute orientation algo-
rithm (Horn, 1987). During each RANSAC iteration, we randomly
draw pairs of corresponding 3D points and use these sets to
hypothesize the transformation matrix. The estimation of the
transformation is achieved up to a certain input probability (in
our implementation fixed to 0.99) of having an outlier-free set con-
taining only rigid points. In our RANSAC implementation the min-
imum theoretical number of points was 3, although, in all our
experimental tests bigger sets were selected. Once all the shapes
are aligned, we perform the segmentation between rigid and
non-rigid points analyzing the 3D registration errors obtained for
all the points in each frame. The registration error is defined here
as the Euclidean distance between each pair of point correspon-
dences. Since the structure of deforming parts varies from frame
to frame, the accumulated registration error of these deforming
points across the sequence will be much larger than the one of
the rigid points. Thus a set of rigid points can be easily distin-
guished from the obtained registration errors by using a threshold.
This can be seen in Fig. 2 where the accumulated 3D registration
error obtained for a synthetic sequence that contains 30 rigid
Fig. 2. Two examples of the accumulated 3D registration error obtained for every
point across a synthetic stereo sequence. The sequence contains 30 and 50 rigid and
non-rigid points respectively. (a) Image noise level = 0.5 and (b) image noise
level = 1. For simplicity in the visualization we ordered the points so that the rigid
are the first ones, showing that we are able to classify these points.
and 50 non-rigid points respectively is shown. Note that for differ-
ent levels of image noise (e.g. noise = 0.5 and 1) one can clearly
separate the set of rigid (first 30 points) from the non-rigid ones
(the remaining 50 points). We automatically determine the seg-
mentation threshold using the well-known Otsu’s method (Otsu,
1979) which is able to select the best threshold value minimizing
the intra-class variance of the registration error distribution. This
thresholding technique has provided good performances as we will
see in Section 4. One could also fix this threshold experimentally
being even more strict on the decision and therefore avoiding pos-
sible misclassifications of deformable points into rigid ones. One
should notice also that the ability to separate rigid and non-rigid
points may be affected by the ratio of rigid and non-rigid points,
noise level and degree of non-rigidity of the object. These issues
will be analyzed in the experimental section.

A similar strategy to perform a point deformation detection
from 3D views has been recently proposed by Wang and Wu
(2008). Moreover, Del Bue et al. (2007a) also proposed a method
to detect and segment the rigid points from the non-rigid ones
from the 2D measurements. Instead of using the 3D shapes, their
approach is based on the fact that rigid points will satisfy the epi-
polar geometry while the non-rigid points will give a high residual
in the estimation of the fundamental matrix between pairs of
views. They use a RANSAC algorithm to estimate the fundamental
matrices from pairwise frames in the sequence and to segment the
scene into rigid and non-rigid points (Del Bue et al., 2007a). How-
ever, as argued by Wang and Wu (2008), addressing the problem
from the 3D geometrical information and accumulating the errors
of the deformations parts frame by frame may provide more accu-
rate results. Nevertheless, it is important to remark that in this step
we are looking for a good set of rigid points which will help the
frame-wise motion estimation, even though the complete segmen-
tation among all rigid and non-rigid points may not be achieved.
Once the final set of rigid points had been selected, we used them
to compute the frame-wise registration via a RANSAC procedure
and to robustly extract the frame-wise motion parameters (Ri

and Ti).
All this information: mean shape, stereo camera parameters

(relative rotation and translation) and the motion between frame
to frame, is then used as initial estimates of a non-linear optimiza-
tion where the objective function to be minimized is the image
reprojection error: a geometrically meaningful error function. This
step takes the parameters of the geometry of the stereo rig, rigid
structure and estimated frame-wise motion into account in order
to refine the initial solution and also to recover the non-rigid 3D
model of the deformable, integrating both motion and shape con-
straints from the spatial and temporal 2D image acquisitions.

3.3. Non-rigid 3D model estimation: bundle adjustment

In order to estimate the complete 3D non-rigid shape model we
minimize the geometric distance between the measured image
points and the estimated reprojected points

P
i;jk �wij � ŵijk2. There-

fore, our cost function being minimized is

min
KLKRRiT iRrelTrelBdlid

X
i;j

�wL
ij � KL

Ri j T i½ �
PD
d¼1

lidBdj

1

2
4

3
5

������

������

2

þ �wR
ij � KR

RrelRi j RrelT i þ T rel½ �
PD
d¼1

lidBdj

1

2
4

3
5

������

������

2

; ð2Þ

where, the goal of this minimization is to refine and correctly esti-
mate the left and right camera matrices, the intrinsic camera
parameters K

L and K
R, the configuration weights lid and the basis

shapes Bdj such that the distance between the measured image
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points �wL
ij and �wR

ij and the estimated image points ŵL
ij and ŵR

ij is
minimized.

Following the rigidity priors introduced by Del Bue et al. (2006),
we also impose priors on our set of rigid points obtained from the
segmentation. If the motion of a point j is completely rigid for the
entire sequence, the structure referring to that point is expressed
entirely by the mean shape (first basis d = 1, and zero value for
the non-rigid component). From this it follows that for a rigid point

Bdj = 0 "d > 1 where Bj ¼ BT
1j; . . . ;BT

Dj1
h iT

. Note that Bj is a 3D + 1

vector which encodes the D basis shapes for point j and Bdj is the
3-vector which contains 3D coordinates of basis shape d for point
j. Notice that this rigidity prior forces 3(D � 1) zeros in each column
of the shape matrix corresponding to a rigid point. We write these
rigidity constraints as priors on the coordinates of the basis vectors
Bdj. The benefit of including this rigidity prior was previously dem-
onstrated in (Lladó et al., 2010), showing that priors helped to avoid
local minima and improved the reconstruction results.

The minimization of Eq. (2) is accomplished with a bundle
adjustment step. Bundle adjustment algorithms require careful ini-
tialization since they may fail to converge to the global minimum
unless they are initialized close enough to it. The non-linear opti-
mization of the cost function was achieved using a Levenberg–
Marquadt minimization scheme modified to take advantage of
the sparse block structure of the matrices involved in the process
(Triggs et al., 2000). We have chosen to parameterize the camera
matrices using quaternions. Quaternions ensure that there are no
singularities and that the orthonormality of the rotation vectors
is preserved. Given the large number of parameters involved in
the non-linear minimization, the objective function is highly
non-linear and so it is crucial to provide an initial estimate that
is sufficiently close to the global minimum. In this sense, our ini-
tialization comes from the estimated parameters of the geometry
of the stereo rig K

L and K
R, Rrel and Trel, the estimated frame-wise

motion Ri and Ti, and the obtained mean shape B1. The remaining
basis shapes Bd which encode the (D � 1) non-rigid components
are initialized to small random values. Finally, the deformation
weights łi1 associated with the mean shape are initialized to 1
while the rest are initialized to small values. Note that this shape
initialization is equivalent to initializing the shape with a strong
mean component and small deviations from it to explain the defor-
mations, which is a fair assumption in most deformable objects.
This assumption and also this initialization procedure has been
seen to produce satisfactory results in the case of affine and per-
spective cameras as shown in (Torresani et al., 2001; Del Bue et
al., 2007b; Lladó et al., 2010). However, we want to emphasize that
algorithms based on BA do not guarantee the convergence to the
global minima so a good initialization continues to be crucial.

4. Results

This experimental section validates our proposal for 3D non-ri-
gid metric reconstruction with synthetic and real experiments. The
synthetic tests are designed in order to verify the performance of
the method when using different ratios of rigid/non-rigid points
and when using different camera setups. After the synthetic tests,
this section presents the performance of our approach in the case
of a real deforming object. In particular, we use a real face under-
going different facial expressions. The image measurements for the
stereo set are generated from the data acquired by using a VICON
motion capture system which also provides the ground truth for
comparing the 3D reconstructions. Finally, we present another
experiment using the image acquisitions from a real calibrated ste-
reo rig. This experiment allows also to illustrate the improvements
of our perspective approach compared to the affine stereo case pre-
sented by Del Bue et al. (2006).
4.1. Synthetic data

The synthetic 3D data consisted of a set of random points sam-
pled inside a cube of size 50 � 50 � 50 units. In order to evaluate
our proposal we used two different setups of image sequences:
the first one in which the object was not performing any rigid mo-
tion, and the second one in which the object as well as deforming
was doing a certain rigid motion transformation. For both situa-
tions, several sequences were generated using different ratios of ri-
gid points (which included the vertices of the cube) and non-rigid
points. Different deformation degrees for the non-rigid points were
generated using random basis shapes and random deformation
weights. The first basis shape had the largest weight equal to 1.
We also created different sequences varying the number of basis
shapes (D = 3 and D = 5) for different ratios of rigid/non-rigid
points. The 3D data was then projected onto 20 pairs of views using
a perspective camera model. Different stereo camera configura-
tions were also used, varying the intrinsic parameters, the relative
rotation (between 10� and 30�) and the baseline of the stereo pair.
The sequences had also large perspective distortions due to the
chosen camera setup. For all these experiments we assumed that
the focal lengths of the cameras were unknown but constant, the
aspect ratios and the principal points were known and constant,
while the skew was set to be 0. Finally, Gaussian noise of increas-
ing levels of variance was added to the image coordinates.

4.1.1. Deforming object without rigid motion
For this particular experiment we used a fixed set of 20 rigid

points while using 20 and 50 non-rigid points generated using 3
and 5 different basis shapes. The 3D data was then projected onto
20 pairs of views using a perspective camera model and without
applying any rotations and translations to the object. The distance
of the object to the cameras was z = 100 and the focal length was
fixed to be f = 500. We assumed that all the camera parameters,
including the relative camera orientation and the baseline of the
stereo pair remained constant over the sequences.

We then applied our 3D reconstruction algorithm to all the
experimental setups described before. The results are summarized
on the first row of Fig. 3 where we show the root mean square
(RMS) 2D image reprojection error (pixels), 3D metric reconstruc-
tion error (percentage relative to the scene size) and the absolute
rotation error (degrees). The plots show the mean values of 5 dif-
ferent random trials per level of noise. Our approach performs well
in the presence of noise. The 3D reconstruction error is low even
for a large proportion of non-rigid versus rigid points. The 2D error
is also small and it appears to be of the same order as the image
noise. Fig. 3 also illustrates that the rotations are correctly esti-
mated. Reliable estimates for the internal camera parameters (focal
length, relative camera rotation and translation) were also ob-
tained even in the presence of noise. We want to emphasize that
in these experiments the Euclidean non-rigid 3D model was ob-
tained when neither the camera and the object was doing any rigid
motion, a situation in which the non-rigid SfM methods presented
in Section 2 will fail.

4.1.2. Deforming object with rigid motion
For this experiment, the 3D data was also projected onto 20

pairs of views using a perspective camera model but now applying
random rotations between 10� and 50� and translations over all the
axes. We used here 2 sets of 10 and 30 fixed rigid points while
using 10 and 30 non-rigid points. In order to evaluate different lev-
els of perspective distortion, we used 2 different camera setups in
which we varied the distance of the object to the cameras and the
focal length (Setup1: z = 80, f = 400; Setup2: z = 100, f = 500). The
obtained results are summarized on the second and third rows of
Fig. 3 where we show again the RMS 2D image reprojection error,



Fig. 3. 2D error, 3D error and rotation error curves. First row: results obtained when not rigid motion was applied to the object. Second and third rows: results obtained when
the object was deforming while doing a rigid motion transformation.

Table 1
Mean misclassification error for different levels of noise with variance r = 0.5, 1, 1.5,
2 pixels. The experimental setups use different number of bases (D = 3,5) and ratios of
rigid (10/30) versus non-rigid points (10/30/50). The mean error is computed over 30
tests for each setup and level of noise.

Experiments Noise

0 0.5 1 1.5 2

D = 3, 10/10 0 0 0.1 0.1 0.3
D = 3, 10/30 0.6 0.8 0.9 1.1 1.6
D = 3, 10/50 1.1 1.4 2.1 2.4 2.6
D = 3, 30/10 0 0 0 0 0
D = 3, 30/30 0.2 0.4 0.4 0.3 0.6
D = 3, 30/50 1.2 1.2 1.8 1.8 3.2

D = 5, 10/10 0 0 0 0 0
D = 5, 10/30 0 0 0 0 0
D = 5, 10/50 0.3 0.4 0.4 0.8 0.8
D = 5, 30/10 0 0 0 0 0
D = 5, 30/30 0 0 0 0 0.2
D = 5, 30/50 0.4 0.4 0.5 0.6 0.5
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3D metric reconstruction error and the absolute rotation error. The
plots show the mean values of 5 different random trials per level of
noise. Observe, that our proposed algorithm perform well even
when using a reduced set of rigid points. The 3D reconstruction er-
ror and the rotations are correctly estimated for different propor-
tions of rigid versus non-rigid points. Note also that in general
we obtained better estimates (i.e. smaller 3D and rotation errors)
in the experiments without any rigid motion (Section 4.1.1). We
have also noticed that widely separated stereo views allow a more
reliable estimation of motion and deformation parameters.

Regarding to the algorithm convergence, the non-linear optimi-
zation step for all these experiments usually converged within
around 30 iterations. Moreover, results in Fig. 3 show the algo-
rithm converges in the absence of noise. In this sense, the good ini-
tial estimates for the stereo camera setup, the motion and the 3D
structure are fundamental to avoid local minima.

It is important to mention that the result of the rigid/non-rigid
point segmentation can provide some misclassified points. These
outliers may introduce error in the initial rotation and translation
estimates. However, as we show in these experiments, after apply-
ing bundle adjustment the results are satisfactory, providing
acceptable motion and structure estimates. In the following section
we analyze and discuss some results about the rigid and non-rigid
point segmentation.

4.1.3. Evaluating the segmentation of rigid and non-rigid points
In order to evaluate the 3D rigid and non-rigid point segmenta-

tion, we used the same synthetic experimental setup described
above. Therefore, we analyzed sequences with 10 and 30 rigid
points while using 10, 30 and 50 non-rigid points generated using
3 and 5 different basis shapes. 30 different trials in which the ob-
ject was undergoing a rigid motion were done per each configura-
tion. Table 1 shows the degree of misclassification (measured as
number of misclassified points) for varying ratios of rigid/non-rigid
points and for increasing levels of noise. Note that in general a
good behaviour is achieved for all the setups, although, the mis-
classification error was higher when having a large proportion of
non-rigid points (i.e. using 10/50 rigid/non-rigid points). This was
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due to the fact that we had more probability to synthetically gen-
erate non-rigid points with very small deformations and therefore
more misclassified points. Another interesting point is that we
have noticed a better performance in the case of stronger deforma-
tions compared to weaker ones due to the fact that the segmenta-
tion is less ambiguous (see the examples when using 5 basis
shapes). Obviously, a misclassification error could affect the RAN-
SAC estimation of the rotations and translations, and therefore
the final recovery of the 3D structure and camera parameters.
However, we want to remark that the effect of misclassification
in this stage is not significant on the final motion estimates since
only a subset of the rigid points is needed in the RANSAC algorithm
to compute the frame-wise motion estimates. The effect of mis-
classified points in the optimization process and in the inclusion
of priors was previously studied in Del Bue et al. (2006) showing
that a small set of outliers (i.e. 2 misclassified points) was not sig-
nificant in the final estimates of BA.
4.2. Experiments with reprojected data

In this experiment we use 3D data of a human face performing
different facial expressions. The 3D data was captured using a VI-
CON motion capture system by tracking a subject wearing 37
markers on the face. First row of Fig. 4 shows three key-frames
showing the positions of the markers and the range of deforma-
tions of some expressions in the tested sequence. The 3D points
were then projected synthetically onto an stereo image sequence
22 frames long using a perspective camera model and fixing the
relative rotation and translation of the stereo set. Gaussian noise
of 2 pixels was also added to the image coordinates. The size of
the face model was 169 � 193 � 102 units and the stereo camera
setup was such that the subject was at a distance of 150 units from
the camera and the focal length was 300 pixels so the perspective
effects were considerable. We assumed that the focal lengths of the
cameras were unknown but constant, while the aspect ratios and
the principal points were known and constant.
Fig. 4. Front and side views of the reconstructed face for pixel noise = 2.
Reconstructions are shown for frames 1, 14 and 22. Crosses are used to indicate
our estimated reconstructed points while squares refer to the ground truth.
Highlighted marks on the frontal view of frame 1 indicate the selected set of rigid
points.
As in the synthetic experiments we applied our method when
the object was not performing any rigid motion, and when the ob-
ject was rotating and translating during the sequence. For both
cases – and without introducing noise in the image coordinates –
our algorithm converged to the optimum. When introducing
Gaussian noise of 2 pixels and for the case in which the face was
also rotating and translating, the obtained 2D reprojection error
after 5 tests with different random noise was 1.54 ± 0.01 pixels,
the absolute 3D error was 2.26 ± 0.32 units, the absolute rotation
error was 1.12 ± 0.20�, while the estimated focal length was
301.55 ± 20.43. The number of basis shapes was fixed to D = 5.
Fig. 4 shows the ground truth (squares) and reconstructed shapes
(crosses) from front and side views of frames 1, 14 and 22. The se-
lected set of rigid points obtained using the RANSAC algorithm is
highlighted in the frontal view of the first frame. Note that these
rigid points are situated mainly on the nose and the side of the
face. Observe that the obtained results are satisfactory since the
deformations are very well captured by the model even for the
frames in which the facial expressions are more exaggerated.

4.2.1. Comparison with monocular approaches
Using this data set we also performed a comparison with the

perspective monocular SfM approaches of Del Bue et al. (2006)
and Xiao and Kanade (2005). As expected, for the first experiment
in which the face was not performing any rigid motion, it was not
possible to obtain any reliable reconstruction with these SfM ap-
proaches using only information from one camera. However, when
the object was doing a sufficient rigid motion during the sequence,
these monocular methods provided satisfactory 3-D models. In
particular, for a sequence with 2 pixels noise, the obtained 3D er-
rors were 2.73 and 3.89 units, while the absolute rotation errors
were 1.69 and 2.71�, respectively. The former results were ob-
tained with the Del Bue et al. (2006) approach fixing D = 5, while
the latter results were obtained with the Xiao and Kanade (2005)
approach, where the number of independent basis shapes was
automatically selected by the method to be D = 3.

4.3. Experiments with a real stereo rig

In this experiment we show qualitative results with measure-
ments obtained from a real static stereo system composed by
two digital cameras (Canon EOS 50D) properly synchronized and
calibrated (Bouguet, 2009). In order to facilitate the image feature
tracking and matching, the stereo setup was such that the cameras
were looking in the same direction separated only by a baseline of
15 cm. The captured sequence was composed of 10 stereo frames
with a resolution of 2352 � 1568 pixels. The first and the last ste-
reo frames are shown in the first and third row of Fig. 5. Notice that
the background of the sequence is composed by three static books
while there are two moving objects that move linearly in 2 differ-
ent directions. These 2 moving objects are treated here as the non-
rigid part of the scene. As shown in Fig. 5, 475 tracked features are
automatically established across the stereo sequence, where 389
features belong to the static background and 17 and 69 features
belong to the two moving objects, respectively. In order to deal
with the feature detection, tracking, matching, and triangulation
we used the approach of Ferrer and Garcia (2008).

After applying our non-rigid stereo approach into the obtained
image measurements, all the rigid points were automatically seg-
mented from the non-rigid ones using our segmentation scheme.
Furthermore, the recovered 3D non-rigid metric structure of the
scenario was satisfactory as can be seen in Fig. 5(a), (b), (d) and
(e) where frontal and top views of the reconstructed 3D scene for
the first and last frames are shown. Observing the top views of
the reconstructions, one can clearly appreciate the reconstructed
planes belonging to the books of the background and the preserved



Fig. 5. Experimental results using a real stereo system. First and third row shows the pair of stereo images (left and right respectively) for frames 1 and 10. 2D image
measurements are shown in yellow dots. Second and fourth row – images (a), (b), (d) and (e), respectively – shows the frontal and top views of the reconstructed 3D shapes
using our projective stereo approach, (c) and (f) show the top views of the obtained 3D shapes when using the affine stereo approach of Del Bue et al. (2006). (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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orthogonality of the planes belonging to the box object (left mov-
ing object). Moreover, the deformable model of the scene – includ-
ing the non-rigid structure – is correctly recovered even though the
stereo sequence was acquired without frame-wise motion. Finally,
we also applied the affine stereo approach proposed by Del Bue
et al. (2006) to this testing data where the images were acquired
at closer distance. Top views of the reconstructed scene for the first
and last frames are shown in Fig. 5(c) and (f). Observe that even
though the main 3D structure of the scene is recovered, it contains
distortions. Note that the orthogonality of the planes belonging to
the box and also the distance between objects is better recon-
structed using our perspective approach.

5. Conclusion

A novel approach for the estimation of 3D Euclidean non-rigid
models observed by an uncalibrated stereo rig has been proposed.
Our approach computes first metric rigid structures from pairs of
views by using the stereo system. The obtained 3D shapes are then
used to compute the mean shape of the object and to select a sub-
set of rigid points which are used to compute frame-wise shape
registration and to extract the motion parameters robustly from
frame to frame. Finally, given all the initial estimates, the problem
of recovering the non-rigid 3D shape is formalized as a non-linear
optimization which benefits from the integration of spatial and
temporal stereo acquisitions.

The experimental results on synthetic and real data have proven
the performance of our proposal estimating motion, non-rigid 3D
models and stereo camera parameters even when there is no rigid
motion in the original sequence and with a small set of rigid points.
Using a stereo setup drastically improves the 3D model estimation
when the observed 3D shape is mostly deforming without under-
going strong rigid motion.

The main assumptions of our method are that the deformable
object should contain a small set of points remaining rigid over
the sequence (as in Del Bue et al., 2006 and Wang and Wu,
2008), and that cameras must be synchronized and stereo matches
be available. In this sense, nowadays it is common to obtain syn-
chronized video from stereo cameras while stereo matching with
deformable objects may be better tackled by extending current
techniques to deal with the non-rigid case.
Acknowledgements

This work has been supported by Spanish MEC project DPI2007-
66796-C03-02, EPSRC, Grant No. GR/S61539/01. The authors thank
J. Ferrer and Dr. R. Garcia for sharing the code of their stereo track-
er system, and Dr. J. Xiao and Prof. T. Kanade for sharing their non-
rigid SfM code.
References

Armangué, X., Salvi, J., Batlle, J., 2002. A comparative review of camera calibrating
methods with accuracy evaluation. Pattern Recognition 35, 1617–1635.

Bartoli, A., Gay-Bellile, V., Castellani, U., Peyras, J., Olsen, S., Sayd, P., 2008. Coarse-to-
fine low-rank structure-from-motion. In: Proc. IEEE Conf. on Computer Vision
and Pattern Recognition, 1–8..

Bouguet, J., 2009. Camera calibration toolbox for matlab. <http://www.vision.
caltech.edu/bouguetj/calib_doc/index.html>.

Brand, M., 2001. Morphable models from video. In: Proc. IEEE Conf. on Computer
Vision and Pattern Recognition, Kauai, Hawaii, pp. 456–463.

Bregler, C., Hertzmann, A., Biermann, H., 2000. Recovering non-rigid 3d shape from
image streams. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition,
Hilton Head, South Carolina, pp. 690–696.

http://www.vision.caltech.edu/bouguetj/calib_doc/index.html
http://www.vision.caltech.edu/bouguetj/calib_doc/index.html


1028 X. Lladó et al. / Pattern Recognition Letters 32 (2011) 1020–1028
Del Bue, A., Agapito, L., 2006. Stereo non-rigid factorization. Internat. J. Comput.
Vision 66 (2), 193–207.

Del Bue, A., Lladó, X., Agapito, L., 2006. Non-rigid metric shape and motion recovery
from uncalibrated images using priors. In: Proc. IEEE Conf. on Computer Vision
and Pattern Recognition, New York, pp. 1191–1198.

Del Bue, A., Lladó, X., Agapito, L., 2007a. Segmentation of rigid motion from non-
rigid 2d trajectories. In: Iberian Conf. on Pattern Recognition and Image
Analysis, LNCS, 4477, 491–498.

Del Bue, A., Smeraldi, F., Agapito, L., 2007b. Non-rigid structure from motion using
ranklet–based tracking and non-linear optimization. Image Vision Comput. 25
(3), 297–310.

Delponte, E., Isgrò, F., Odone, F., Verri, A., 2006. Svd-matching using sift features.
Graph. Models 68 (5), 415–431.

Dornaika, F., Sappa, A., 2009. A featureless and stochastic approach to on-board
stereo vision system pose. Image Vision Comput. 27 (9), 1382–1393.

Faugeras, O., Luong, Q., 2001. The Geometry of Multiple Images. The MIT Press,
Cambridge, Massachusetts.

Ferrer, J., Garcia, R., 2008. Optical seafloor mapping, Research report, M.Sc. Thesis,
University of Girona.

Fischler, M.A., Bolles, R.C., 1987. Random sample consensus: A paradigm for model
fitting with applications to image analysis and automated cartography. In:
Fischler, M.A., Firschein, O., (Eds.), Readings in Computer Vision: Issues,
Problems, Principles, and Paradigms, Los Altos, CA, pp. 726–740.

Hartley, R., Vidal, R., 2008. Perspective nonrigid shape and motion recovery. In:
Proc. 8th European Conf. on Computer Vision, Prague, Czech Republic.

Hartley, R.I., Zisserman, A., 2000. Multiple View Geometry in Computer Vision.
Cambridge University Press.

Ho, P.K., Chung, R., 1997. Stereo-motion that complements stereo and motion
analysis. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition,
Puerto Rico, pp. 213–218.

Horn, B.K.P., 1987. Closed-form solution of absolute orientation using unit
quaternions. J. Opt. Soc. Am. A 4 (4), 629–642.

Lladó, X., Del Bue, A., Agapito, L., 2008. Recovering euclidean deformable models
from stereo-motion. In: Internat. Conf. on Pattern Recognition, Tampa.

Lladó, X., Del Bue, A., Agapito, L., 2010. Non-rigid metric reconstruction from
perspective cameras. Image Vision Comput. 28 (9), 1339–1353.

Otsu, N., 1979. A threshold selection method from gray-level histograms. IEEE
Trans. Systems Man Cybernet. 2 (1), 62–66.

Paladini, M., Bue, A.D., Stosic, M., Dodig, M., Xavier, J., Agapito, L., 2009. Factorization
for non-rigid and articulated structure using metric projections. In: Proc. IEEE
Conf. on Computer Vision and Pattern Recognition, 2898–2905.
Ronfard, R., Taubin, G., 2010. Image and geometry processing for 3-d
cinematography: An introduction. In: Ronfard, R., Taubin, G. (Eds.), Image and
Geometry Processing for 3-D Cinematography, Geometry and Computing, vol. 5.
Springer, Berlin, Heidelberg, pp. 1–8.

Stein, G., Shashua, A., 1998. Direct estimation of motion and extended scene
structure from a moving stereo rig. In: Proc. IEEE Conf. on Computer Vision and
Pattern Recognition, Santa Barbara, pp. 211–218.

Sturm, P., Triggs, B., 1996. A factorization based algorithm for multi-image
projective structure and motion. In: Proc. 4th European Conf. on Computer
Vision, Cambridge, pp. 709–720.

Tomasi, C., Kanade, T., 1992. Shape and motion from image streams under
orthography: A factorization approach. Internat. J. Comput. Vision 9 (2), 137–
154.

Torresani, L., Yang, D., Alexander, E., Bregler, C., 2001. Tracking and modeling non-
rigid objects with rank constraints. In: Proc. IEEE Conf. on Computer Vision and
Pattern Recognition, Kauai, Hawaii, pp. 493–500.

Torresani, L., Hertzmann, A., Bregler, C., 2008. Non-rigid structure-from-motion:
Estimating shape and motion with hierarchical priors. IEEE Trans. Pattern Anal.
Machine Intell. 30 (5), 878–892.

Tresadern, P.A., Reid, I.D., 2009. Video synchronization from human motion using
rank constraints. Comput. Vis. Image Und. 113 (8), 891–906.

Triggs, B., McLauchlan, P., Hartley, R.I., Fitzgibbon, A., 2000. Bundle adjustment – A
modern synthesis. In: Triggs, W., Zisserman, A., Szeliski, R. (Eds.), Vision
Algorithms: Theory and Practice, LNCS. Springer-Verlag, pp. 298–375.

Vidal, R., Abretske, D., 2006. Nonrigid shape and motion from multiple perspective
views. In: Proc. European Conf. on Computer Vision, LNCS 3952, 205–218.

Wang, G., Wu, Q.M.J., 2008. Stratification approach for 3-d euclidean reconstruction
of nonrigid objects from uncalibrated image sequences. IEEE Trans. Systems
Man Cybernet. 38 (1), 90–101.

Wang, G., Tsui, H., Hu, Z., 2007. Structure and motion of nonrigid object under
perspective projection. Pattern Recognition Lett. 28 (4), 507–515.

Waxman, A., Duncan, J., 1986. Binocular image flows: Steps toward stereo-motion
fusion. IEEE Trans. Pattern Anal. Machine Intell. 8 (6), 715–729.

Xiao, J., Kanade, T., 2005. Uncalibrated perspective reconstruction of deformable
structures. In: Proc. 10th Internat. Conf. on Computer Vision, Beijing, China, pp.
1075–1082.

Xiao, J., Chai, J., Kanade, T., 2004. A closed-form solution to non-rigid shape and
motion recovery. In: Proc. 4th European Conf. on Computer Vision, Cambridge,
pp. 573–587.


	Reconstruction of non-rigid 3D shapes from stereo-motion
	Introduction
	Background on monocular non-rigid SfM
	Our non-rigid stereo approach
	Obtaining estimates from the stereo rig
	Frame-wise motion estimation
	Non-rigid 3D model estimation: bundle adjustment

	Results
	Synthetic data
	Deforming object without rigid motion
	Deforming object with rigid motion
	Evaluating the segmentation of rigid and non-rigid points

	Experiments with reprojected data
	Comparison with monocular approaches

	Experiments with a real stereo rig

	Conclusion
	Acknowledgements
	References


