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1. Introduction

Motion segmentation aims to identify moving objects in a
video sequence. It is a key step for many computer vision tasks
such as robotics, inspection, metrology, video surveillance, video
indexing, traffic monitoring, structure from motion, and many
other applications. The importance of motion segmentation is
evident from reviewing its vast literature. However, the fact that
it is still considered a “hot” topic also testifies that there are many
problems that have not yet been solved.

Based on their main underlying technique, motion segmenta-
tion strategies could be classified into the following groups: image
difference, statistical, optical flow, wavelets, layers, and manifold
clustering.

Image difference: image difference techniques are some of the
simplest and most used for detecting changes. They consist
in thresholding the pixel-wise intensity difference of two
consecutive frames [1,2]. Despite their simplicity they provide
good results being able to deal with occlusions, multiple objects,
independent motions, non-rigid, and articulated objects. The main
problems of these techniques are the high sensitivity to noise and
to light changes, and the difficulty to deal with moving cameras
and temporary stopping, which is the ability to deal with objects
that may stop temporarily and hence be mistaken as background.

Statistical: statistical theory is widely used in motion segmen-
tation. Common statistical frameworks applied to motion
segmentation are Maximum A Posteriori Probability [3,4], Particle
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Filter [5] and Expectation Maximization [6]. Statistical approaches
use mainly dense-based representations; this means that each
pixel is classified, in contrast to feature-based representation
techniques that classify only some selected features. This group of
techniques works well with multiple motions and can deal with
occlusions and temporary stopping. In general they are robust, as
long as the model reflects the actual situation, but they degrade
quickly as the model fails to represent reality. Moreover, most of
the statistical approaches require some kind of a priori knowledge.

Wavelets: these methods exploit the ability of wavelets to
analyse the different frequency components of the images, and
then study each component with a resolution matched to its scale
[7,8]. Wavelet solutions seem to provide overall good results but
are limited to simple cases (such as translations in front of the
camera).

Optical flow (OF): OF can be defined as the apparent motion of
brightness patterns in an image sequence. Like image difference,
OF is an old concept greatly exploited in computer vision and used
also for motion segmentation [9-11]. OF, theoretically, can
provide useful information to segment the motions. However,
OF alone cannot deal with occlusions or temporary stopping.
Moreover, in its simple version it is very sensitive to noise and
light changes.

Layers: the key idea of layer based techniques is to divide the
image into layers with uniform motion. Furthermore, each layer is
associated with a depth level and a “transparency” level that
determines the behaviour of the layers in the event of overlaps.
Recently, new interest has arisen for this technique [12,13]. Layers
are probably the most natural solution for occlusions. The main
drawback is the level of complexity of these algorithms and the
typically large number of parameters that have to be tuned.
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Manifold clustering: these techniques aim at defining a
low-dimensional embedding of the data points (trajectories in
motion segmentation) that preserves some properties of the high-
dimensional data set, such as geodesic distance or local relation-
ships. This class of solutions, usually based on feature points, can
easily tackle temporary stopping and provides overall good results. A
common drawback to all these techniques is that they perform very
well when the assumptions of rigidity and independence of the
motions are respected, but problems arise when one of these
assumptions fails. The intense work done on manifold clustering for
motion segmentation led to satisfactory performances, which make
these solutions appealing. However, more work has to be done in
order to have a motion segmentation algorithm that is completely
automatic and independent from a priori knowledge.

In this paper we present the Enhanced Local Subspace Affinity
(ELSA), a motion segmentation algorithm based on manifold
clustering. ELSA is inspired by the Local Subspace Affinity (LSA)
[14,15] technique introduced by Yan and Pollefeys. In contrast to LSA,
ELSA is able to automatically tune its most sensitive parameter and it
does not require previous knowledge of the number of motions. Such
a result is achieved thanks to two improvements. The first is a new
model selection technique called Enhanced Model Selection (EMS).
EMS is able to adjust automatically to different noise conditions and
different number of motions. A preliminary version of EMS was first
presented in [16]. The second improvement introduced in this paper
is an estimation of the number of motions based on finding,
dynamically, a threshold for the eigenvalue spectrum of the
Symmetric Normalized Laplacian matrix. By doing so, the final
segmentation can be achieved by any spectral clustering algorithm
without requiring any a priori knowledge about the number of
motions. For all the other parameters we propose a fixed value that
we use in all our experiments, showing that even without tuning
them, they lead to good results in most of the cases. If one wants, all
the parameters could be manually tuned in order to achieve even
better performance but we were not interested in obtaining “the best
result” but rather in having a good behaviour in the majority of cases
without requiring manual tuning. A full source code implementation
of ELSA is available at http://eia.udg.edu/~ zappella.

The rest of the paper is structured as follows. In Section 2 we
review the state of the art focusing on manifold clustering techniques.
In particular, in Section 3, LSA [14,15] is analysed in detail. Our new
proposed algorithm ELSA is presented in Section 4. The experimental
results, shown in Section 5, are computed on the Hopkins155!
database [17], which is a reference database for motion segmentation.
We use also noise perturbed versions of the Hopkins155 database in
order to test the behaviour of our algorithm with different noise
levels. Moreover, to test the behaviour with more than 3 motions we
use a synthetic database with 4 and 5 motions and controlled noise
conditions. The results of ELSA are compared with LSA in order to test
the new EMS. Furthermore, ELSA is compared with the recently
proposed Agglomerative Lossy Compression (ALC) algorithm [18]
which is, to the best of our knowledge, the best performing manifold
clustering algorithm without a priori knowledge. In Section 6
conclusions are drawn, and future work is discussed.

2. Manifold clustering state of the art

This section provides a complete review on manifold clustering
algorithms applied to motion segmentation. A comprehensive review
on different motion segmentation techniques can be found in [19].

In general, manifold clustering solutions consist of clustering
data that has common properties by, for example, fitting a set of
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hyperplanes to the data. Frequently, when the ambient space is
very big they project the original data set into a smaller space.
Most solutions assume an affine camera model, however, it is
possible to extend them to the projective case by an iterative
process as shown in [20].

Manifold clustering comprises a large number of different
techniques, and a further classification can help in giving some order.
Manifold clustering can be divided into: iterative solutions, statistical
solutions, Agglomerate Lossy Compression (ALC), factorization solu-
tions, and subspace estimation solutions. The techniques revised here
are summarised in Table 1, which offers a compact at-a-glance
overview of the manifold clustering category.

An iterative solution is presented in [21] where the RANdom
SAmple Consensus (RANSAC) algorithm is used. RANSAC tries
to fit a model to the data by randomly sampling n points,
computing the residual of each point to the model and counting
the number of inliers, which are those points whose residual is
below a threshold. The procedure is repeated until the number
of inliers is above a threshold, or enough samples have been
drawn. Another iterative algorithm called “K-Subspaces
Clustering” is presented in [22] for face clustering, however, the
same idea could be adopted to solve the motion segmentation
problem. K-Subspaces can be seen as a variant of K-means. K-
Subspaces iteratively assigns points to the nearest subspace,
updating each subspace by computing the new basis that
minimises the sum of the square distances to all the points of
that cluster. The algorithm ends after a predefined number of
iterations. With a different strategy, the authors of [23] propose a
subspace segmentation algorithm based on a Grassmannian
minimisation approach. This technique consists in estimating
the subspace with the maximum consensus (MCS), defined as the
maximum number of data points that are inside the subspace.
Then, the algorithm is recursively applied to the data inside the
subspace in order to look for smaller subspaces included within it.
The MCS is efficiently built by a Grassmannian minimisation
problem.

Iterative solutions are in general robust to noise and outliers,
and they provide good solutions if the number of clusters and the
dimensions of the subspaces are known. This a priori knowledge
can be clearly seen as their limitation as this information is not
always available. Moreover, they require an initial estimation and
are not robust against bad initializations and hence, are not
guaranteed to converge.

The authors of [24] use a statistical framework for detecting
degeneracies of a geometric model. They use the geometric
Akaikes information criterion (AIC) defined in [25] in order to
evaluate whether two clouds of points should be merged or not.
Another statistic based technique is presented in [26]. This work
analyses the geometric structure of the degeneracy of the motion
model, and suggests a multi-stage unsupervised learning scheme,
first using the degenerate motion model and then using the
general 3D motion model. The authors of [27] extend the
Expectation Maximization algorithm proposed in [28] for the
single object case, to multiple motions and missing data. In [29]
the same authors further extend the method incorporating non-
motion cues (such as spatial coherence) into the M-step of the
algorithm.

Statistical solutions have more or less the same strength and
weaknesses of iterative techniques. They can be robust against
noise whenever the statistic model is built taking the noise
explicitly into account. However, when noise is not considered, or
is not properly modeled, their performances rapidly degenerate.
As previously mentioned statistical approaches are robust as long
as the model reflects the actual situation.

A completely different idea is the basis of [18], which uses
the Agglomerative Lossy Compression (ALC) algorithm [30].
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Table 1

Summary of the examined techniques with respect to the most important attributes.

Manifold clustering

Iterative
Fishler et al. [21] F A | RA
Ho et al. [22] F ¥ ON v v
da Silva et al. [23] F » O v
Statistical
Kanatani et al. [24] F » Ol | R
Sugaya et al. [26] F v | R
Gruber et al. [27] F » ON I R
Gruber et al. [29] F » » » ON 1 R
ALC
Rao et al. [18] F v Ol I R
Factorization
Costeira et al. [32] F » Ol | R
Ichimura et al. [33] F » Ol [ R
Zelnik-Manor et al. [34] F A » RA
Zhou et al. 2003 [35] F ¥ » RA
Subspaces
Vidal et al. [36] F A » R
Yan et al. [14,15] F » Ol -
Julia et al. [38] F » Ol » R
Goh et al. [40] F » Ol » R
Vidal et al. [37] F »» Ol » R
Goh et al. [42] F » Ol » R
Chen et al. [39] F ¥ ON p»» v
Elhamifar et al. [43] F ¥ ¥
Our new proposal: ELSA F A A

Features (F)/dense (D)

Occlusion or missing data

Spatial continuity

Temporary stopping

Robustness (O, Outliers; N, noise; I, Initialization; »~ all)
Dependency (I, independent; D, dependent; »~ all)

Kind (R, rigid; N, non-rigid; A, articulated; »~ all)

CD

CD
CD

CDX

CD

CD
CD

Prior knowledge (C; clusters number; D, subspace dimension; X, other; T, training)

In feature-based methods, the objects are represented by a limited number of salient points, while dense-based methods compute a pixel-wise motion. Spatial continuity means
that the information provided by the neighbourhood of a point is taken into account. Temporary stopping is the ability to deal with objects that stop temporarily. Missing data are
the ability to deal with the lack of information caused by occlusions or appearing and disappearing features. Robustness groups together the ability to deal with all the problems
caused by noise, by initialization (for simplicity whenever the initialization is not required the algorithm is considered robust against initialization) and outliers. Dependency is the
ability to deal with independent motions (the pairwise intersection of the motion subspaces is the zero vector), and dependent motions (the pairwise intersection of the motion
subspaces is not empty). Kind is the ability to deal with rigid motion (the trajectories generated by the points of a rigid object form a linear subspace of dimensions no more than 4
[31]), non-rigid (the trajectories generated by the points of a non-rigid object can be approximated by a combination of k weighted key basis shapes, and they form a linear
subspace of dimension no more than 3k+1 [44,45]), and articulated (when it is composed of two dependent motions connected by a link). Prior knowledge summarises the fact
that some sort of knowledge is required: number of motions, dimension of the generated subspaces, any other form of a priori knowledge, or training step.

This technique consists in minimizing a cost function by grouping
trajectories. Roughly speaking, the cost function is equal to the
amount of information required to represent each manifold, given
a solution for the segmentation.

ALC provides a connection between coding theory and space
representation. It performs extremely well with a variety of motions.
However, it suffers from the curse of dimensionality problem.
Furthermore, the algorithm depends on a parameter that has to be
tuned per each sequence depending on the number of motions and
the amount of noise. Although the tuning can be automated by
trying many different values and choosing the solution with the
lowest cost, this process is highly time-consuming.

Factorization techniques are based on the approach introduced by
Tomasi and Kanade in [31] to recover structure and motion using
features tracked through a sequence of images. In [32] the
framework of Tomasi and Kanade is used to build a symmetric
matrix, called “shape interaction matrix”, whose size is equal to the

number of tracked features. The shape interaction matrix has,
among other properties, zero entries if the two indexes represent
features belonging to different motions and non-zero otherwise.
Hence, the algorithm focuses on finding the permutation of the
shape interaction matrix that gives a block diagonal structure. In
[33] the authors, having estimated the rank r of the trajectory
matrix, perform the QR decomposition of the shape interaction
matrix in order to select some convenient features and perform an
initial segmentation among those. Finally, the remaining features are
segmented by using the orthogonal projection matrix. The two
previous factorization techniques assume that the motions are
independent. In [34] the authors study the degeneracy in case of
dependent motion. They propose a factorization method that
consists in building an affinity matrix by using only the dominant
eigenvector and estimating the rank of the trajectory matrix by
studying the ratios of the eigenvalues. In [35] a hierarchical
factorization method for recovering articulated hand motion under



L. Zappella et al. / Pattern Recognition 44 (2011) 454-470 457

weak perspective projection is presented. They consider each part of
the articulated object as independent, and they use any technique
able to deal with missing data to fill the gaps in the trajectory
matrix. In a second step, they guarantee that the extremities of
consecutive objects are linked in the recovered motion.

Factorization techniques are based on a very simple and
elegant framework. However, they are particularly sensitive to
noise and cannot deal very well with outliers. Moreover, most of
the techniques assume rigid and independent motions.

The last category of manifold clustering is the subspace estimation
techniques. The work presented in [36] is one of them. First,
exploiting the fact that trajectories of rigid and independent motion
generate subspaces at maximum of dimension 4, they project these
trajectories onto a five-dimensional space using PowerFactorization.
Afterwards, the Generalized Principal Component Analysis (GPCA) is
used to fit a polynomial of degree n, where n is the number of
subspaces (i.e. the number of motions), to the data and estimate the
basis of the subspaces using the derivatives of the polynomial. More
recently, the same authors extend in [37] the above-mentioned
framework using RANSAC to perform the space projection in order to
deal with outliers. Another well-known technique is the Local
Subspace Affinity (LSA) [14,15]. LSA is able to deal with different
type of motion: independent, articulated, rigid, non-rigid, degenerate
and non-degenerate. The key idea is that different motion trajectories
lie in different subspaces. Thus, the subspaces are estimated and an
affinity matrix is built using a measure based on principal angles. The
final segmentation is obtained by clustering the affinity matrix. One of
the main limitation of LSA is that a full trajectory matrix without
missing data is assumed. In [38] a technique similar to LSA is
presented in order to deal with missing data. The idea is to fill the
missing data so that the final matrix will have a frequency spectrum
similar to the one of the input matrix. When a full trajectory matrix is
obtained an affinity matrix is built and a cluster algorithm based on
normalized cuts is applied in order to provide the segmentation. In
[39] the authors propose a generalization of LSA called Spectral
Curvature Clustering (SCC). SCC differs from LSA for two main
reasons. The first reason is related to the affinity measure, as SCC uses
polar curvature while LSA uses principal angles. The second reason is
how they select the points used to estimate the local subspaces: SCC
uses an iterative random sampling, while LSA uses the nearest
neighbours. A completely different strategy is presented in [40]
where, starting from the Locally Linear Embedding algorithm [41],
they propose the Locally Linear Manifold Clustering algorithm (LLMC).
With LLMC the authors try to deal with linear and non-linear
manifolds. The same authors extended this idea to Riemannian
manifolds [42]. They project the data from the Euclidean space to a
Riemannian space and reduce the clustering to a central clustering
problem. More recently in [43] a new way for describing the
subspaces called Sparse Subspace Clustering (SSC) was presented. The
authors exploit the fact that each point (in the union of subspaces)
can be described with a sparse representation with respect to the
dictionary composed of all the points. By using l; optimisation, and
under mild assumptions, they estimate the subspaces and they build
a similarity matrix which is used to obtain the final segmentation by
spectral clustering.

Subspace estimation techniques can deal with intersection of
the subspaces and do not need any initialization. However, all
these techniques suffer from common problems: curse of
dimensionality, a weak estimation of the number of motions
and of the dimension of the subspaces. The curse of dimension-
ality is mainly solved in two ways: projection onto smaller
subspaces or random sampling. Conversely, estimation of the
number of motions and of the subspace dimension remain two
practical open issues.

Manifold clustering, specifically the group of subspace estima-
tion, seems to be a good candidate for further investigation. This

group of techniques already provides a good performance in
terms of segmentation quality and it is naturally extended to
structure from motion algorithms. A quick glance at Table 1
indicates that the price to pay for dealing with different kinds of
motion and with dependent motions is a higher a priori knowl-
edge (in particular about the dimension of the generated
subspaces). Another common limitation that should be overcome
is the required knowledge about the number of motions in the
scene.

Among the subspace estimation techniques reviewed,
the Local Subspace Affinity method proposed by Yan and Pollefeys
[14,15] appears a promising approach. As already concluded
by Tron and Vidal in [17], for the case of non-missing data
LSA performs better than GPCA and a RANSAC based technique. It
is able to segment different types of motion (independent,
dependent, articulated, rigid, non-rigid, degenerate and non-
degenerate) as well as to deal with a limited amount of
mismatches in the tracked features. Furthermore, it is based on
a relatively simple framework that can be easily extended to
include more information and, despite its good performance,
there is room for improvement, as explained in the next section.

3. Local Subspace Affinity (LSA)

The general idea of LSA is that trajectories that belong to
different motions lie on different subspaces. Thus, the segmenta-
tion can be obtained by grouping together all the trajectories that
generate similar subspaces. Following this idea, LSA estimates the
subspace generated by each trajectory and builds an affinity
matrix. The affinity measure between two trajectories is given by
the distance between the two generated subspaces. The final
segmentation is obtained by clustering the affinity matrix.

3.1. The algorithm
LSA can be summarised in six fundamental steps:

1. build a trajectory matrix Wy, ,, where fis the number of frames
of the input sequence and p is the number of tracked feature
points;

2. estimate the rank of wy,p; this step is accomplished by a
model selection (MS) technique inspired by the work of
Kanatani [46]:

22
r=argmin (% +kr>, (1)
r i=1%
/; being the i-th singular value of Wy, p,, and k a parameter that
depends on the noise of the tracked point positions: the higher
the noise level is, the larger the k should be [14];

3. project every trajectory, which can be seen as a vector in R¥,
onto an R" unit sphere by singular value decomposition (SVD)
and truncation to the first r components of the right singular
vectors;

4, exploiting the fact that in the new space (global subspace)
most points and their closest neighbours lie in the same
subspace, the local subspaces generated by each trajectory,
and its nearest neighbours (NNs), are computed; this result can
be achieved by SVD, hence the estimation of the local subspace
dimension is required again in order to truncate the SVD
result; such an estimation can be done by the same model
selection technique illustrated in formula (1);

5. compute an affinity matrix a, where the affinity is a function of
the distance between the local subspaces in terms of principal
angles;
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6. cluster a in order to have the final motion segmentation; any
clustering technique could be used, the authors suggest
Normalized Cuts [47].

3.2. Problems

LSA provides an elegant solution for the manifold clustering
problem, however, it is possible to identify some weaknesses of
the algorithm.

The first weakness is that LSA is able to deal only with full
trajectories, no missing data are allowed (step 1). This is an
important limitation, however, some authors have already
pointed out possible solutions [38].

A second weakness is the fact that MS, formula (1), relies on a
parameter k which has to be tuned depending on the noise level
and the number of motions (steps 2 and 4). Hence, MS requires
previous knowledge regarding the amount of noise and the
number of motions. Moreover, it is very sensitive to the parameter
k, to the extent that Tron and Vidal, in their implementation of
LSA [17], claim that they had problems in finding a value for k that
was good for all the sequences of the Hopkins155 database.
Therefore, in [17] the authors avoided rank estimations and
preferred to fix the space size. They chose to fix the global space
dimension to 4n (step 2), where n is the number of motions. They
also fixed the dimension of the local subspaces generated by each
trajectory to 4 (step 4). By doing so, only the number of motions is
required. However, the ability of LSA to deal with different types
of motion is greatly reduced, in fact only rigid and non-degenerate
motions ensure a rank equal to 4 [31].

Another problem consists in the fact that Normalized Cuts
does not provide a reliable instrument for estimating the number
of clusters (in the case of motions segmentation, a cluster is
equivalent to a motion). Shi and Malik in [47] suggest to use the
Cheeger constant [48] or the cost of the last cut as an indication of
whether or not it is worth to continue the cutting process.
However, these two constants are highly sensitive to noise and
they require the use of thresholds that may change depending on
the input sequence. This is the reason why most of the available
implementations of Normalized Cuts assume the final number of
clusters as known data.

4. Enhanced Local Subspace Affinity (ELSA)

Our proposed ELSA fixes the weaknesses of LSA as it finds
automatically a good value for k without requiring any a priori
knowledge, and introduces a robust estimation of the number of
motions. In Section 4.1 the Enhanced Model Selection technique
for rank estimation is presented and in Section 4.2 a robust
number of motions estimation is described.

4.1. Enhanced Model Selection (EMS)

EMS automatically finds a good k value for formula (1), so that
the amount of noise and the number of motions are not required
as a priori knowledge. As formula (1) is used in steps 2 and 4 of
LSA, the estimated k for the global space (step 2) is called kg, while
the k for the local subspaces (step 4) is called k.

EMS is first applied to step 2 for the rank estimation of the
matrix Wy, . For the moment, the dimension of the local subspace
generated by each trajectory is fixed to 4 (assuming the motions
are rigid), the extension of EMS to step 4 is explained later. The
key idea of EMS lies in the relationship between the rank of wyf,,
estimated by MS (formula (1)), and the computed affinity matrix

A (step 5). To offer a pictorial understanding of such a relation-
ship, an example is shown in Fig. 1(a)-(f), where the affinity
matrices, obtained after estimating the rank with different kg
values, are shown. A more rigorous explanation will be presented
in Section 4.1.1.

The sequence used in this example has three rigid motions
(maximum rank is 12). When the rank of wy, , is estimated using
an inappropriate kg value, the affinity matrix does not provide any
useful information, as in Fig. 1(a) and (b) (rank overestimated)
and Fig. 1(d)-(f) (rank underestimated). The best affinity matrix,
visually speaking and knowing how many motions are in the
scene, is obtained with k=107, which gives an estimated rank
of 10, Fig. 1(c).

The relationship between the chosen k, and the computed
affinity matrix clarifies why a wrong choice of k, can greatly affect
the final segmentation. It is crucial for LSA to have a good rank
estimation of the trajectory matrix in order to perform a correct
segmentation. On the other hand, this relationship is giving some
information: by looking at the affinity matrix it is possible to
assess the accuracy of the rank estimation. In Section 4.1.1 we
analyse why there is such a relationship, and in Section 4.1.2 we
explain that, without knowing the number of motions and
without assuming any order of the tracked features, the entropy
can be used as a measure of the “reliability” of the affinity matrix,
and hence of the estimated rank. Moreover, in Section 4.1.3 a
speed up algorithm is proposed in order to quickly obtain an
affinity matrix with high entropy, avoiding an exhaustive search
among a big range of kg values. Finally, the extension of EMS for
the estimation of the size of the local subspaces is presented in
Section 4.1.4.

4.1.1. Affinity matrix as a function of the estimated rank

Before getting into details about how the relationship between
the affinity matrix and the estimated rank r (and hence the kg
value) could be exploited, let us analyse more deeply the
behaviour of the affinity matrix in relation to the estimated rank
r. As there are many factors that influence the final affinity matrix
it is easier to start with a simplified problem and extend it later to
the real case. Assume for the moment that there is no noise in the
tracked feature positions, and that the ground truth set of NNs of
each trajectory is known. Also, assume that the local subspaces
generated by trajectories of different motions are orthogonal.

The affinity between two generic trajectories oc and 5 depends
on the distance between their local subspaces, which in LSA is
computed through the principal angles. Let us recall that the
principal angles between two subspaces S(x) and S(f) are defined
recursively as a series of angles 0 <0, <, ..., <0y <7m/2, where
M = min{rank(S(«)),rank(S(p))} [49]:

cos(07) = . S(rg'av)é S(ﬁ)uTV =ulvy, )
while

cos(0y) = 4o dmax S(ﬁ)uTv =ulw, Vk=2,...M, 3)
st.: lul=Ivi=1, u'uy;=0, vlv;=0Vj=1,....k-1.

The vectors uq, ...,u, and vy, ...,V are the principal vectors. In the

ideal case and with a perfect rank estimation, the principal angles
0; between two local subspaces generated by trajectories of the
same motion should be 0. On the other hand, when o and f§ belong
to different motions, 0; should be close to m/2. Let us now
discuss the behavioural trend of the principal angles as a function
of r (the rank of the global subspace) in the cases of under and
overestimation.

The analysis in the case of underestimation is quite easy to
develop. In fact, in this case the components of the lost
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d e f

Fig. 1. Affinity matrices computed with different k; values; real sequence 1R2RC from the Hopkins155 database, theoretical maximum rank of w is 12; black is minimum
affinity, white is maximum affinity and r is the estimated rank. (a) ky=10""2; r=57; (b) kg=10""%; r=21; () kg,=10"7; r=10; (d) kg,=10"5; r=6; (&) kg=10">; r=5;

(f) kg=10"% r=4.

dimensions are projected onto the remaining dimensions, artifi-
cially forcing the two local subspaces towards each other to the
point when they collapse onto exactly the same local subspace. As
a consequence, two local subspaces tend to become closer as r
decreases.

On the other hand, the behaviour of principal angles when r is
an overestimation is less intuitive. In fact, in [50] it is explained
that the problem of computing principal angles and principal
vectors when the rank of the global space is overestimated is an
ill-posed problem. To the authors’ knowledge, the most helpful
mathematical result for the case under analysis is presented in
[51]. The authors study the probability density function (pdf) of
the largest principal angle between two subspaces chosen from a
uniform distribution on the Grassmann manifold of p-planes
embedded in R". They show that, when n is appreciably bigger
than p (precisely n>2p—1), the pdf is close to zero for small
angles and rapidly increases to reach a global maximum in /2.

The resemblance between this abstract mathematical situation
and the practical case under analysis is represented by the fact that,
when the rank is overestimated, the extra component added to the
trajectory vectors (in the global space) are sampled from basis
vectors of the null space of w. In fact, the projection onto the global
space is done as follows. The matrix wyr,y is decomposed by SVD
as: w=ubv’. Hence, if the rank of W is eq, the first r,eq columns of
v correspond to the basis of the row space of w whereas the
remaining N — 1. columns of v correspond to the basis of the null
space of w. In this new global subspace the first r,.,; components of
each row i of v (for i=[1,N]) represent the trajectory i in the global
subspace. In Fig. 2(a) the meaning of each column and row of v is
summarised in the case that the estimated rank of W is resr="1rear
However, if the estimated rank of W is res > Ieq, €ach trajectory i
will be represented by its true r.., components (taken from the
first r,.q components of row i of matrix v) plus ress—TIreq €Xtra
components that are taken from row i of the res — 1. basis of the
null space of w. These extra components are unrelated to the
trajectory i, hence they are random with respect to that trajectory.
This second case is summarised in Fig. 2(b). Note that the
projection of the trajectories onto the global space is oblique, for
this reason the components that exceed the real rank are not
eliminated and they act as random values.

Finally, note that all of the reasoning holds true even in the
case of no noise and it does not involve the selection of the NNs.
Hence, when r. is sufficiently big the work of [51] applies to the
case under analysis. Therefore, the higher the overestimation, the
closer the resemblance to a uniform distribution.

From the result presented in [51], an overall increasing
behaviour of the principal angles as a function of the estimated
rank can be inferred.? To support this inference, in Fig. 3(a)-(d) we

2 To the authors’ knowledge, no information is known about the precise
analytical behaviour of such functions.

present the trend of the largest principal angle of synthetic
sequences with 2 rigid motions (hence the maximum rank is 8)
and no noise. As the test is performed using the first part of the
LSA algorithm the nearest neighbours (NNs) are estimated as
explained in step 4 of the LSA summary (Section 3.1). For each
sequence four angles are compared: two angles between
trajectories of the same motion (blue lines) and two angles
between trajectories of different motions (red lines). These results
are just a few samples of a large number of experiments
performed on the whole synthetic database (see Section 5.1 for
a detailed description of the 240 synthetic sequences) with 2, 3, 4
and 5 rigid motions and an increasing noise level and on the
Hopkins155 database. All the experiments show the same pattern,
i.e. when the rank is very small all principal angles tend towards
zero, while when the rank is heavily overestimated all of the
angles tend towards 7/2. For simplicity, only the largest principal
angle is shown in the examples. However, the smaller angles also
follow the same trend. These experiments confirm the overall
increasing behaviour inferred from [51]. Moreover, from Fig. 3(a)
to (d) it is possible to appreciate that when the estimation of the
rank is close to the correct rank, then the principal angles between
local subspaces generated by trajectories of different motions are
higher than those between local subspaces generated by trajec-
tories of the same motion.

From now on, we will refer to the behaviour of the principal
angles 0; with respect to r as the function 0;(r). Let us now analyse
how this behaviour reflects on the affinity value between two
fixed generic trajectories o and S, where the affinity is defined as

An)=e" Z:w: 1 Siﬂz((')i(r)). 4)

In the ideal case and with a perfect rank estimation, the affinity
between trajectories of the same motion is maximum (i.e. 1),
whereas the affinity between trajectories of different motions is
minimum (i.e. close to 0). Similarly to what was done for the
principal angles, it is interesting to understand the global
behaviour of the function A(r). In order to do so, we study the
first derivative of A(r):
M . M
d’g(rr) — e i SOM) >~ 2sin(8;(r)cos(6;(r)0; (). (5)

i=1

All of the functions appearing in the derivative (5) are non-
negative for all values of r, except for 6;'(r) (the first derivative of
0;(r)). However, it has been shown that 6;(r) is overall increasing,
so 0;'(r) > 0 for the majority of the values of r. The presence of the
minus sign implies that dA(r)/dr < 0 for the majority of the values
of r, i.e. A(r) has an overall decreasing behavior. Specifically, when
r is an underestimation all the affinity values tend to the
maximum value, whereas when r is an overestimation they tend
to the minimum value. Fig. 3(i)-(1) shows the affinity values of the
same pairs of trajectories used in Fig. 3(a)-(d), confirming the
results of the analysis just performed.
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Fig. 2. Pictorial description of what happens when the rank of the global space is estimated. traj; stands for the ith trajectory. (a) Ideal case; (b) real case.

So far we have considered the case without noise and with
perfectly orthogonal local subspaces. The effect of the presence of
noise and the estimation of the NNs is that there may be
oscillations in the functions of the principal angles (as in Fig. 3(e)-
(h)), and so, potentially, also in the affinity functions. However,
we will show later in this subsection why this, in turn, does not
lead to big oscillations of the affinity values (as in Fig. 3(m)-(p)).

The last simplification was to consider orthogonal local
subspaces. Usually, in real sequences the local subspaces are not
perfectly orthogonal. The effect of non-perfect orthogonality is
that, even in the overestimation cases, some pairs of trajectories
may have low affinity but not exactly equal to zero. The effects of
non-perfect orthogonality and of the estimation of the NNs can be
seen in Fig. 3(a)-(d): despite the fact that there is no noise, it is
possible to notice small oscillations in the 0;(r).

Therefore, the main consequence of moving from an ideal to a
real situation is that the 6;(r) may have wider oscillations.
However, such oscillations rarely lead to oscillations of the
affinity values. In fact, the oscillations of the principal angles
may be compensated by the sum involved in the computation of
the affinity, formula (4) (especially if the oscillation affects one
of the smallest angles). Moreover, the highly non-linear behaviour
of the decreasing exponential used to define the affinity, tends to
smooth the effect of small changes. Even in the worst case
scenario, it is very unlikely that all the affinities between the pairs
of trajectories oscillate in correspondence to the same estimation
of the rank. Hence, it is highly probable that the trend of A(r)
remains overall decreasing. Let us stress that Fig. 3(m)-(p) testify
that, even when the presence of noise induces considerable
oscillations in the 0;(r), the affinities are not dissimilar to those of
the case without noise (Fig. 3(i)-(1)).

Summarising, even without the assumptions made at the
beginning, the affinity between every pair of trajectories is
maximum when the rank of the global subspace is highly
underestimated and is minimum when the rank is highly
overestimated. In between, the affinities have a decreasing trend.
Specific pairs may present oscillations, but the majority of the
affinities remain, overall, decreasing functions of r.

4.1.2. How to choose a good affinity matrix

Now that the relationship between the affinity and the
estimated rank has been clarified, it is necessary to find a measure
of the “reliability” of the affinity matrix. The ideal criterion for the
selection of the affinity would be to choose the one that
minimises the final misclassification rate. However, the ground
truth of the segmentation is not always known. In real cases a

convenient criterion could be to choose a high contrasted affinity
matrix, because the higher the contrast the higher the quantity of
information that can be used to compare the trajectories. A well
known measure of contrast, and of quantity of information, is the
entropy [52]:

1
E@M) ==Y han(i) 10g; (har(D)), (6)
i=0

where hyp(i) is the histogram count in the bin i (in our
experiments we use 256 bins). As stated in the previous section,
when r is an underestimation, all of the affinities tend to be
clustered around 1, leading to a very low entropy value. As r
approaches the correct rank, the affinities between trajectories of
the same motion tend to diverge from those between trajectories of
different motions, hence the entropy increases. Note that it is not
possible to exclude that theoretically the entropy function can have
oscillations, but regardless we are more interested in its overall
behaviour. The more r is increased, becoming an overestimation,
the more the affinities tend to converge around 0, consequently the
entropy decreases again. Fig. 3(q)-(t) shows the trend of the
entropy for the same synthetic sequences used to show 6;(r)
(Fig. 3(e)-(h)) and A(r) (Fig. 3(m)-(p)) in the presence of noise.
Similarly, Fig. 4 shows the entropy trend of the real sequence
1R2RC (Hopkins155 database) used to compute the affinity
matrices shown in Fig. 1.

Notice that the entropy would not be maximum in the case of a
perfect affinity matrix with only two values (maximum and
minimum). However, such a situation is extremely rare in real
sequences. Also in synthetic sequences with no noise a perfect
affinity matrix is obtained only when the motions are completely
independent. In practical cases, without having a clear indication
about which affinity matrix is the most suitable, the highest
entropy choice has the interesting property of discarding uniform
(and thus useless) affinity matrices. In the examples shown in
Fig. 3(q)-(t) the highest entropy always corresponds to a rank
value where the affinities between trajectories of the same
motion are higher than those between trajectories of different
motions (Fig. 3(m)-(p)). In the example of Fig. 4 the maximum
corresponds to the affinity matrix of Fig. 1(c), which is the one
corresponding to the rank estimation closest to the real rank. We
call the Enhanced Model Selection (EMS) this new way of
estimating the rank as the one that leads to the affinity matrix
with the maximum entropy.

As stated before, it is not possible to ensure that the affinity
matrix with the maximum entropy corresponds to a perfect
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Fig. 3. Trend of the largest principal angle ((a)-(h)), and of the affinity ((i)-(p)), between two pairs of trajectories of the same motion (blue triangles and circles) and two
pairs of trajectories of different motions (red asterisks and squares). The trajectories are randomly taken from synthetic sequences (first and third row sequences with no
noise, second and fourth rows of same sequences with Gaussian noise ¢ = 0.5) with two rigid motions, hence the maximum rank is 8 (see Section 5.1 for more details about
the synthetic database; NNs are estimated). Last row shows the entropy trend of a(r) related to the sequences with Gaussian noise ¢ =0.5. (a) 01(r)seqAcg =0; (b)
01(r)seqBa =0; (c) 01(r)seqCo =0; (d) 01(r)seqD o =0; (e) 01(r)seqAc =0.5; (f) 01(r)seqBa =0.5; (g) 01(r)seqCa =0.5; (h) 01(r)seqD g =0.5; (i) A(r)seqAc =0; (j)
A(r)seqB g =0; (k) A(r)seqCo = 0; (1) A(r)seqD ¢ = 0; (m) A(r)seqA ¢ = 0.5; (n) A(r)seqB ¢ = 0.5; (0) A(r)seqCa = 0.5; (p) A(r)seqD ¢ = 0.5; (q) E(a(r)) seqA; (r) E(a(r)) seqB;
(s) E(a(r)) seqC; (t) E(a(r)) seqD. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

estimation of the rank. Although is expected to provide a good
estimation of the rank and contain enough information for a
successful clustering step, the rank could be slightly over-

estimated or underestimated. Clearly the perfect estimation is
the most desirable outcome, however, even a small overestima-
tion is acceptable. The least desirable outcome would be an
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Fig. 4. Example of the entropy trend experienced with all the sequences used in
the experiments. This specific example refers to the same sequence used to show
the affinity matrices in Fig. 1.

underestimation as this corresponds to cutting important in-
formation. In Fig. 3(i)-(p) it can be appreciated how all the
affinities go to 1 very quickly when the rank is underestimated.

In order to prevent a possible underestimation, or reduce its
effects, it may be safer to increase the estimated rank by a small
amount. Our experiments have shown that there is a correlation
between the number of motions (or the amount of noise) and the
position of the maximum entropy: the greater the number of
motions (or the higher the noise) the lower the estimation of the
rank. In Fig. 5 the error of the EMS rank estimation is shown in
relation to the number of motions and the noise level. These
results are computed on the synthetic database described in
Section 5.1, each point in the plot corresponds to the average error
over 10 synthetic sequences for each number of motion and each
noise level. As can be seen, when the number of motions increases
the error of the EMS rank estimation tends towards negative
values. Similarly, the higher the noise the lower the rank
estimation. We leave as a matter of further investigation a proper
understanding of this behaviour. As a preliminary study, a
possible way to correct the estimated rank could be to add 1
size for each motion to the previously EMS estimated rank. By
adding only 1 size for each motion, even if the maximum was
already an overestimation or a perfect estimate, the correction
does not introduce too much random information, whereas if the
maximum was an underestimation some important information
is added.

EMS with correction is called EMS+, in Section 5 the
performances between EMS and EMS+ are compared.

4.1.3. How to speed up the choice

We propose here a speed up technique that can be used in
order to quickly find an affinity matrix with a high entropy. In
order to have a fast but good estimation of the rank, we exploit
the concavity of the overall entropy behaviour. As explained in the
previous section, the entropy may have oscillations. However, by
taking opportune safety measures it is possible to quickly find an
affinity matrix with an entropy very close to the highest value.
One can always renounce to speed in favor of a better estimation,
however, in Section 5 we show that even with this approximated
(but faster) choice good results are obtained.

Assuming that there may be small oscillations in the entropy
function, in order to avoid to select a local maximum it is
sufficient to use a large sampling step (in our experiments the
step Akg =1/+/10). Moreover, to establish the gradient of the
entropy we do not choose only 2 samples but 3. By doing so, when
a minimum is encountered we can extend the sampling towards

©ao noise = 1.0|
-8 | ¢ noise = 2.0|
-10 (o noise = 3.0
2 3 4 5
Number of motions

Rank estimation error

Fig. 5. Error of EMS rank estimation with different number of motions and noise
levels. Each point is given averaging the errors over 10 different sequences.

the two extremes until a choice can be made. Once the gradient is
established, we shift our search towards the increasing gradient
repeating the sampling process until the maximum is found. We
would like to remark that in our experiments when the entropy
was sampled in the way just explained we have not found any
fluctuations in its trend. However, when the entropy is computed
with a finer sampling step, in some sequences a very small
oscillation may be found close to the maximum values. On the
whole Hopkins155 database an oscillation can be found only in
the following sequences: 1RT2TC_g13, 2R3RTCRT, 2T3RCTP,
articulated, cars1 and cars8. As shown in Fig. 6 the oscillations
are very small and occur very close to the maximum entropy
anyway. Hence, even if in these few cases our algorithm had
selected a local maximum, the built affinity matrices would have
had a very high entropy.

Of course, one can always argue that there may be a
particularly unlucky situation where the combination of bad
estimation of NNs and noise generates a very big oscillation, to
the point that even with the kind of sampling just described, our
algorithm would choose a local maximum. However, the oscilla-
tions are more likely to be around the correct rank, hence there is
a chance that the selected affinity matrix can provide enough
information anyway. Moreover, in such extreme conditions the
assumptions of the LSA framework would probably be violated
leading to bad segmentation even if the rank is perfectly
estimated.

4.1.4. Size estimation of the local subspaces

So far we have assumed that the size of the local subspaces
(step 4) was fixed to 4. Once, the value kg has been found equal to
1/10%, ks can be set to 1/+/10%. This corresponds to the choice
made by the authors of LSA. In fact, Yan and Pollefeys explain in
[14] that when detecting the rank of the local subspaces, due to a
small number of samples, the noise level is higher, so it is
desirable that ks > kg.

In summary, EMS and EMS+, by exploiting the relationship
between the rank estimation of the trajectory matrix and the
affinity matrix, are able to automatically tune the value of k for
the global and local dimension estimation without requiring
knowledge about the number of motions nor the amount of noise.
Better rank estimations result in a better motion segmentation
and, as EMS and EMS+ do not make any assumption regarding the
types of motion, it can be used under any condition.

4.2. Number of motions estimation

Another weakness of LSA is related with the final segmentation
of the affinity matrix. Yan and Pollefeys in [14] suggest to use
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Fig. 6. The only entropy trend with oscillation found on the whole Hopkins155 database. In these plots the rank was sampled from 2 to 20 with a step of 2, from 20 to 50
with a step of 5. (a) 1RT2TC_g13; (b) 2R3RTCRT; (c) 2T3RCTP; (d) articulated; (e) cars1; (f) cars8.

Normalized Cuts [47]. Normalized Cuts is a good solution as long
as the number of motions is known. When this information is not
available, at every iteration the decision to terminate the process
or not has to be taken. The authors of Normalized Cuts suggest to
use the Cheeger constant [48] or the cost of the last cut in order to
take this decision. The Cheeger constant and the cost of the last
cut are both clues of how difficult it is to split the graph by
removing a specific edge. When, after finding the minimum cut,
one of these two values is high it means that it is not worth
splitting the graph and the process can stop. Therefore, these
indicators need a threshold to decide when the value is “high
enough”. The problem is that such a threshold is strongly
influenced by the noise level and the number of motions. This
explains why most of the Normalized Cuts implementations
require to know in advance the number of motions.

Having tested the difficulty of using the Cheeger constant or the
cost of the last cut, we try a different way, exploiting some spectral
graph theory theorems. Specifically the following proposition.

Proposition 1 (Number of connected components). Let G be an
undirected graph with non-negative weights. Then, the multiplicity n
of the eigenvalue 0 of the Laplacian matrix equals the number of
connected components in the graph [54].

In [47] it is shown that finding the minimum cut for splitting
the graph, is equivalent to thresholding the values of the second
smallest eigenvector of the Laplacian matrix L:

L=D-a, 7

where a is the adjacency matrix (specifically, in our case it is the
affinity matrix), and D is a p x p diagonal matrix, p being the
number of tracked features. Every entry D(i,i) contains the sum of
the weights that connect node i to all of the others. Hence, matrix
L and Proposition 1 could be used in order to estimate the number
of motions. Proposition 1 refers to an ideal case where the
eigenvalues that correspond to the connected components are

exactly equal to 0 (which means no noise and fully independent
motions). However, perturbation theory says that if there is not an
ideal situation the last n eigenvalues are not equal to O,
nevertheless they should be very close to those of the ideal case
[54]. Naturally, in motion segmentation, especially with real
sequences, the ideal situation is not expected, but theoretically it
should be possible to identify the threshold between the
eigenvalues that correspond to the connected components and
the remaining eigenvalues.

Proposition 1 holds true also when using the eigenvalue
spectrum of the Symmetric Normalized Laplacian matrix Lsym
[54,55] instead of the Laplacian matrix L:

Loym =D~ V2Lp7 172, 8)

Fig. 7 shows the eigenvalues of . (first row) and of Lgym (second
row) of a synthetic sequence with 3 motions and with an
increasing noise level. The last three eigenvalues, which should
suggest the number of motions, are plotted with a red filled circle.
In the plots all the eigenvalues are normalized in order to allow an
easier comparison between L and Lgyn,. As can be seen, when the
noise increases the difference between the red filled eigenvalues
and the others decreases. However, the difference between the
fourth to last and the third to last eigenvalues remains rather
large in the Ly, spectrum, while it becomes really small in the &
spectrum. In the next section the experimental results of the
estimation of the number of motions using L and Lgy, are
compared.

As was previously stated, when the Cheeger constant or the cost of
the last cut are used, the main problem is the choice of a threshold.
The same problem is present when using the spectrum of the
eigenvalues, regardless of the choice of L or Lgy;,. However, while with
the Cheeger or the cost of the last cut there is not much information
that can be used in order to take such a decision, with the eigenvalues
the information of the whole spectrum can be used. Nevertheless, the
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threshold cannot be fixed as the noise greatly influences the distance
between the eigenvalues, as shown in Fig. 7. In order to dynamically
find a threshold for every case we try different techniques. In general,
estimating the number of motions using the eigenvalue spectrum can
be seen as a two class classification problem: class 1 is the class of the
eigenvalues above the threshold while class 2 is the class of the
eigenvalues below the threshold. The number of eigenvalues inside
class 2 is the estimation of the number of motions. The first technique
that we test is the Fuzzy C-Means clustering (FCM) [56]. This
technique returns a probability of belonging to class 1 and to class 2
for every element of the set. The second technique is Otsu’s method
[57] which chooses the threshold to minimise the intra-class variance.
As in this particular case it seems that the inter-class variance is also
playing an important role, we try to find a trade-off between the
intra- and the inter-class variance. We take inspiration from the
Linear Discriminant Analysis (LDA) which minimises the intra-class
variance while maximising the inter-class variance. With LDA the
chosen threshold t is given as

Q1 (U3 (O—pg)* + (1= Qo) (py (D—pgy)*
Q103(H)+(1-Q1)a3(t) '

©)

argmax
t

where yu; and o4 are the mean and the variance of class 1 given a
certain threshold ¢, i, and o, are the mean and the variance of class
2, and py is the mean of all the eigenvalues. In the original
formulation of LDA, Q, is the probability of belonging to class 1.
However, in this context this probability is unknown (knowing the
probability means knowing already the number of motions). At the
same time, not providing any weight for the two classes would mean
that both classes are equally likely even though this is not true.
Therefore, Q; should be seen as weight that has to favour class 1 over
class 2.

The nominator of formula (9) measures the inter-class
dissimilarity, whereas the denominator measures the intra-class
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dissimilarity. Therefore, choosing the threshold that maximises
this ratio is like choosing the threshold that maximises the inter-
class dissimilarity and minimises the intra-class dissimilarity.

In the next session, one of the experiments presented is about
the estimation of the number of motions using the eigenvalue
spectrum of L and of Ly, and thresholding them with FCM, OTSU
and LDA.

5. Experimental results

5.1. Databases

In order to evaluate ELSA, we perform different tests with real
sequences. The database used is the Hopkins155 which is a
reference database for motion segmentation, composed of 155
real video sequences: 120 with 2 motions and 35 with 3 motions.
An example of two real sequences are shown in Fig. 8(a) and (b).
Inside the Hopkins155 database there are different types of
sequences: checkboards, traffic and articulated/non-rigid. The
checkboard is the main group (104 videos) thus it is likely that the
type and the amount of noise inside the database does not change
much as most of the sequences are taken in the same environ-
ment. For the purpose of testing the ELSA with bigger noise
changes, we create another six databases derived from the
Hopkins155 adding random Gaussian noise, with standard
deviations of 0.5, 1, 1.5, 2, 2.5 and 3 pixels, to the tracked point
positions. The original database plus the six derived from it
compose a bigger database with 1085 video sequences.

Besides the Hopkins155 database, we also use a synthetic
database. Specifically, synthetic sequences composed of 50 frames,
with rotating and translating cubes. Each cube has 56 tracked
features. An example of a synthetic frame (for plotting reasons with
just a few tracked features) is shown in Fig. 8(c). Similarly to what we
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Fig. 7. Eigenvalues spectrum of L (fist row) and of L, (second row) for a synthetic sequence (similar to the one in Fig. 8(c)) with 3 rotating and translating cubes and
increasing Gaussian noise level. (a) L, Gpoise = 0.0; (b) L, Gpoise = 1.5; (€) L, Gnoise = 3.0; (d) Lisym, Tnoise = 0.0; (€) Lisym, Tnoise = 1.5; () Lsym, Tnoise = 3.0.
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did for the Hopkins155 we create also six derived databases adding
noise with different standard deviations (from 0.5 to 3 pixels) to the
original database for a total of 240 synthetic sequences. Synthetic
sequences with 2 motions have been previously shown in Section
4.1.1 in order to provide some examples of the trends of the principal
angles, the affinity values and the entropy as functions of r. Sequences
with 2, 3, 4 and 5 motions have been used in Section 4.1.2 in order to
provide some evidences of the correlation between the number of
motions (or the noise level) and the rank estimated by EMS.
Sequences with 3 motions have been used in Section 4.2 to show
the differences between the eigenvalue spectrum of L and Liym.
Finally, in Sections 5.3 and 5.5 we use sequences with 4 and 5
motions to test the estimation of the number of clusters and ELSA
algorithm in a more challenging context.

5.2. Evaluation of the Enhanced Model Selection

In Section 4.1 it is explained how EMS is able to automatically
adjust the parameter k to different noise conditions and different
number of motions in the sequence. In this section the results of
the misclassification over the Hopkins155 database, and the
Hopkins155 database with extra noise, are shown. In these first
sets of experiments the knowledge about the number of motions
is assumed so that it is possible to assess the model selection
techniques (MS, EMS and EMS+) independently from the accuracy
of the estimation of the number of motions.

To evaluate the model selection the results of ELSA with EMS
and ELSA with EMS+ are compared with the results obtained
with: LSA fixing the global subspace size to 5 and 4n (where n is
the number of motions), LSA estimating the global subspace size
with MS using the best k per each sequence (i.e. the k that
provided the lowest misclassification rate per each sequence on
the original Hopkins155 database), and LSA with MS using the
overall best k (i.e. the k value, common for the whole database,
that provided the lowest mean misclassification on the original
Hopkins155 database). For all the algorithms the Recursive Two-
Way Ncut [47] is used for the final clustering (this is why for 0
extra noise level the LSA 5 and 4n results are slightly different
than the ones in [17] where the clustering algorithm used was k-
means with multiple restarts). We perform two set of experi-
ments: the first is performed fixing the subspace sizes to 4, while
the second is performed estimating both global and local
subspace sizes.

In Fig. 9 the results obtained fixing the subspace sizes to 4 are
shown. With no additional noise (noise level equal to 0 in the
graphs, i.e. the original Hopkins155 database) the highest mis-
classification is obtained when the global subspace size is fixed to
5, this happens because a dimension of 5 corresponds for most of
the global subspaces to a considerable underestimation of their
size. The performances of LSA with best overall k, best k
per sequence, and fixing the global subspace to 4n are very similar
to each other, however, when the noise increases the MS tends to

a

fail (as it was tuned for the original Hopkins155) proving that MS is
very sensitive to noise. ELSA, both with EMS and EMS+, performs
better than any other technique, with EMS+ proving to be more
solid than EMS when the number of motions increases. ELSA
performs better than MS with best k per sequence even on the
original database. This may seem counterintuitive as one would
expect that the best k per sequence leads to the best misclassifica-
tion rate. However, it has to be remembered that the best k values
were computed when also the local subspace sizes were estimated
and not fixed to 4. This small difference clearly changes which are
the best k values that have to be used and shows, once again, how
unstable the MS is. When the noise level increases EMS and EMS+
perform better than MS because they are able to adapt auto-
matically to the different conditions. Moreover, ELSA performs
better than LSA 4n because when the global subspace size is fixed
to 4n the motions are considered rigid and fully independent even
when this is not true. Overall, this results show that a good model
selection allows to obtain better results than fixing the global
subspace size. However, model selection is also very sensitive to
the noise and it requires a manual tuning in order to cope
successfully with different noise levels.

The following set of experiments is obtained estimating also
the local subspace sizes (as LSA 4n and 5 do not use any
instrument to estimate the global subspace size they are not
included in this set of experiments). The results are shown in
Fig. 10. As expected, with the original Hopkins155 database the
lowest misclassification is obtained when the k is manually tuned
for each sequence. As expected, EMS and EMS+ perform worse
than MS with the best k per sequence, however, they do better
than MS with the best overall k. As soon as extra noise is added,
the misclassification of both MS strategies rises drastically
whereas EMS and EMS+ are able to tune k automatically in order
to reduce the effects of the noise. As in the previous set of
experiments, the misclassification rate of ELSA with EMS+ is lower
than that of ELSA with EMS. With 2 motions the performances are
very similar. However, with 3 motions the compensation strategy
plays an important role. In fact, without extra noise ELSA with
EMS+ has performances very close to the one of LSA with best k
per sequence. In general ELSA with EMS+ misclassification rate is
around 6% lower than the misclassification of ELSA with pure
EMS. If the plots of Figs. 9 and 10 are compared it is possible to
notice that, given a technique, the misclassification when the local
subspace sizes are estimated are almost always better than when
the local subspace sizes are fixed to 4. Such a result shows that
also a correct estimation of the size of the local subspaces plays a
(minor) role in providing a better segmentation.

In summary, these results show that EMS and EMS+ are able to
provide a good estimation of the rank of the trajectory matrix in
an automatic fashion. They do not require any a priori knowledge
and are able to deal successfully with different noise levels. As it is
not necessary for EMS and EMS+ to know in advance any
subspace dimension, they are able to deal with different types of

Fig. 8. Example of two input frames and the trajectories of real sequences from the Hopkins155 database and one frame from a synthetic sequence. (a) Traffic;

(b) checkboards; (c) synthetic.
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motion, which is not possible when the subspace size is fixed.
Moreover, despite the fact that ELSA with EMS already provides
very good results, the simple correction strategy of EMS+ allows
to reach even better performances.

5.3. Estimation of the number of motions

The aim of ELSA is to be completely automatic without
requiring any a priori knowledge. Therefore, the next step is to
test the estimation of the number of motions. As explained in
Section 4.2, we test different thresholding techniques in order to
perform the estimation exploiting the eigenvalues spectrum of
either the Laplacian matrix . or the Symmetric Normalized
Laplacian Lgym. In both cases the Laplacian matrices are built after
EMS has been used in order to estimate the dimension of the
global space. Concerning the setting of the thresholding algo-
rithms, we tried different values and we present here the set that
obtains the best results on a random subset of the Hopkins155
database (70 sequences). For the estimation using FCM, the best
results are obtained by counting the eigenvalues with a
probability of belonging to class 2 equal to or greater than 0.9.
For OTSU the best results are obtained using only the last 20
eigenvalues. For LDA the best results are obtained with Q;=0.8.

A first qualitative study suggests that Lg,, is more robust
against noise, as previously shown in Fig. 7. We run also a
quantitative test estimating the number of motions on the
Hopkins155 database using both & and Ly, with the thresholding
techniques explained in the previous section. Table 2 shows the
mean and variance of the error of the estimated number of
motions for the tested thresholding techniques (the absolute
value of the error is considered). As expected, regardless of
technique, mean and variance are always considerably smaller
when using L, than when using L. As the Symmetric Normal-

ized Laplacian spectrum seems to be more robust against noise,
we choose Ly, in order to estimate the number of motions.

From the results of Table 2, OTSU seems to be the weakest
measure. This is confirmed also when the same test is performed
on the Hopkins155 with extra noise, as shown in Fig. 11. The
numbers on each boxplot correspond to the percentage of
sequences where the error in the number of cluster estimation
was (from bottom to top) 0, +1, +2 or greater than 2 (in
absolute value). From these boxplots it is possible to see that FCM
and LDA both have a very high percentage of perfect estimation
and their first and second quartiles collapse on the median.

FCM and LDA have similar performances. A deeper analysis
reveals that FCM is particularly good with 2 motions: on the
original database it has a percentage of perfect estimation equal
to 84.2% against 75.0% of LDA. However, when the number of
motions increases, FCM appears to be less robust than LDA: with 3
motions the percentage of perfect estimation of FCM is equal to
54.3% against 57.1% of LDA. The fact that the Hopkins155 database
has more sequences with 2 motions tends to favour FCM. A
similar conclusion can be drawn when the noise level increases, in
fact the difference between the perfect estimation of FCM and
LDA drops from 6.4%, in the original Hopkins155 (considering all
the sequences), to only 1.3%, in the database with 3 pixels of noise
level, despite that the sequences with 2 motions are still
overrepresented in the Hopkins155 database.

In order to verify the reliability if these clues we perform an
experiment with synthetic sequences with 4 and 5 motions and
different noise levels and we compare the estimations about the
number of motions obtained using FCM and LDA. The results of
this experiment, shown in Fig. 11(b), confirm the conclusions
drawn from the results on the Hopkins155 database and show
that LDA outperforms FCM in terms of percentage of perfect
estimation (40.7% against 27.9%). If one wants to focus only on the
Hopkins155 database, which has a majority of sequences with 2
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motions, on average FCM would have slightly better performances
than LDA. However, given the results just presented, if ELSA has to
be applied on a database with unknown number of motions it
would be better to use LDA. As our aim is not to find the best
tuning for the Hopkins155 but is to have a generally good motion
segmentation algorithm, we chose to use LDA as the thresholding
technique of the Ly, eigenvalue spectrum.

5.4. Segmentation without priors

Finally, the misclassification rate when segmenting without any a
priori knowledge is presented. To the best of our knowledge, besides
ELSA, the only technique which is able to provide satisfactory results
without a priori knowledge is the ALC [18]. ALC can be forced to select
the segmentation with the smallest coding length, in this way the
number of motions is not required. In order to compare the two
techniques we impose an upper bound in the number of motions
estimated equal to 5. It should be noted that computing the
misclassification rate when the number of estimated motions does
not match with the real number could be done in different ways. In
fact the error due to overestimation of the number of motions could
be somehow corrected in a post-processing step with a merging
strategy. On the other hand, an underestimation usually means that
points from at least two different motions are considered as the same
one, so it can be seen as a more crucial error. However, also in this
case one could argue that for each cluster a deeper analysis could be
performed in order to correct the segmentation with a splitting
approach rather than a merging one. In these experiments the
misclassification when the number of motions is wrongly estimated
is as follows. We take into account all the possible one-to-one
associations between the estimated groups of trajectories and
the ground truth groups of trajectories (clearly, some groups will
not be associated). We select the association that minimises the error
computed by summing the error of the associated groups and the
number of features that belong to non-associated groups.

Table 2
Mean and variance of the absolute value error of the number of motions
estimation on the Hopkins155 database.
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The best results of ELSA are obtained using EMS+. However,
the dimension (i.e. the final rank used) of the global space and the
spectrum of the eigenvalues of Lg, have a mutual influence
on each other. Thus, after the first estimation of the rank
performed with EMS an iterative procedure is used. In an
alternating fashion the number of motions and the rank is
estimated. This alternation is iterated until one of the following
conditions is verified: the estimated number of motions does not
change, a loop is detected, or a maximum number of iterations is
reached (for the experiments the maximum number of iterations
is set to 5, however, this condition is never verified in our tests).
Summarising, the results presented in this section for ELSA are
obtained using: EMS+ for the model selection, and the eigenvalue
spectrum of Ly, thresholded dynamically by LDA for the
estimation of the number of motions.

Table 3 shows mean, variance and median of the misclassifica-
tion rate of ALC and ELSA on the original Hopkins155 database
divided per number of motions and per type of sequence. The
overall mean misclassification rate is similar for the two
algorithms: 12.86% for ALC and 10.75% for ELSA. However, more
remarkable is the difference between the median values: the
median of ALC is 10.23% whereas the median of ELSA is only
1.31%. This suggests that ELSA performs very well in most of the
sequences and it fails only in a few of them. This is confirmed also
by the results shown in Fig. 12 where the histogram of the
misclassification is presented. From the histogram it is possible to
appreciate that ELSA has more than 75 sequences with a
misclassification rate between 0% and 1%, around 30 sequences
more than ALC. ELSA has more sequences than ALC also in the
ranges 1-2% and 2-3%. The reason why ELSA is generally very
good, but when it fails the misclassification is very high, could be
explained by Fig. 3(i)-(p). From those plots it is possible to notice
that if the rank is not well estimated (especially if it is
underestimated) the affinity values quickly collapse to 1 or O.
When this happens the clustering process becomes very noisy,
hence the segmentation result is greatly affected. ELSA also
performs better than ALC in terms of estimation of the number of
motions. The mean errors (in absolute values) of the two
algorithms are 1.16 for ALC and 0.36 for ELSA.

In Fig. 13 the trends of the mean and median misclassification
rate of ALC and ELSA when using the Hopkins155 database with

|Error] FMC OTSU LDA
extra noise are presented. The trends of both ALC and ELSA are
L very stable showing that the algorithms are robust against noise.
g 8'2 g'g 8'; Mean and median performances of ELSA are always better than
’ ’ ’ those of ALC with 2 motions. With 3 motions this is also true
Lgym 023 047 037 for the original version of the database. When there are
ﬁ 0.19 0.48 0.42 3 motions and high noise levels ALC is more robust than ELSA.
i i i This is probably due to the fact that the EMS+ correction is
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Fig. 11. Boxplots of the error of the number of motions estimation. (a) Hopkins155 with extra noise; (b) 4 and 5 synthetic motions with noise.
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parameterised with the number of motions but not with the noise
level (it was shown in Fig. 5 that also the noise plays a role in the
underestimation of the rank).

As far as the computation time is concerned, the average time
required by ALC to complete a segmentation is almost 20 times
longer (around 31 seconds for ELSA and 573 seconds for ALC). In

Table 3
Mean, variance and median of the misclassification on the Hopkins155 database
with no a priori knowledge; # column shows the number of sequences.

Hopkins155 2 motions 3 motions 2 and 3 motions
# ALC ELSA # ALC ELSA # ALC  ELSA(%)
(%) (%) (%) (%) (%)
Check.
Mean 75 1415 890 25 1251 10.71 100 13.74 9.35
Var 186 248 1.04 153 1.64 223
Median 12.02 0.53 11.33  5.96 11.84 0.57
Traff.
Mean 34 12.03 12.82 8 1746 19.84 42 13.07 14.16
Var 2.06 391 203 429 205 396
Median 443 275 15.10 12.00 7.10 3.40
Artic.
Mean 11 5.27 10.36 2 672 11.17 13 549 1048
Var 1.67 241 073 250 146 222
Median 0.88 3.03 6.72 11.17 0.88 3.03
All
Mean 120 12.73 1015 35 1331 12.82 155 12.86 10.75
Var 193 2.86 125 219 1.77 271
Median 9.10 0.94 11.79 9.37 1023 131
80
60

# Sequences
B
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Fig. 12. Histogram of the misclassification of ALC and ELSA on the original
Hopkins155 databases with no a priori knowledge; misclassification from 0% to 5%
are sub-sampled with bins of 1%, misclassification greater than 5% are sub-
sampled with bins of 5%.
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order to compute all the 1085 sequences ALC took 172.69 hours
against 9.33 hours of ELSA on the same computer (Matlab
implementation on Intel Core2 Duo CPU at 2.66 GHz, with 4GB
RAM).

5.5. Extension to 4 and 5 motions

As the Hopkins155 DB contains maximum 3 motions, some
synthetic experiments were also done in order to have an idea of
the behaviour of ELSA and ALC when the number of motions
increases. Fig. 14 shows the misclassification rate for 4 and 5
motions depending on the noise level. It is interesting to notice
that the performances with no noise between ALC and ELSA are
almost the same. When the noise is between 0.5 and 2 pixels of
standard deviation, ELSA has a lower misclassification rate. For
both 4 and 5 motions with 2.5 and 3 pixels of noise the
performance of ELSA degrades faster than that of ALC. The
triangles in Fig. 14 show the variance of the misclassification,
note that in these last two cases ELSA variance is quite large
showing that ELSA still performs well in most of the sequences
but fails in a few of them.

The behaviour of the two algorithms in these synthetic
experiments is coherent with that on the Hopkins155 database.
In fact, with a small amount of noise ELSA is better than ALC;
when the noise increases ALC is more robust while ELSA tends to
have a good behaviour but fails badly in few circumstances
(as previously shown in the histogram of Fig. 12).

6. Conclusions and perspectives

The main contribution of this paper is the new motion
segmentation algorithm called Enhanced Local Subspace Affinity
(ELSA) which is able to strengthen the weak points of LSA.
Especially, we have proposed a new Enhanced Model Selection
(EMS/EMS+) technique which does not require any a priori
knowledge. The comparison between ELSA and LSA with classical
Model Selection (MS) highlighted the ability of EMS/EMS+ to
adapt to different noise levels and number of motions. We have
also introduced an estimation of the number of motions based on
the eigenvalue spectrum of the Symmetric Normalized Laplacian
matrix. The number of motions is automatically estimated by
finding a threshold which is dynamically computed using an LDA
inspired approach.

ELSA has been compared with one of the best performing
techniques for motion segmentation without a priori knowledge:
the Agglomerative Lossy Compression (ALC). On the Hopkins155
database ELSA performs better than ALC both in terms of mean
and median misclassification. With extra noise ELSA is better than
ALC in sequences with 2 motions while ALC is better with 3
motions. On synthetic sequences with 4 and 5 motions the results
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Fig. 13. Mean and median misclassification rate versus noise level for Hopkins155 databases with no a priori knowledge. (a) 2 motions; (b) 3 motions; (c) 2 and 3 motions.
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Fig. 14. Mean misclassification rate and variance versus noise level for synthetic experiments with no a priori knowledge. (a) 4 motions; (b) 5 motions.

where coherent with the ones obtained on the Hopkins155
database: ELSA performs better than ALC with low noise levels
but ALC is more robust when the noise increases. The main
drawback of ALC is the computation time, which is almost 20
times longer than that required for ELSA.

To conclude, we discuss now some future directions of
research. As for future work connected with ELSA, we pointed
out that we found a correlation between the number of motions,
the noise and the position of the maximum entropy. It seems that
the higher the number of motions and the noise level, the more
the entropy maximum tends to occur with a lower r. This has
been already shown with synthetic sequences and confirmed by
the fact that EMS+ performs better than EMS. However, a deeper
study could reveal more useful ways of exploiting such a
correlation.

Nowadays the misclassification rates, assuming the number of
motions is known, are already good. Despite the fact that the
misclassification rates could be further improved we believe that
future work should focus on the ability to estimate the number of
motions in a more efficient way. ALC and ELSA already provide
satisfactory results without having this information, however,
there is room for improvement especially when the motions
becomes dependent. In general, feature-based techniques, such as
manifold clustering, have the advantage over dense-based
approaches of reducing dramatically the computation. However,
feature-based techniques have to rely on the ability of the tracker
to find salient points and track them successfully throughout the
video sequence. Nowadays, such an assumption is not too
constraining but it is important to develop algorithms able to
deal with only a few points (ideally from 5 to 7) per motion
instead of requiring lots of them. Moreover, another feature that
we believe is very important in order to have a complete motion
segmentation system, useful in real time applications, is the
ability to work incrementally. An ideal incremental algorithm
should be able to refine the segmentation at every new frame (or
every small group of frames) without recomputing the whole
solution from the beginning.
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