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Fringe pattern analysis in coded structured light constitutes an active field of research. Techniques based on
first projecting a sinusoidal pattern and then recovering the phase deviation permit the computation of the
phase map and its corresponding depth map, leading to a dense acquisition of the measuring object. Among
these techniques, the ones based on time-frequency analysis permit to extract the depth map from a single
image, thus having potential applications measuring moving objects. The main techniques are Fourier
Transform (FT), Windowed Fourier Transform (WFT) and Wavelet Transform (WT). This paper first analyzes
the pros and cons of these three techniques, then a new algorithm for the automatic selection of the window
size in WFT is proposed. This algorithm is compared to the traditional WT using adapted mother wavelet
signals both with simulated and real objects, showing the performance results for quantitative and qualitative
evaluations of the new method.
.
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1. Introduction

Among the vast contribution of Coded Structured Light (CSL)
produced in the last decades, applications requiring dense acquisition
with real-time response have experimented a recent increase due to the
necessity to measure moving objects. Former techniques were based on
fast capturing cameras capturing a set of time-multiplexed patterns [1,2].
However, the ability tomeasuremoving objects regardless of the speed of
motion (up to the acquisition time required by the camera) is only
achievedby one-shot techniques. Latter, different techniques based onDe
Bruijn sequences andM-arrays were developed [3–6], obtaining a sparse
acquisitionwith absolute coding and good accuracy results (despite some
errors may arise in noisy areas due to code perturbation). Still, dense
acquisition is only achieved by projecting a pattern or a set of patterns
having continuousvariation amongat least onedirection in theprojection
coordinates. Some techniques projected a grayscale pattern or a rainbow
pattern coded in the spatial domain, which are the case of the patterns
proposed by Carrihill and Hummel [7] and Tajima and Iwakawa [8],
respectively, thoughbothsuffer from lowresistance tonoise and low level
of accuracy [9]. A solutionwas given by fringe-based opticalmetrology. In
fringe analysis one or more sinusoidal patterns are projected onto the
scene. The deformation caused by the 3D shape is reflected in the phase
deviation (discrepancy between the projected and the imaged pattern).
Extracting the phase, the 3D shape of the measuring scene can be
obtained. There are five different techniques used traditionally for phase
extraction: Phase Measurement Profilometry (PMP), Spatial Phase
Detection (SPD), Fourier Transform (FT), Windowed Fourier Transform
(WFT) andWavelet Transform (WT). Among them, only SPD those based
on frequency analysis (FT,WFT andWT) project one single shot and thus
are able to work with moving objects. Regarding these frequency-based
techniques, themain differences among themare related to the section of
the imaged pattern that is considered in the frequency analysis. FT
performsaglobal analysis,which is appropriate for stationary signalswith
poor spatial localization. However, this is not the case in CSL, which is by
nature limited in space and thus non-stationary. This fact led to the use of
the other two frequency based transforms (WFT andWT), which analyze
local information in the imaged pattern. WFT andWT are constituted by
two main steps: windowing the imaged pattern in local patches and
computing the transform at every local patch. The crucial point in these
techniques relies on the necessity of selecting an optimal window size,
which constitutes a trade-off between resolution in space and resolution
in frequency. In thiswork, a newproposal on the use ofWFT is presented,
where an algorithm for the automatic selection of the window size is
proposed.Moreover, as it is not possible tofind in the literature a study of
windowing signals assuring good results for fringe pattern analysis using
WFT, the adaption of four well known mother wavelet (Morlet, Paul,
Shannon and Spline) is applied toWFT in order to compare the proposed
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algorithm for WFT with the WT. Finally, some results and comparison
with classical WT are shown.

The paper is structured as follows: Section 2 presents a brief
overview on dense acquisition methods, while Section 3 performs an
analytical comparison ofWFT versusWT techniques. Section 4 proposes
a novel algorithm for the automatic selection of the window. Section 5
shows quantitative and qualitative results obtainedwithboth simulated
and real data for the four different mother wavelets. Finally, Section 6
states the conclusions, pointing out the suitability of the four mother
wavelets employed in the tests and their performance in comparison to
the traditional WT.

2. Overview of dense acquisition techniques

Dense acquisition in CSL refers to the ability to obtain a full-
resolution acquisition of the measured scene, assuming that a
continuous pattern is projected. Continuous patterns (also continuous
coding strategies) show a continuous intensity or color variation
along the coding axis [10]. Different continuous approaches have been
proposed in the literature, the majority of them using a fringe pattern
with trapezoidal or sinusoidal shapes. Among them, sinusoidal
strategies present lower errors due to defocusing [1] and are easier
to analyze by means of a transformation to the frequency domain. The
3D information of the scene is contained in the phase deviation of the
sinusoidal fringe, which is extracted using a phase extraction
algorithm. Some of the phase extraction approaches present in the
literature are, chronologically, Phase Measurement Profilometry
(PMP), Fourier Transform (FT), Spatial Phase Detection (SPD),
Windowed Fourier Transform (WFT) and Wavelet Transform (WT).

Phase Measurement Profilometry (PMP) was first proposed by
Srinivasan et al. [11]. The idea of this technique is to create a set of
sinusoidal patterns which are projected and shifted over time. Every
projection is shifted from the previous projection by a factor of 2π/N,
being N the total number of projections. The imaged sinusoidal
patterns are deformed by the object surface, thus holding information
about its 3D shape. It is important to mention that this algorithm
requires a minimum of N=3 pattern projections to correctly extract
the phase deviation (here phase deviation refers to the deformation
caused by the object shape to the original phase). The projected
patterns are therefore of the form:

Ipn yp
� �

= Ap + Bpcos 2πf ⋅yp−2πn =N
� � ð1Þ

where Ap and Bp are the projection constants, f the spatial frequency of
the fringes and yp the coding axis, n=0,1,…N−1 is the shifting
value, the index p refers to the projected pattern. The imaged intensity
values of the measured object, once the set of patterns is projected is:

In x; yð Þ = α x; yð Þ A + B cos 2πfyp + ϕ x; yð Þ−2πn=N
� �� � ð2Þ

where α(x,y) is the different albedo and ϕ(x,y) represents the phase
deviation introduced by the object shape. The phase deviation is
extracted from the formula shown in Eq. (3), which cancels the effect
of the different albedo.

2πfyp + ϕ x; yð Þ = arctan
∑N

n = 1In x; yð Þ sin 2πn =Nð Þ
∑N

n = 1In x; yð Þ cos 2πn=Nð Þ

" #
ð3Þ

From a minimum of three shifted patterns, it is possible to create a
relative phase map and to extract the phase deviation caused by the
object shape. However, under real conditions, manymore patterns are
required [12], limiting the applications only to static scenes.

Fourier Transform (FT) came to cope with the limitation of PMP to
static scenes. FT employs the frequency domain to suppress the
background component of the imaged pattern. Therefore, one single
projection is enough to suppress the albedo and extract the phase
deviation. FTwasfirst proposedbyTakedaandMutoh [13], anddifferent
variations have been proposed since then [14–16]. The received signal
(Eq. (2)) is first filtered in frequency and then the phase can be
extracted, as shown in Eq. (4) and Eq. (6):

I x; yð Þ = a x; yð Þ + c x; yð Þe2πify + c⁎ x; yð Þe−2πify ð4Þ

where

c x; yð Þ = 1
2
b x; yð Þeiϕ x;yð Þ ð5Þ

and c⁎(x,y) is the conjugated value of c(x,y). Finally, the phase
component ϕ(x,y) is extracted from the imaginary part of Eq. (6):

log c x; yð Þ½ � = log
1
2

� �
b x; yð Þ

� 	
+ iϕ x; yð Þ: ð6Þ

The relative phase map ϕ(x,y) can be then used as an input to a
proper phase unwrapping algorithm. Some FT techniques have been
implemented using 2D Fourier decomposition, which provides better
separation of phase and noise when dealing with coarse objects [17].
However, most of the sources of noise come from the non-spatial
stationarity of the images. Theoretically speaking, Fourier decompo-
sition performs optimally with stationary signals, which is not the
case in pattern analysis. As a consequence of their limited spatial
dimensions, the projected patterns suffer from intensity changes due
to surface discontinuities. This causes the frequency harmonics to
interfere with the first frequency harmonic, making impossible to
extract the frequencies around the first harmonic without errors. The
albedo can also interfere with the first harmonic. These effects are
known as leakage distortion, and it manifests itself in the form of large
errors at the borders of the extracted phase map and wrong
reconstruction of areas around holes in the fringe pattern.

The Spatial Phase Detection (SPD) constitutes an alternative to FT.
This method was initially proposed by Toyooka and Iwaasa [18], and
represents an alternative to FT in the spatial domain. The analysis of
the received signal (Eq. (7)) is done using the sine and cosine
functions, as can be observed in Eq. (8), Eq. (11):

I x; yð Þ = α x; yð Þ A + B cos 2πfyp + ϕ x; yð Þ� �� � ð7Þ

Ic x; yð Þ = α x; yð Þ A + B cos 2πfyp + ϕ x; yð Þ� �� �
⋅cos 2πfyp

� �
= α x; yð Þ⋅A cos 2πfyp

� �
+

1
2
α x; yð Þ⋅B cosð4πfyp +

1
2
α x; yð Þ⋅B cosðϕðx; yÞÞ

ð8–10Þ

Is x; yð Þ = α x; yð Þ A + B cos 2πfyp + ϕ x; yð Þ� �� �
⋅sin 2πfyp

� �
= α x; yð Þ⋅A sin 2πfyp

� �
+

1
2
α x; yð Þ⋅B sinð4πfyp−1

2
α x; yð Þ⋅B sinðϕðx; yÞÞ

ð11–13Þ

Now ϕ(x,y) varies much more slowly than any terms containing f
and so only the last term in each new function is a low-frequency
term. This part of the function can then be extracted by low-pass
filtering. Regarding the Euler's formula for the sine and cosine
functions and the principles of Fourier Transform applied on
sinusoidal functions [19], this step provides similar results than
obtaining the real and the imaginary components of the Fourier
Transform applied to the incoming signal. Therefore, the last step is to
extract the phase component from these components, which is
obtained by applying the arctangent function (Eq. (14)):

ϕ x; yð Þ = arctan
r x; yð Þ⁎Is x; yð Þ
r x; yð Þ⁎Ic x; yð Þ
� 	

ð14Þ
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where r(x,y) represents a low-pass filter, and ⁎ denotes convolution. It
is important to note that Toyooka and Iwaasa use integration to
extract the phase terms, whereas other authors using related spatial
domain methods apply different low-pass filters [20]. As in FT, this
method suffers from leakage distortion when working with fringe
patterns, as no local analysis is performed to avoid spreading errors
due to discontinuities and different albedo.

The Windowed Fourier Transform (WFT) was proposed to solve
the leakage distortion problem. The idea is to window and split the
signal into segments before the analysis in frequency domain is
performed. The received signal is filtered applying the WFT analysis
transform shown in Eqs. (15) and (17)

Sf u; v; ξ;ηð Þ = ∫∞
−∞∫

∞
−∞ f x; yð Þ⋅g x−u; y−vð Þ⋅exp −jξx−jηyð Þdx dy ð15Þ

being (x,y), (ξ,η) the translation and frequency coordinates respec-
tively, and g(x,y) the windowing function. When g(x,y) is a Gaussian
window, the WFT is called a Gabor transform; that is:

g x; yð Þ = 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πσxσy

p ⋅exp − x2

2σ2
x
− y2

2σ2
y

 !
ð16Þ

where σx and σy are the standard deviations of the Gaussian function in
x and y, respectively. Eq. (15) provides the 4-D coefficients Sf(u,v,ξ,η)
corresponding to the 2D input image. The windowing permits the WFT
to provide frequency information of a limited region around each pixel.
The Gaussian window is often chosen as it provides the smallest
Heisenberg box [21]. Once the 4D coefficients are computed, the phase
can be extracted. There are twomain techniques for phase extraction in
WFT: Windowed Fourier Filtering (WFF) and Windowed Fourier Ridge
(WFR). InWFF the4Dcoefficients arefirstfiltered, suppressing the small
coefficients (in terms of its amplitude) that correspond to noise effects.
Fig. 1. Diagram of Morlet (a), Paul (b) Shannon (c) and Spline
The inverse WFT is then applied to obtain a smooth image:

f x; yð Þ = ∫∞
−∞∫

∞
−∞∫

ηh

−η1
∫ξh

−ξ1
Sf u; v; ξ;ηð Þ⋅gu;v;ξ;η x; yð Þdξ dη du dv ð17Þ

where:

Sf u; v; ξ; ηð Þ = Sf u; v; ξ;ηð Þif jSf u; v; ξ;ηð Þj N threshold
0 if jSf u; v; ξ; ηð Þ jb threshold

:

�
ð18Þ

The estimated frequencies ωx(x,y) and ωy(x,y) and corresponding
phase distribution is obtained from the angle given by the filtered
WFF, as explained in [21]. InWFR, however, the estimated frequencies
are extracted from the maximum of the spectrum amplitude, as
shown in Eq. (19)

ωx u; vð Þ;ωy u; vð Þ
h i

= argmaxξ;η jSf u; v; ξ; ηð Þ j : ð19Þ

Thephase canbedirectly obtained fromtheangle of the spectrumfor
those frequency values selected by the WFR (phase from ridges), or
integrating the frequencies (phase by integration). Phase from ridges
represents a better solution than phase from integration (despite some
phase correction may need to be applied [21]), as in phase from
integration errors are accumulated and lead to large phase deviations. It
is important to note the importance of setting a proper window size,
independently of the phase extraction algorithm employed. The
window size must be small enough to reduce the errors introduced by
boundaries, holes andbackground illumination, at the same time itmust
bebig enough to hold someperiods andhence allow thedetection of the
main frequency to perform an optimal filtering. In applications where
the frequency varies considerably during the analysis (in space or in
time) this trade-off is difficult to achieve and noise arises due to awrong
frequency detection. Wavelet Transform (WT) was proposed to solve
the aforementioned trade-off. In WT the window size increases when
(d) wavelets, traditionally used in fringe pattern analysis.



Fig. 2. Diagram of the proposed algorithm showing the required steps.

Fig. 3. Peak function used as the input image, containing phase variation at different
speeds, and added noise.
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the frequency to analyze decreases, and vice-versa. This allows to
remove the background illumination and prevent the propagation of
errors produced during the analysis, which remain confined in the
corrupted regions alone [22]. Additionally the leakage effects are
reduced, avoiding having large errors at the edges of the extracted
phase maps. The ContinuousWavelet Transform (CWT) is a sub-family
of WT that perform the transformation in the continuous domain.
Moreover, it is common to use CWT with complex wavelets for the
analysis of the fringe patterns [23]. The 1D-CWT algorithm analyzes the
fringe pattern on a row by row basis, whereas the 2D-CWT algorithm is
an extensionof the analysis to the twodimensional space. In 2D analysis
a 4D transform is obtained from WT (the daughter wavelets are
obtained by translation, dilation and rotation of the previously selected
mother wavelet). Once this is performed, phase extraction is pursued
using the phase from ridges or the phase by integration algorithms, also
named phase estimation and frequency estimation (similarly to WFT).
As inWFT, it has been proven that the phase from ridges provides better
results than thephase from integration,due to theaccumulative effect in
the phase from integration algorithm [23]. Another characteristic ofWT
is that the window size increases when the horizontal or vertical fringe
frequencies decrease. This can be a troublesome for the analysis of some
fringe patterns where the carrier frequency is extremely low or high
[24]. Moreover, in computational applications a dyadic net is used to
generate the set of wavelet functions. That is, the size of the wavelet is
modified by the factor 2j. This can lead to someproblems in applications
like fringe patterns analysis, where the change in the spatial fringes
frequencies throughout the image is not high enough to produce a
relative variance of 2j in the size of the optimal wavelet.

3. WFT versus WT

In order to analyze the pros and cons of WFT and WT techniques
applied to fringe pattern analysis, a theoretical and a practical
comparison is required. Themain difference between both techniques
is the way the window size is set, depending on whether they have a
fixed or a variable value. As stated in [25], WT performs better with
signals having a wide range of frequencies with shorter correlation
times for the higher frequencies than for the lower frequencies. This is
the case in natural scenes, where low-frequency components usually
last for longer durations than high-frequency components. However,
in fringe patterns their periodicity and spatial extension does not
depend on the selected frequency. Nevertheless, they mostly present
spatial-harmonic components around the selected frequency. This is
the reason why, despite many authors claim the goodness of WTP
[22,23], there are some recent works that state the best suitability of
WFT [21,26]. Another point to consider is the resistance to noise. It has
been demonstrated [26] that for noiseless fringe patterns the
frequency components can be accurately recovered in either small
or large windows, regardless the frequency value. However, under the
presence of higher noise on the imaged fringe pattern, an optimal
selection of the window size reveals crucial for filtering the noise
while preserving the main frequency components. Under these
circumstances, the fixed window size of WFT performs better than
the variable window size of WT. This is mainly due to the dyadic net
used in practical applications of WT. This net changes geometrically
(by two) the window size for adjacent levels of dilation, being
excessive for some applications where the main frequency stands
close to a fixed value (like in fringe pattern analysis).

Another point to consider is the importance of selecting a window
having good localization in both frequency and space, in order to
perform an optimal analysis of the fringe pattern. In WT, the mother
wavelet signals usually used in fringe pattern analysis are, among
others, the Morlet wavelet, the Paul wavelet, the Shannon wavelet
and Spline wavelet [27–30]. All of them use a low-pass envelope
signal modulating a frequency sinusoidal signal, thus presenting good
localization in time and frequency. In WFT, the Gabor transform has
been traditionally used in fringe pattern analysis, as it provides the
smallest Heisenberg box [31,32]. However, is not possible to find in
the literature a study of windowing signals assuring good results for
fringe pattern analysis usingWFT. As this work has been already done
in WT [23], it is recommended to adapt those optimal mother
wavelets to WFT. This would permit a fair comparison between both
techniques.

image of Fig.�2
image of Fig.�3
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3.1. Adaption of the wavelet signals to the use in WFT

The suitability of some mother wavelets for fringe pattern analysis
in WT has been outlined in [22–24]. The best situation is given when
the signal presents good localization in both space and frequency; that
is, presenting some zeros at infinite (low pass shape). This is achieved
by some mother wavelets like the Morlet, the Paul, the Shannon and
the Spline wavelet (Fig. 1 and Eqs. (20–23)). Among them, the Paul
wavelet has the best time localization capability, but at the same time
it has the worst frequency localization [27]. This makes the Paul
Fig. 4. Simulation results of the wrapped phase (from−π to π): on the left column the four a
corresponding results in WT.
mother wavelet the more suitable for demodulating fringe patterns
that exhibit high signal to noise ratio and rapid phase variations.
Besides, the Morlet wavelet presents a Gaussian shape and thus has
better localization in the frequency domain than the Paul wavelet.
Therefore, it is more suitable for demodulating fringe patterns with
slow phase variations and low signal to noise ratios.

ΨMorlet xð Þ = 1

f 2b π
� �1=4 exp 2πifcxð Þ⋅exp −x2

2f 2b

 !
ð20Þ
dapted mother wavelets (Morlet, Paul, Shannon, and Spline). On the right column, their

image of Fig.�4


Table 1
Relative mean error of the recovered phase.

Error (%) Morlet Paul Shannon Spline

WFT 0.073 0.058 0.156 0.169
WT 0.115 0.067 0.162 0.174
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ΨPaul xð Þ = 2nn! 1−ixð Þ n+1ð Þ

2π

ffiffiffiffiffiffiffiffiffiffiffiffi
2nð Þ!
2

r ð21Þ

ΨShannon xð Þ =
ffiffiffiffi
fb

q
exp 2πifcxð Þ sin c fbxð Þð Þ ð22Þ

Ψb−spline xð Þ =
ffiffiffiffi
fb

q
exp 2πifcxð Þ sin c

fbx
m

� �� 	m
ð23Þ

where n is the order of the Paul mother wavelet, fc is the mother
wavelet central frequency, fb is the variance of the window andm is an
integer value that determines the Spline wavelet. The selectedmother
wavelets have been adapted to the use in the multiresolution WFT
algorithm proposed in these lines. It must be mentioned that all of
them contain a modulated sinusoidal frequency in its definition.
Making a comparison with WFT (Eq. (15)), this would correspond to
the exponential modulating frequency employed. Therefore, the
window of the WFT is equivalent to the shape of the selected mother
wavelet. The introduction of a sinusoidal frequency becomes
necessarywhen it is not implicitly contained in the wavelet definition.
Another point to take into account is the normalization of the adapted
wavelet signals, as a change in the window size must be compensated
by an increment of the modulus of the signal, to preserve the value of
energy provided by the WFT algorithm. Finally, it must be considered
the ability to adapt the size of the wave envelope relative to the wave
period for many mother wavelet functions (Morlet, Shannon, and
Spline). In wavelet analysis, this parameter is used to create a set of
complex mother wavelets within the same wavelet family. In WFT
this is equivalent to just changing the size of the window, as the preset
frequency does not change with this size.

4. Algorithm for the automatic selection of the window

Given the signal in the form f(x)=a(x,y)+b(x,y)⋅cos[ϕ(x,y)], the
accuracy of the retrieved phase is directly linked to the size of the
window, the signal envelope and its behavior in frequency domain.
Hence, an algorithm to set the optimal window for anyWFT signal and
for any fringe pattern reveals to be necessary. Regarding this point,
recently Li and Yang [33] proposed a two-step algorithm to determine
Fig. 5. Recovered unwrapped phase, in radians, for the simulate
locally, among a set of patches, the most likely window size for WFT.
First, the instantaneous frequencies on x and y direction of the
modulated fringe pattern are determined by two-dimensional Gabor
Wavelet Transform (2D-GWT) [34] and, then the local stationary
lengths are obtained. Furthermore the so-called Two-dimensional
Multiscale Windowed Fourier Transform (2D-MWFT) was applied.
This algorithm applied local two-dimensional Gaussian windows, and
is performed for each section of the modulated fringe pattern to
achievemultiresolution analysis and phase demodulation. Despite the
computational cost associated to the two frequency transformations
required in this technique, quite good results are obtained as can be
observed in [33]. In our work a new proposal for the automatic setting
of the window size is done. The proposed algorithm is executed in
only oneWFT step, taking into account the uncertainty of the received
image.

The proposed algorithm is depicted in Fig. 2, and described in the
following section, emphasizing the steps that permit the automatic
detection of the window size.

4.1. Preprocessing the image

The preprocessing step consists on a salt and pepper filtering and a
histogram equalization. This reduces the noise present in the captured
image and enhances the image contrast for a latter frequency
component extraction. Finally, a DC filter is applied to extract the
DC component of the image. This step delivers an enhanced image
where the fringes are perceived more clearly.

4.2. Setting the average period and the standard deviation

This step represents themain idea of the automatic selection of the
window. The algorithm extracts an approximated value of the number
of periods existing in every line along the coding axis, of the image. To
do so, a local maximum extraction is performed for the both
maximum and the minimum values in every line along the coding
axis. The algorithm avoids false positive by suppressing those local
maximum that are not followed by a local minimum. Once the
number of periods is extracted for every image column, an average of
the global period, the corresponding frequency and its variance are
computed. This variance represents the uncertainty in the estimated
frequency, and is crucial to perform a global analysis of the image.
Regarding this point a discussion about whether the selection of
global or local variance for patches in the image is required. In
principle, a local selection seems to be more appropriate as it can
distinguish frequencies of different patches. However, it requires
more computation as theWFTmust be applied in every patch. Using a
global WFT and the appropriate range for the analytic frequencies, a
trade-off to delete noisy frequencies and to preserve the ones related
d input fringe pattern of Fig. 3. Morlet WFT has been used.

image of Fig.�5
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to the real shape must be set. This reduces to just one of the total
number of WFT, thus reducing the computational time.
4.3. Setting the range of frequencies and the window

The selection of the appropriate range of frequencies is done
according to the variance and the average values of the period. For
instance, considering the range [ fm−3⋅ std(f), fm+3⋅ std(f)] in both x
and y axes, the 95%of detected frequencies are analyzed, according to
the Central Limit Theorem [35]. The frequencies outbounding this
range are considered outliers. In practice, this range can be reduced to
[ fm−2 ⋅ std(f), fm+2 ⋅ std(f)] (90% of the frequencies are repre-
sented) without a significant lose in accuracy. Another variable to
consider is the window size related to the number of periods of the
sinusoidal signal. In contrast to the mother wavelets in WT, WFT does
not require the number of periods to be linked to the sinusoidal
oscillation of the signal. In WT the number of periods determines a
mother wavelet within the same wavelet family, and usually goes
from one up to three or four periods, allowing to hold information
about the frequency without losing local information. In WFT
though, the number of periods can be directly set from the definition
of the signal. In our algorithm it has been tested from one up to
Fig. 6. Input image and reconstructed unwrapped pha
three periods, determining the optimal value by the ridge extraction
algorithm (WFR).

4.4. Computing the WFT

Once all the parameters are defined, the set of signals having
different sinusoidal frequencies and windows are convolved with the
enhanced image. As a result, a 4Dmatrix is obtained (havingdimensions
of x and y axes, window size and frequency). The WFR algorithm is
then applied to compute the most likely values of window, wx, wy, and
the corresponding phase value, delivering the wrapped phase in the
interval [−π,π].

4.5. Phase unwrapping

In order to obtain the unwrapped phase and compute the phase
difference with the projected pattern, a phase unwrapping algorithm
must be applied. To this end, we use the algorithm of Herraez et al.
[36]. This algorithm performs a phase unwrapping based on sorting by
reliability following a non-continuous path. As stated in [36], the
algorithm is suitable for fringe analysis as it minimizes the effects of
the noise present in the wrapped phase and provides robust results
se map in radians (using Paul wavelet for WFT).

image of Fig.�6
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under presence of slopes (although errors can still arise in some
specific discontinuities due to the periodicity of the pattern).

5. Results

The proposed algorithm has been tested in both simulated and
real conditions. The setup used for the real tests was composed of an
LCD video projector (Epson EMP-400 W) with a resolution of
1024×768 pixels and a camera (Sony 3CCD) digitizing images of
Fig. 7. Plastic bended sheet: on the left column, experimental results for the four adapt
corresponding results in WT.
size 512×512 in monochrome. All the algorithms were programmed
on MATLAB and executed on a standard Intel Core2 Duo CPU at
3.00 GHz.

5.1. Simulated results

The proposed algorithmwas tested using simulated data. The peak
function available in Matlab has been considered in the test, since it
has become a benchmark for fringe pattern analysis, as stated in [23]
ed mother wavelets (Morlet, Paul, Shannon, and Spline). On the right column, their

image of Fig.�7
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(Fig. 3). The peak function presents different levels of deformations,
therefore it is optimal for analyzing the performance of the adapted
signals under different 3D shapes. Some blurring was performed to
the image to simulate the noise introduced by the projector-camera
pair (Fig. 3). In addition, the peak functionwas also analyzed using the
WT (specifically the 2D-CWT) in order to compare the performance of
both techniques. The results of the wrapped recovered phase are
shown in Fig. 4.

As can be observed in Fig. 4, the best performance of WFT was
obtained using the adapted Morlet wavelet and the adapted Paul
wavelet. Both wavelets present a clear free of artifacts wrapped phase
image. Moreover, the boundaries have been recovered optimally.
Worse results are obtained with the adapted Spline wavelet (with
m=2), as the change in its envelope signal does not suit optimally
with the fringe pattern sinusoidal shape. Phase errors are also present
across all the image for the analysis using the adapted Shannon
wavelet, which actually is the Spline wavelet with m=1. Looking at
the wrapped phase obtained using the Wavelet Transform, we
observe how the errors presented in WFT also appear in WT. This
enforces the idea that Morlet and Paul wavelets are more suitable for
fringe pattern analysis than Shannon and Spline wavelets. Moreover,
we can appreciate some errors in the image corner for the case of the
Shannon and the Spline wavelet analyses, not present with the WFT
phase extraction algorithm proposed in this work. Table 1 provides
some quantitative results of the previous recovered phases compared
to the input phase, where the relativemean error represents themean
Fig. 8. Input image and reconstructed unwrapped pha
of the sum of the absolute error between the computed wrapped
phase map and the input phase map. Finally, as example of the
reconstruction results, the unwrapped phase map of the Morlet WFT
is shown in Fig. 5.

5.2. Experimental results

This section analyzes the performance of the proposed algorithm
reconstructing two different objects. The first is a plastic lambertian
sheet having a smooth surface with an irregular deformation in the
middle of the object. The second object is a ceramic lambertian human
face. The proposed technique is applied and the corresponding
wrapped phase maps are compared. The unwrapping algorithm
developed by Herraez et al. [36] is employed to extract the unwrapped
phase map of the objects. The input images and their corresponding
unwrapped phase maps are shown in Figs. 6 and 8, respectively. The
wrapped phase maps corresponding to either the output of the WFT
or WT (specifically the 2D-CWT) are analyzed in detail hereafter.

5.2.1. Plastic sheet
The Morlet and the Paul wavelets suffer from larger error than the

respective signals in WFT, as can be observed in Fig. 7. The errors are
located in the region having larger variation in depth. The wavelet
analysis introduces some doubled frequency components due to the
effect of the dyadic net in the phase estimation. This does not happen
inWFT, where the discrepancy to the correct phase is lower. The same
se map in radians (using Paul wavelet for WFT).

image of Fig.�8


Fig. 9. Ceramic human face: on the left column, experimental results for the wrapped phase (from−π to π) of the four adapted mother wavelets (Morlet, Paul, Shannon, and Spline).
On the right column, their corresponding results in WT.
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errors are present in the Shannon WT mode. The Shannon WFT,
however, performs optimally for this image. Increasing the value of m
up to m=2, though (in fact the Spline function with m=2) errors
arise in some region of the captured image. Therefore, Morlet, Paul
and Shannon WFT techniques perform optimally in this case.

5.2.2. Ceramic human face
Phase estimation has been pursued for the four wavelet signals in

both WT and WFT. The results are shown in Fig. 9. Best results are
obtained for the Morlet signal, as in the previous images. Among
them, the WFT performs better than WT in presence of slopes, as can
be noise near the nose and the eyes.

6. Conclusions

Continuous coding strategies represent an important field of research
in CSL. In these approaches, the depth of a given point in the image is
determined by the deviation of its gray value with respect to the

image of Fig.�9
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projected pattern. Among them, Fourier Transform, Windowed Fourier
Transform andWavelet Transform techniques were proposed to work in
dynamic scenarios, as a single projection is permitted. All these
techniques make use of the frequency domain to extract the principal
components of the image and compute its phase deviation map, from
which the unwrapped phase map can be extracted. It has been tested
that for fringe pattern analysis, the windowed transform techniques
(WFT and WT) perform better than the global transformation FT, as the
frequency components of a given region remain close to that region
[23,27]. Following the idea of Li and Yang [33], an automatic and fast
window size detection algorithm has been proposed in this paper. This
algorithm performs a fine tunning of the window. First, this algorithm
extracts the global average and the standard deviation of the frequency
components present in the image. Posteriorly, a frequency analysis is
done for the components representing the 95% of the frequency range,
though this percentage can bemodified. Moreover, in order to perform a
fair comparison between WFT and WT, the traditional mother wavelets
used forWTanalysis have been adapted toWFT. For thephase extraction,
the maximum ridge algorithm has been used [21]. Finally, the phase
unwrapping algorithm of [36] is employed to compute the unwrapped
phasemap from thewrapped phase. The results showhow theWFTwith
automatic window size detection performs better compared to the
traditional WT technique. This is mainly due to the nature of the dyadic
net used in WT, which scales the window by a factor of 2j between
adjacent size values. The proposedWFT, however, performs afine tune of
the window size between a set of values around the optimal size
corresponding to the global frequency average. Some simulated and real
results have been obtained. In simulated data the Morlet and Paul
wavelets show better performance than the Shannon and the Spline
wavelets, thanks to the greater similarity of its signal shape to the
sinusoidal nature of the fringe pattern. This fact is also noticed in the real
experiments. A plastic curved sheet and a ceramic human face were
imaged, and the wrapped phase map was obtained for the four mother
wavelets considered for the analysis. Similarly to the simulations, WFT
performs better than WT, showing the best performance for the Morlet
and the Paulmotherwavelets. This proofs that the use of an adapted Paul
orMorletmotherwavelet to the use inWFT is optimalwhen thewindow
size is set properly. The fine tunning provided by the automatic window
selection algorithm assures an optimal selection of the local frequency
thus minimizing the error in the recovered phase map dealing to more
accurate 3D reconstructions.
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