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Abstract

The use of one-shot pattern projection to obtain 3D

dense reconstruction constitutes a promising field of re-

search in structured light. Most of the related works pre-

sented in the literature are based on the projection of a

fringe pattern to extract depth from phase deviation. How-

ever, the algorithms employed to unwrap the phase are com-

putationally slow and can fail under certain slopes and oc-

clusions in the object shape. In these lines, a color one-

shot dense reconstruction using fringe pattern projection

and wavelet decomposition is presented. Moreover, a novel

phase unwrapping algorithm is proposed, providing a fast

and reliable absolute phase map for depth reconstruction.

1. Introduction

Three dimensional reconstruction using structured light

constitutes an active topic in computer vision, having dif-

ferent applications such as range sensoring, industrial in-

spection, reverse engineering, object recognition, 3D map

building, biometrics and others. Within them, applications

requiring dense reconstruction with real time response have

increased during the last years due to the necessity to deal

with dynamic scenarios. Some proposals have been done

using fast capturing cameras and a set of projection pat-

terns. However, the ability to work in real time conditions

regardingless the speed of motion (up to the acquisition time

required by the camera) is only achieved by one-shot pro-

jection techniques. Moreover, absolute coding represents a

must for most of the applications mentioned above. Dif-

ferent techniques using De Bruijn codes and M-arrays have

been developed [15], [5], [11], [12], obtaining a sparse re-

construction with absolute coding and good accuracy re-

sults. In contrast, the use of one-shot projections to ob-

tain dense reconstruction having absolute coding has not

been studied that much. Some techniques combining one-

shot projection and absolute coding were proposed by Car-

rihill and Hummel [3] and Tajima and Iwakawa [19]. They

present a grayscale pattern and a rainbow pattern coded in

spatial domain. However, as stated by Salvi et al. [16], they

suffer from low resistance to noise and low level of accu-

racy. In order to obtain better reconstruction results more

information must be embedded in the pattern. That is, the

amount of information that could be obtained from a set

of projections must be condensed to one single shot. To this

end, a multiplexation of patterns in frequency or color space

is required. The algorithm proposed in this paper utilizes

the ideas of dense reconstruction combined with a novel

method for phase unwrapping in order to obtain a one-shot

dense reconstruction having absolute coding. The paper is

structured as follows: section 2 presents a brief overview on

dense reconstruction methods, while section 3 introduces

the absolute coding unwrapping algorithm. The design of

the method is presented in section 4, and the experimental

results with both simulated and real data are presented in

section 5. Finally, section 6 concludes with a discussion

of the proposed method, analyzing the advantages and dis-

advantages and pointing out the line of research for future

work.

2. Brief overview of dense reconstruction tech-

niques

Dense reconstruction refers to the ability of obtaining a

full resolution 3D model of the analyzed scenario. This fea-

ture has been usually accomplished by using a continuous

pattern. These patterns, named as continuous coding strate-

gies, show a continuous intensity or color variation through-

out the coding axis [17]. Different continuous approaches

have been proposed in the literature, the majority of them

using a fringe pattern with both trapezoidal or sinousoidal

shape. Within them, sinusoidal strategies present lower er-

rors due to defocusing [7] and are easier to analyse by a

transformation to frequency domain. The 3D information

obtained from the projection is stored as a phase deviation

of the sinusoidal fringe, which is extracted using a proper

phase extraction algorithm. Some of the approaches used in

the literature for dense reconstruction include Phase Mea-

surement Profilometry (PMP), Fourier Transform Profilom-

etry (FTP) and, more recently,Wavelet TransformProfilom-

etry (WTP).

Phase Measurement Profilometry (PMP) was firstly

proposed by Srinivasan et al. [18]. The idea of this tech-

nique is to create a set of sinusoidal patterns which are pro-
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jected and shifted over time. Every projection is shifted

from the previous projection by a factor of 2π/N , being

N the total number of projections. From the deformation

caused to the set of projected sinusoidal patterns, the object

shape is recovered. It is important to mention that this algo-

rithm requires a minimum of N = 3 pattern projections to

correctly extract the phase deviation. The projected pattern

is therefore:

Ip
n(yp) = Ap + Bpcos(2πf · yp − 2πn/N) (1)

where Ap and Bp are the projection constants, f the fre-

quency of the fringes and yp the coding axis, n = 0, 1, ...N
(superindex p refers to projected pattern). The received in-

tensity values from the object surface, once the set of pat-

terns is projected is:

In(x, y) = α(x, y) [A + Bcos(2πfyp + φ(x, y) − 2πn/N)]
(2)

where α(x, y) is the different albedo and φ(x, y) represents
the phase deviation introduced by the object shape. It turns

out necessary to cancel the effect of different albedo in order

to correctly extract the phase deviation. This is performed

as shown in eq. (3):

φ(x, y) = arctan

[

ΣN
n=1In(x, y)sin(2πn/N)

ΣN
n=1In(x, y)cos(2πn/N)

]

(3)

From a minimum of three projected shifted patterns is

possible to create a relative phase map and to reconstruct

the phase deviation caused by the object shape. However,

the arctangent function returns values between the range

(−π, π] and therefore a phase unwrapping procedure is nec-
essary to work with a non-ambiguous phase value out of the

wrapped phase. Under real conditions, the required number

of projections becomes much more than the theoric mini-

mum of three projections [13], limiting the aplications to

static scenarios only.

Fourier Transform Profilometry (FTP) came to cope

with this limitation, allowing a faster dense reconstruction

compared to PMP. FTP employs the frequency domain to

suppress the background component of the recovered pat-

tern. Therefore, one single projection is enough to suppress

the different albedo and extract the phase deviation. FTP

was first proposed by Takeda and Mutoh [20], and differ-

ent variations have been proposed since then [8], [4], [22].

The received signal (eq.( 2)) is first filtered in frequency and

then the phase component can be extracted, as shown in eq.

(4)(5)(6):

I(x, y) = a(x, y) + c(x, y)e2πify + c ∗ (x, y)e−2πify (4)

where

c(x, y) =
1

2
b(x, y)eiφ(x,y) (5)

and c ∗ (x, y) is the conjugated value of c(x, y). Finally, the
phase component φ(x, y) was extracted from the imaginary

part of eq. (6):

log[c(x, y)] = log[(
1

2
)b(x, y)] + iφ(x, y) (6)

The relative phase map φ(x, y) can be then used as an

input to a proper phase unwrapping algorithm. Other FTP

techniques have been implemented using 2D Fourier de-

composition, which provides better separation of the de-

sired information from noise when dealing with coarse ob-

jects [9]. However, most of the sources of noise come

from the non-spatial stationarity of the images. Theoreti-

cally speaking, Fourier decomposition performs optimally

when working with stationary signals, which is not the case

for pattern analysis. As a consequence of their limited

spatial dimensions, projected patterns suffer from intensity

changes due to surface discontinuities. This causes the fre-

quency harmonics to interfere with the first frequency har-

monic, making impossible to extract the frequencies around

the first harmonic without errors. This effect is known as

leackage distortion, and it manifest itself in the form of

large errors which occur at the borders of the reconstructed

phase map. Also, the existence of any holes in the fringe

pattern produces errors that are widespread over the whole

fringe patterns image. Moreover, the albedo can interfere

into the first harmonic information. The Windowed Fourier

Transform (WFT) was proposed to solve this problem, win-

dowing the signal and splitting it into segments before the

analysis in frequency domain. The size of this windowmust

be small enough to reduce the errors introduced by bound-

aries, holes and background illumination, at the same time

it must be big enough to hold some periods and hence de-

tect the main frequency and perform an optimal filtering.

Sometimes, however, this tradeoff is difficult to achieve and

noise arises due to an erroneus frequency detection or to the

effect of boundaries.

More recently, the Wavelet Transform Profilometry

(WTP) was proposed as the solution to the tradeoff present

in WFT, as it is able to remove the background illumination

and prevent the propagation of errors produced during the

analysis, which remain confined in the corrupted regions

alone [6]. Additionally, leackage effects in the wavelet

transform are much smaller than those evident in the Fourier

Transform; consequently, the distortions that occur at the

edges of the reconstructed phase maps are largely reduced.

This is done by adapting the window width to the frequency

that is going to be analyzed [6]. Different methods to anal-

yse the received pattern have been proposed using one di-

mensional (1D) and two dimensional (2D) wavelet decom-

position. The complex wavelet transform (CWT) is usually



used to extract the phase of the received signal [10]. The

1D-CWT algorithm analyses the fringe pattern on a row by

row basis. The main concept of the 1D-CWT is to project

a row of a fringe pattern onto a family of elementary func-

tions, called the daughter wavelets, which are obtained by

both translating and dilating a single basis function, called

the mother wavelet. The 2D-CWT algorithm is an exten-

sion of the analysis to the two dimensional space. In this

case, the daughter wavelets are obtained by translation, di-

lation and rotation of the mother wavelet. Once the analysis

has been performed and the pairs complex wavelet coeffi-

cients have been obtained, the next step is to select the most

probable coefficient within all the possibilities given by the

different daughter wavelets, for every pixel. This process

is called phase extraction. There are two main methods

for phase extraction, namely the phase estimation and the

frequency estimation approaches. In the phase estimation

technique, the optimal phase value is selected from the max-

imum of the modulus of the wavelet coefficient (for the dif-

ferent scale, translation and rotation values). This provides

the most probable daughter wavelet, and its corresponding

angle value is selected. An optional cost function can be

applied to find the optimal angle values of a pixel taking

into account the angle values of the neighbouring pixels. In

frequency estimation technique the exact daughter wavelet

is extracted from the maximum of the modulus, as in phase

estimation techniques. This value can be seen as the in-

stantaneous frequency, which is integrated to obtain the ap-

proximated phase value for the given pixel. A complete un-

wrapped phase distribution is obtained as a result, without

the necessity to perform any phase unwrapping algorithm.

Unfortunately, this technique provides much worse results

than the phase estimation technique, as proved in the work

of Abdulbasit [1]. Another important parameter refers to the

daughter wavelet used for the decomposition. Some mother

wavelet have been tested in the aforementioned work, and

the best results in terms of accuracy and resistance to noise

are obtained using a Morlet wavelet.

3. A novel proposal for phase unwrapping

As seen before, most of the dense reconstruction al-

gorithms require an unwrapping step to correctly unwrap

the phase and extract the object depth. Under absence of

noise, if all phase variation between neighbouring pixels

is less than π, the phase unwrapping procedure can be re-

duced to add the corresponding multiple of 2π when a dis-

continuity appears. Unfortunately, noise, local shadows,

under-sampling, fringe discontinuities and irregular surface

brightness make the unwrapping procedure much more dif-

ficult to solve [16]. Plenty of approaches have been pre-

sented in the literature to solve this problem ([21],[2],[6]).

However, they usually require a high computational cost

and can fail into errors when the surface present a slope like

the one shown in Fig. 1. A novel method to overcome this

problem is based on the remainder theorem [14], where an

absolute phase map can be computed from two different rel-

ative phase maps having frequencies that are relative prime

numbers between them. Having two relative phase maps

with different frequencies and their corresponding phase

values φ1, φ2 (Fig. 2), the absolute phase value is given

by eq. (7):

Figure 1: Slope producing decoding error in the traditional

fringe pattern methods

Figure 2: Pair of two different relative phases

ΦABS1,INT = ΣN
k=1φRi,INT eimod(λ1λ2) (7)

being λi the period wavelengths and ei a number which di-

vided by λi yields a remainder 1, and 0 otherwise (see the

work of Pribanic et al. [13] for more details). A solution

to ΦABS1,INT can be obtained using the previous equation,

providing an absolute phase map from a minimun of two

relative phases. Another advantage of this technique relies

on its simplicity and non dependence on the neighbouring

pixels, as the phase value is computed directly from a linear

combination of the two relative phase map values for the

given pixel.



4. System proposal

Our model proposal employs one-shot color multiplex-

ation, wavelet analysis and absolute coding. The creation

and the decoding diagrams are shown in Figs.3,4. A further

explanation of the pattern creation and the decoding algo-

rithm is presented in sections 4.1 and 4.2, respectively.

Figure 3: Pattern creation diagram

Figure 4: Pattern decoding diagram

4.1. Pattern creation

This pattern is created by multiplexing three different

fringe patterns in color space, taking advantage of the Red

Green and Blue splitted channels of the projector and cam-

era devices. The frequencies used to create the fringe pat-

terns are relative prime numbers between them. The sinu-

soidal patterns use one axis coding, as in other WTP ap-

proaches. The projected pattern is represented by eq. (8),

where Ai, Bi and fi represent the DC and AC components

and the frequency values for every channel (r, g and b):

Ip
n(yp) = Ap

r + Bp
r cos(2πfry

p) +

Ap
g + Bp

gcos(2πfgy
p) +

Ap
b + Bp

b cos(2πfby
p) (8)

4.2. Pattern analysis

Once projected onto the pattern and captured by the cam-

era, the received pattern can be represented as:

In(x, y) =

δ(x, y) · (α(x, y) · (Ap
r + Bp

r cos(2πfry
p + φ(x, y))) +

β(x, y) · (Ap
g + Bp

gcos(2πfgy
p + φ(x, y))) +

γ(x, y) · (Ap
b + Bp

b cos(2πfby
p + φ(x, y)))) (9)

where δ(x, y) represent the different albedo and α(x, y),
β(x, y) and γ(x, y) the effect of crosstalk between the dif-

ferent color channels. The first task is to split the three color

channels obtained from the camera and perform a color en-

hancement to reduce the effect of albedo and crosstalk in

every color channel. To cope with this, a previous color cali-

bration has been pursued. This procedure uses least squares

to find the matrix that best linearises the projector-camera

pair in terms of response to color intensity, for each color

channel (red, green and blue). This linear transformation is

extracted for every pixel in the image, providing an estima-

tion of the projected color values for every received value.

Having the set of three received color values R, G, B the

estimated projected values R, G, B are given by eq.(10):

2

4

R0

G0

B0

3

5

=

2

4

arr arg arb

agr agg agb

abr abg abb

3

5

8

<

:

R

G

B

9

=

;

(10)

This matrix represents the whole system (projector-

camera) and aims to substract the effect of crosstalk be-

tween color channels. However, as it approximates the

system as a linear transformation between projected and

received images, some errors will persist due to non-

linearities. This error, jointly with the different albedo

and noise, must be filtered by the wavelet analysis algo-

rithm. The wavelet analysis employs a 2D wavelet decom-

position using a Morlet mother wavelet. As stated in [1],



Morlet wavelet is optimal in case we deal with signal hav-

ing a low Signal To Noise ratio, which is the case when

working in real conditions. Moreover, 2D wavelet analy-

sis performs better than 1D wavelet analysis. In our case,

a 2D wavelet decomposition and phase estimation algo-

rithm combined with cost function is employed. The out-

put of the 2D wavelet analysis is a 5D matrix of dimen-

sions height ·width ·scales · translations ·orientations.
Without the cost function, the algorithm would select for

every pixel the daughter wavelet having the maximum of

the modulus -within all scales, translations and orientations

available-, and its corresponding angle for that position.

The cost function is introduced to ensure continuity and

avoid errors due to local errors, that can be identified re-

garding its neighbours. The cost function works along the y
axis of the camera (though any other direction could be se-

lected according to the direction of fringes in the projected

pattern), selecting the combination of daughter wavelet that

best performs in terms of modulus maxima and continu-

ity. The algorithm used by the cost function is presented

in eq.(11):

Cost =

b=2
∑

W

{−|S[φ(b), b]|2 + |φ(b) − φ(b − 1)|2} (11)

where φ(b) represents any value of the scaling parameter,

b is the shifting parameter in the coding axis (y axis in our

case), S[φ(b), b] is the modulus value at both φ(b) and b,
and W is the total width of the fringe pattern, in pixels. For

every column, the algorithm works at follows:

• Compute all the possible daughter wavelets, for every

orientation.

• For every orientation and every value of the shifting

parameter b, selects the best path in terms of:

– Maxima of the modulus (to maximize).

– Difference in scale value with respect to the pre-

vious position in the path (to minimize).

• Finally, selects the orientation having the lowest global

cost.

This procedure reduces the errors in presence of local

holes in the recieved fringe pattern. Once the appropiate

daughter wavelets have been selected, their correspoding

angle values are computed and the wrapped phase map is

extracted. The next step is to apply the unwrapping al-

gorithm of absolute coding proposed above. A minimum

of two patterns are required to this end, but the proposed

method utilizes the three color channels (red, green and

blue) to create the absolute phase map. This is done to in-

crease the redundancy and hence reduce the errors that may

propagate to the absolute phase map. The algorithm com-

bines every two of the color channels to create an absolute

phase map. That is, a total of
(

n
2

)

combinations are created,

being n = 3 the number of channels. An absolute phase

map is computed for every one of the combinations follow-

ing the idea of relative phase numbers exposed above.

Consistency mapping

Once these absolute maps are computed, an optimiza-

tion algorithm is pursued to extract the optimal phase map

that minimizes the errors. This process is done in order to

reduce the noise created by the effect of non linearities of

the projector-camera pair in color or intensity representa-

tion. This noise propagates from the wrapped phases to

the absolute phase map. The optimization algorithm de-

tects these noisy points or regions and replace them with

a non-corrupted value coming from another pre-computed

absolute phase map. The algorithm works as follows:

1. The laplacian map of every absolute phase map is com-

puted, and the one having the lowest mean value of

laplacian is chosen as the default map.

2. Every pixel having a laplacian value higher than the

computed mean is selected to revision. This pixel

is substituted by the one that minimizes the mean of

laplacians, among all the possibilities provided by the

absolute phase maps.

This process suppress the error provided by isolated pixels

having a value much different from the neighbouring pixels.

5. Results

The proposed algorithm has been tested in both simu-

lated and real environment, and the resulting reconstruction

are shown herebelow. The setup used for the tests was com-

posed of an LCD video projector (Epson EMP-400W) with

a resolution of 1024 × 768 pixels, a camera (Sony 3CCD)

and a frame grabber (MatroxMeteor-II) digitizing images at

768×576 pixels with 3×8 bits per pixel (RGB). The base-

line between camera and projector was about 0.5m. The

results and time estimates were computed using a standard

Intel Core2 Duo CPU at 3.00GHz. The selected frequencies

for the three fringe pattern were p = 15, p = 19 and p = 23
periods. These values provide a good resolution in details,

while preserving the sinusoidal shape once captured by the

camera.

5.1. Simulated results

The proposed algorithm was tested using simulated data.

The peak function available in Matlab (shown in Fig. 5) has

become a benchmark for fringe pattern analysis, as stated in

[16], as was employed for the test. Moreover, the simulated



object shape was obtained for different values of noise. The

error introduced is a gaussian zero mean random noise in

the range 5%, 10% and 20% of the total dynamic range of

input image. The resulting patterns used as input images are

shown in Fig. 6.

Figure 5: Projected simulated object shape

(a) Noise 5% (b) Noise 10% (c) Noise 20%

Figure 6: Input images for added noise values of 5%, 10%
and 20% of maximum dynamic range, respectively

The reconstructed object shape obtained using the input

image of noise 5% of the total range are shown in Fig. 7a.

As can be observed, the algorithm reconstructs the simu-

lated object at the same time the noise existing in the input

image is reduced. A scaled map of the error is also pre-

sented in Fig. 7b, where the error has been rescaled from

[0%, 3.48%] to [0, 255]. The error is uniformly distributed,

with some peaks in the regions of major inclinations of the

peak function. This is due to the fact that a faster change in

the phase frequency is more likely to suffer detection errors

when noise appears. The algorithm was also tested with the

other noised input images, and the results of average error

are presented in table 1. The error is highly reduced for val-

ues lower than 5% of the data range, up to values higher

than 20% of data range which makes the decoding impos-

sible. It is important to note that noise introduced depends

on the object depth. For the object depths analyzed in real

applications the noise remains under 5% of this dynamic

range, and hence the method is able to filter the noise in the

reconstructed shape, as will be observed in the experimental

results.

Finally, in order to test the effectivity of the proposed

(a) Reconstructed object. (b) Scaled error map.

Figure 7: Reconstructed peak model with 5% noise, and

corresponding error map rescaled from [0%, 3.48%] to

[0, 255].

Noise percentage (%) Error rate (%)

5 0.57

10 19,8

20 —

Table 1: Error rates for the given input noise, goin from 5%
to 20% of the total dynamic range.

method against situations like the one shown in Fig 1, a

reconstruction of this setup has been simulated. The ef-

fectivity of the absolute coding step used in the proposed

algorithm is shown in Fig 8. The slope has been detected

despite it was not visually perceptible. However, some er-

ror arised in the vecinity of the discontinuity, due to the er-

roneous phase estimation in the surroundings of the slope.

This problem is posteriorly analyzed.

Figure 8: Projected and reconstructed simulated surface

containing a slope

5.2. Experimental results

The proposed techniquewas tested under real conditions,

for the reconstruction of two different objects: a smooth

volume done with sheets of paper having different orienta-

tions, and a plaster white face. These two objects attemp to

cover the usual requirements of the methods regarding its

applicability to 3D dense reconstruction. It is important to

note that this objects have been chosen having lambertian

white surfaces, in order fit with the previous color calibra-

tion performed to the system. The results are presented in

Figs. 10,12.



Figure 9: Real smooth object: recovered image, enhanced

image, one color channel and its wrapped phase

Figure 10: Reconstructed surface of the smooth object

Figure 11: Real white face: recovered image, enhanced im-

age, one color channel and its wrapped phase

Figure 12: Reconstructed surface of the white face

The flat plane that surrounds the scanned objects has

been reconstructed with absolutely no error. This is due

to the Morlet mother wavelet used to extract the phase,

which is optimal in case of having low signal to noise ra-

tio. The smooth surface is reconstructed also without error,

not depending on the orientation and shape of the object.

Finally, the algorithm is able to reconstruct the face provid-

ing a dense absolute coding reconstruction using one sin-

gle projection. As can be observed, the main volume has

been detected and details like the nose and eyes (identified

as shadows) are represented in the final surface. A more de-

tailed features like the nose can be achived increasing the

frequency of the projected fringes. However, a camera hav-

ing greater resolution would be needed to preserve the sinu-

soidal shape of the recovered patterns. The reconstruction

presents, however, some errors in the discontinuities (see

Fig.12), the same kind of error that revealed in the simu-

lated results. This problem is due to an inaccurate phase

extraction in the wavelet analysis step, which originates an

erroneus phase estimation at the vecinity of the disconti-

nuity, which propagates to the absolute phase map. This

problem was mentioned in the work of [1] as the major

drawback of the wavelet technique employed in this algo-

rithm. Regarding this issue, some improvements are being

implemented using an adaptive selection of the best mother

wavelet, in both type and shape, depending on the proxim-

ity to a discontinuity. Having this, the method provides an

absolute coding dense reconstruction technique able to deal

with moving scenarios, extending the applicability of struc-

tured light to dynamic environment requiring high level of

detail in the reconstructed shape.

6. Conclusion

In this work, we have presented a one-shot dense recon-

struction technique for structured light. Moreover, an abso-

lute coding phase unwrapping algorithm has been proposed,

suppressing errors due to a bad detection of slopes and er-

ror propagation between pixels during the unwrapping step.



The work is based on the multiplexation in color space of

three different fringe patterns. The phase of these patterns

is extracted using wavelet decomposition combined with a

cost function algorithm. The final step merges the individ-

ual relative phase maps to create the absolute phase map

and extract the depth deviation. The algorithm has been

tested in both simulated and real data. The results show the

effectiviness of the proposed method using standard simu-

lation parameters. The method reconstruct properly smooth

surfaces in real data. However, some problems were en-

countered with surfaces having discontinuities. This is due

to the effect of the phase changes when selecting the best

phase value for a pixel in the discontinuity. The solution

pointed out in this paper focuses on adapting the shape or

even the type of the mother wavelet depending on the prox-

imity to a discontinuity, so as to be able to obtain the correct

relative phase for all the pixels in the image and hence pro-

duce dense reconstruction of objects in movement without

ambiguities in depth.
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