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Abstract— Different underwater vehicles have been developed
in order to explore underwater regions, specially those of
difficult access for humans. Autonomous Underwater Vehicles
(AUVs) are equipped with on-board sensors, which provide
valuable information about the vehicle state and the environ-
ment. This information is used to build an approximate map
of the area and estimate the position of the vehicle within
this map. This is the so called Simultaneous Localization
and Mapping (SLAM) problem. In this paper we propose a
feature based submapping SLAM approach which uses side-
scan salient objects as landmarks for the map building process.
The detection of salient features in this environment is a
complex task, since sonar images are noisy. We present in
this paper an algorithm based on a set of image preprocessing
steps and the use of a boosted cascade of Haar-like features
to perform the automatic detection in side-scan images. Our
experimental results show that the method produces consistent
maps, while the vehicle is precisely localized.

I. INTRODUCTION

Different underwater vehicles have been developed in

order to explore underwater regions, specially those of dif-

ficult access for humans. In this sense, two different types

of vehicle exist: Remotely Operated Vehicles (ROVs) and

Autonomous Underwater Vehicles (AUVs). ROVs are linked

to the ship by a tether and operated by a person aboard of

the ship. The tether is a group of cables that carry electrical

power, video and data signals back and forth between the

operator and the vehicle. AUV technology does not require

any umbilical cable, therefore they have complete autonomy.

AUVs are equipped with on-board sensors, which provide

valuable information about the vehicle state and the environ-

ment. This information is used to build an approximate map

of the area and estimate the position of the vehicle within

this map.

Some widely used sensors for land and aerial robots do

not work or are not precise enough under the water. For

instance, the use of cameras is difficult due to the lack of

visibility and scattering; the laser range finders are imprecise

working in these scenarios because of light attenuation; and

GPS signal does not work underwater. The most commonly

used sensors to measure navigation data on a AUV are the

Inertial Measurement Unit (IMU) and the Doppler Velocity

Log (DVL), while acoustic cameras or side-scan sonar are

used to gather data from the environment. The IMU and

the DVL do not give absolute localization, therefore if the

vehicle is wrongly localized, nor the IMU neither the DVL

will provide useful information to recover the right position.

In addition, as the positioning is relative to past information,

the localization problem is biased and the measurement noise

produces drift. On the other hand, the detection of salient

features in this environment is a complex task, since sonar

images are noisy. This noise together with the lack of other

navigation aids makes the mapping and localization a very

difficult challenge.

A solution to the lack of GPS signal and the presence

of noise are the Simultaneous Localization and Mapping

(SLAM) algorithms, also known as Concurrent Mapping and

Localization (CML) techniques. One of the main drawbacks

of current SLAM algorithms is that they do not perform

consistent maps for large areas, because of the increase in

uncertainty for long term missions. In addition, as the map

size grows the computational cost increases, making SLAM

solutions not suitable for on-line applications. Introducing

submaps in these techniques we can address both issues: 1)

the reduction of computational cost, and 2) the improvement

of map consistency. Following this idea, in this work we

propose a technique that uses independent submaps together

with a global level stochastic map. The basis of our approach

lay on the EKF based SLAM. In particular, a sequence

of EKF based submaps is built, while the links between

submaps are stored in a global level map. This graph in-

formation allows to check the possibility of being in front of

a loop closing event. Thus, a loop is closed when the vehicle

is revisiting a certain number of previous observations, and

as a consequence two submaps are joined and fused. Decide

whether to fuse the submaps is made on the basis that fusing

two submaps that share many landmarks will produce a

better update than fusing two submaps that only share a

few landmarks. These landmarks are detected from side-scan

sonar images. This detection is automatically performed by

means of two different algorithms: 1) using thresholding to

segment bright spots an shadows in the image, and 2) using

a boosted cascade of Haar-like features. Our experimental

results show that both strategies perform similarly in terms

of accuracy, but the second one is faster.

The paper is organised as follows: in Section II, a brief sur-

vey on SLAM is given, focusing on submapping techniques

and on underwater applications; in Section III, underwater

object detection strategies are listed and briefly detailed;

in Section IV-A the implementation of our approach is
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presented; in Section V the experiments and results are

provided; finally some conclusions are given in Section VI.

II. SIMULTANEOUS LOCALIZATION AND

MAPPING

SLAM is one of the fundamental challenges of

robotics [1]. The SLAM problem involves finding appropri-

ate representation for both the observation and the motion

models, which is generally performed by computing its prior

and posterior distributions using probabilistic algorithms, for

instance Kalman Filters (KF), Particle Filters (PF) and Ex-

pectation Maximization (EM). These probabilistic techniques

are very popular in the SLAM context because they tackle the

problem by modelling explicitly different sources of noise

and their effects on the measurements [2]. A well known

and widely used SLAM approach is the Extended Kalman

Filter SLAM (EKF-SLAM) [3]. EKF-SLAM represents the

vehicles pose and the location of a set of environment

features in a joint state vector. This vector is estimated and

updated by the EKF. EKF provides a suboptimal solution due

to several approximations and assumptions, which result in

divergences [4]. Several alternatives exist aiming to address

the linearisation approximations, for instance the Unscented

Kalman Filter [5], which uses a sigma points representation

to model noise distributions. In large areas, EKF complexity

grows with the number of landmarks, because each landmark

is correlated to all other landmarks. This means that EKF

memory complexity is O(n2) and a time complexity of

O(n2) per step, where n is the total number of features

stored in the map. Different approaches aiming to reduce

this computational cost have been presented, for instance, the

Compressed Extended Kalman Filter [6] delays the update

stage after several observations; while the Exactly sparse

extended information filters [7] take advantage of the sparsity

in the information matrix, reducing considerably the com-

putational demand. The two following sections summarize

the state-of-the-art SLAM approaches in A) submapping

techniques, and B) underwater applications.

A. Submapping techniques

Using submaps addresses both issues, reduces computa-

tional cost and improves map consistency. An example of

submapping approach is the Decoupled Stochastic Map [8],

which uses non-statistically independent submaps, therefore

the correlations are broken introducing inconsistency in

the map. Something similar happens in [9], where local

maps share information while kept independent, thus a

long term mission diverges. Different techniques, such as

the Constrained Local Submap Filter [10] or Local Map

Joining [11] produce efficient global maps by consistently

combining completely independent local maps. The Divide

and Conquer [12] approach is able to recover the global map

in approximately O(n) time. The Conditionally Independent

Local Maps [13] method is based on sharing information

between consecutive submaps. This way, a new local map is

initialised considering the a-priori knowledge. The Constant

Time SLAM [14], the Atlas approach [15] and the Hierar-

chical SLAM [16] store the link between submaps by means

of an adjacency graph. The later imposes loop constraints on

the adjacency graph, producing a better estimate of the global

level map. Finally, in [17] a Selective Submap Joining SLAM

was proposed, this approach is detailed in further sections as

it is the one used in our implementation.

B. Underwater approaches

Multiple techniques have shown promising results in a

variety of different applications and scenarios. Some of them

perform SLAM indoors where the scenario is structured and

simpler as compared to outdoor environments. Underwater

scenarios are still one of the most challenging scenarios for

SLAM because of the reduced sensorial possibilities and the

difficulty in finding reliable features. A SLAM solution for

underwater environments tackles the problem using feature

based techniques [18]. However, such approaches have many

problems due to the unstructured nature of the seabed and

the difficulty to identify reliable features. Many underwater

features are scale dependant, sensitive to viewing angle and

small. On the other hand, a non-feature based approach to

SLAM that utilizes a 2D grid structure to represent the

map and a Distributed Particle Filter to track the uncertainty

in the vehicle state was presented in [19]. They named

their method as the Bathymetric distributed Particle SLAM

(BPSLAM) filter. BPSLAM does not need to explicitly

identify features in the surrounding environment or apply

complicated matching algorithms. On the other hand, they

required a prior low-resolution map generated by a surface

vessel.

Another approach utilizes a 3D occupancy grid map

representation, efficiently managed with Deferred Reference

Counting Octrees [20]. A particle filter is used to handle

the uncertainty in the navigation solution provided by the

vehicle. This approach was successful in minimizing the

navigation error during a deep sea mapping mission. How-

ever, map based localization was only available after the map

building process had been carried out. This prohibited any

corrections in navigation during the map building process.

A vision-based localization approach for an underwater

robot in a structured environment was presented in [21].

Their system was based on a coded pattern placed on the

bottom of a water tank and an on-board down-looking

camera. The system provided three-dimensional position and

orientation of the vehicle along with its velocity. Another

vision-based algorithm [22] used inertial sensors together

with the typical low-overlap imagery constraints of under-

water imagery. Their strategy consisted on solving a sparse

system of linear equations in order to maintain consistent

covariance bound within a SLAM information filter. The

main limitation on vision-based techniques is that they are

limited to near field vision (1-5m), and also deep water

mission will require higher amounts of energy for lighting

purposes.

Instead of vision, in [23] a mechanically scanned imaging

sonar is used to obtained information about the location of



vertical planar structures present in partially structured envi-

ronments. In this approach, the authors extract line features

from sonar data, by means of a robust voting algorithm.

These line features are used into a Kalman filter base SLAM.

In [24] a side-scan sonar was used to sense the environment.

The returns from the sonar were used to detect landmarks

in the vehicles vicinity. Reobserving these landmarks allows

to correct the map and vehicle location, however after

long distances the drift is too large to allow associating

landmarks with current observations. For this reason, they

proposed a method that combines a forward stochastic map

in conjunction with a backward Rauch-Tung-Striebel filter

to smooth the trajectory. Another approach using side-scan

sonar is presented in [25]. In that paper, the whole scenario

is built through EKF based submaps, producing a consistent

map and localizing the vehicle efficiently. The same strategy

is used in this paper together with the automatic detection

of salient features from side-scan sonar images. As side

scan sonars provide higher quality images than forward-look

sonars, the object detection and the data association becomes

easier.

III. OBJECT DETECTION AND MATCHING

A great number of papers discussing image segmentation,

classification, registration, and landmark extraction have al-

ready been published. Thresholding and clustering theory

has been used in [26] to segment the side-scan sonar image

into regions of object-highlight, shadow, and background.

Similarly, the system in [27] utilizes an adaptive thresholding

technique to detect and extract geometric features for both

the shadow and the object. Another unsupervised model for

both the detection and the shadow extraction as an automated

classification system was presented in [28]. Using spatial

information on the physical size and geometric signature

of mines in side-scan sonar, a Markov random field (MRF)

model segments the image into regions. A cooperating statis-

tical snake (CSS) model is used to extract the highlight and

shadow of the object. Features are extracted so that the object

can be classified. A more recent approach [29], first extracts

texture features from side scan images. A region based active

contour model is then applied to segment significant objects.

The Viola-Jones object detection framework is capable to

provide competitive object detection rates [30]. It can be

trained to detect a variety of object classes. In this paper, we

implemented two different methods to detect objects from

side-scan sonar images, one based on thresholding and the

other one based on Viola-Jones (further details are given in

Section IV-B).

IV. IMPLEMENTATION

The method presented in this paper is represented in the

block diagram on fig. 1.

A. Selective Submap Joining SLAM

The Selective Submap Joining SLAM was presented

in [17]. The main idea of this SLAM approach is to use

Fig. 1. Schematic representation of our system

Algorithm I: Selective Submap Joining SLAM

begin mission

while navigating do

x̂i, P̂i = EKF SLAM() ← (Build submap Mi)

x̂G, P̂G = build global map(̂xi, P̂i)

HLoop = check possible loops(̂xG, P̂G)

for j = HLoop do

refer Mi and Mj to a common base reference

Hij = data association(̂xi, x̂j , P̂i, P̂j )

if Hij > threshold then

x̂ij , P̂ij = map fusion(̂xi, P̂i, x̂j , P̂j , Hij )

x̂G, P̂G = update global map(̂xij , P̂ij )

endif

endfor

endwhile

the EKF to build local maps. The size of these local maps

is bounded by the total number of features and by the level

of uncertainty. The relative topological relationship between

consecutive local maps is stored in a global level map. The

global level is used to search for loop closure, i.e. the vehicle

is revisiting a region. Once a loop is detected, the data

association between those maps that are closing the loop

is computed. The loop closing strategy involves a decision

on whether to fuse local maps depending on the amount of

found correspondences. This correspondences are computed

by means of a Joint Compatibility Branch and Bound [31]

data association algorithm. The whole process is presented

in Algorithm I.

The AUV REMUS-100 was used to gather the experi-

mental data (see fig. 2). The vehicle was equipped with

a DVL and IMU, giving navigation data relative to the

vehicle reference frame, such as, velocities, orientations and

depth. In addition, the vehicle was carrying a side-scan sonar

pointing both ways, starboard and port. The state of the

vehicle is defined by a 9-vector, composed by a 6-DOF

vehicle pose and the vehicle frame linear velocities. The

scenario is composed of objects, rocks and other detectable

features. This feature’s state is defined as 3D points in our

map. These features are extracted from side-scan images (see

fig. 3). In addition to feature information, the side-scan sonar

provides a measure of the altitude (see fig. 4), i.e. the distance



Fig. 2. The REMUS-100 AUV is the one used in our experiments.

Fig. 3. Example of side-scan image. Metallic objects are well characterised
by a bright spot together with a large oriented shadow. The dark vertical
area in the center of the figure corresponds to the vehicle shadow.

from the sensor to the seabed. Therefore, the joint state vector

estimate contains both vehicle state and map information.

B. Object Detection

Our initial approach to object detection was based on

preprocessing the image followed by thresholding, as shown

in fig. 5. First, a median filter is applied to remove the

salt an peper effect of the sea floor (fig. 5(b)). Second, a

low intensity threshold is used to binarize the image and

find shadows (fig. 5(c)). The resulting image is run through

the morphological operation ’erode’ in order to magnify

shadow sizes, while at the same time joining small noise

areas together. In this way, selecting only dark regions with

a certain size, which depends on image range, are accepted

as object shadow candidates (fig. 5(e)). Third, the process

is repeated for bright spots. A high intensity threshold is

applied in order to binarize the image and find high reflective

metallic objects (fig. 5(d)). In order to magnify this small

spots, a ’dilate’ is applied and these spots are selected as

possible object candidates (fig. 5(f)). Finally, only those

Fig. 4. Schematic representation of the side-scan sonar measurement
procedure.

Fig. 6. Examples of rectangular features [30]. Left examples are two-
rectangle features, while in the right there are a three-rectangle and a four-
rectangle feature examples.

Fig. 7. The value of the integral image at (x, y) is the sum of all pixels
in the shades area [30].

areas with both, shadow and metallic object candidates are

accepted as real objects (fig. 5(g)).

Unfortunately, this approach is computationally expensive.

Therefore we looked for a fast detector capable of producing

consistent results for on-line applications. The Viola and

Jones detector was initially designed to detect faces, but it

can be used for any sort of object. In this algorithm, feature

detection is done by means of a boosted cascade of Haar-like

features (see fig. 6). All these features rely on more than one

rectangular area, and the value assigned to them is the sum

of the pixels within clear rectangles subtracted from the sum

of pixels within shaded rectangles. The advantage of these

features is that they are sensitive to vertical and horizontal

changes. With the use of an image representation called

the integral image, rectangular features can be evaluated in

constant time. The integral image at location x, y contains

the sum of the pixels above and to the left of x, y (see

fig. 7). Using the integral image any rectangular sum can

be computed as shown in fig. 8.

The learning process would be prohibitively expensive if

we wanted to evaluate all possible features. In order to speed

up the process, a variant of AdaBoost is used to select the

best features and to train proper classifiers. Strong classifiers

are arranged in a cascade in order of complexity (see fig. 9).

In this way, each successive classifier is only trained on the

examples which passed through the preceding classifiers.

OpenCV libraries are used to first pre-process the images,

mainly apply a median filter, then train the system and finally

run the object detector.



(a) original image

(b) image after median filter

(c) high intensity threshold binary image (d) low intensity threshold binary image

(e) shadow candidates detection (f) metallic spot candidates detection

(g) final detection = shadows + metallic spots

Fig. 5. Example of the automatic detection performance.



Fig. 8. The sum of pixels within rectangle D can be computed as the
combination 4 + 1− (2 + 3) of the integral images at points 1 to 4.

Fig. 9. Schematic representation of a detection cascade [30]. Subwindows
of the image are run through a series of classifiers. Further processing means
additional stages of the cascade.

V. EXPERIMENTAL RESULTS

The experiments were conducted in a real environment.

The AUV was sent underwater to perform a recognition

mission. During the mission the vehicle navigated a large

surface, about 300m x 400m. The whole navigation consisted

in a large number of loops, i.e. revisiting the same area

several times (see fig. 11). The vehicle’s depth was almost

constant around 12 meters, and some intervals at 14 meters,

while the sea floor with respect to the water surface was

oscillating 16 meters. The total navigation time was almost

4 hours. This scenario sea floor was considerably flat, but

with several salient objects.

Table I summarises numerical results from both implemen-

tations. Notice that these results were obtained from Matlab

implementations in a computer equipped with a Core 2 Duo

CPU at 2.66 GHz. With this data both object detectors were

able to find about 80% of all existing landmarks, with a

similar rate of false positive around 9 for the whole mission.

This detection rate is well suited in the context of SLAM,

if we consider that in SLAM applications is very important

to have a very low rate of false positives. Detecting false

objects would create a false landmark and false associations,

causing divergences. For this reason, the algorithm is tuned

TABLE I

DETECTOR PERFORMANCE COMPARISON

Thresholding Viola-Jones

True Positive (%) 81.2 82.1

False Positive (objects) 9 8

Time per image (s) 2.56 0.58

Fig. 10. Example of the automatic detection performance. The image has
6 objects that have been properly detected.

in order to obtain detections with a very high probability of

being a real object. This constraint is very restrictive, thus

some objects that could have been detected are discarded,

reducing the amount of true positives. Both approaches pro-

duce similar results in terms of accuracy. However, the Viola-

Jones approach is much faster. An example for the threshold

approach is given in fig. 5. The method is shown to be

very robust, as the condition of having shadow horizontally

aligned with a closed bright spot is very restrictive. The Viola

and Jones algorithm is able to perform automatic detection

in side-scan images (see fig. 10) with a very low rate of false

positives. The training process is computationally expensive.

However, once the training have been done off-line, the

detection can be conducted in real-time.

VI. CONCLUSION AND FUTURE WORK

A. Conclusions

In this paper we have presented and compared two object

detection strategies. These object detection strategies are

used to segment objects located on the sea floor and sensored

through side-scan sonar. These detected objects are then used

as landmarks for the map building process. In the meantime,

the vehicle is located within the map, by means of the

selective submap joining SLAM algorithm.

After seeing the results, we can conclude that both de-

tectors perform very similar in terms of accuracy, but the

algorithm based on the Viola and Jones detector is faster.

However, this approach requires a very expensive training

stage, which must run off-line. Identifying a set of features

able to discriminate typical objects that appear in side-scan

images is a complex task. In addition, a big dataset is

necessary for the training to be efficient and produce a proper

detector.

B. Future Works

Several points remain for further study:



Fig. 11. Plot of the execution at a certain step during the mission. Top-left: side-scan image with several detected objects. Bottom-left: 3D plot of the
map and the trajectory of the vehicle. Top-right: XY top view of the map and trajectory. This plot shows the submaps in different colours, together with its
corresponding landmarks and uncertainty ellipses. Bottom-right: XZ frontal view of the execution. In this plot, it is easy to see that the vehicle has been
navigating at around 12 meter deep, then it has gone to the surface, and it has dived back to around 14 meters deep

• to analyse the performance of the detector using only

some specific features, taking advantage of the geo-

metric constraints given by the regular pattern bright-

shadow of the metallic objects in a side-scan sonar

image.

• to analyse the performance of the detector under differ-

ent training datasets.

• to add the possibility to automatically classify detected

objects. This would ease the data association process.

• to test the SLAM algorithm under different real datasets.
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