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Abstract: This paper presents two acoustic-based techniques to solve the localization problem
for an autonomous underwater vehicle (AUV). After a brief description of the Bayesian filtering
framework, the paper analyses two of the most common underwater scenarios. Each scenario
corresponds to one of the two localization techniques. The scenarios are as follows: map-based
localization, when the environment is sufficiently distinctive; transponder-based localization for
navigation in large and not distinctive environments. An environment is said to be distinctive
when there are possible reference points. For example, a completely flat featureless sea floor is
not considered as distinctive. The proposed techniques were validated in simulation. The map-
based localization technique was also validated in trials with the autonomous underwater
vehicles Ictineu and Nessie IV. The trials with Ictineu took place in an abandoned marina with
Ictineu travelling along a trajectory that was more than 600 m long. The trials with Nessie IV took
place in a rectangular pool and during an AUV competition.
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1 INTRODUCTION

Over the past few years, underwater technology has

significantly grown and remotely operated vehicles

(ROVs) are nowadays safely and routinely used in the

offshore industry. ROVs are constantly controlled by a

human operator. Other vehicles called autonomous

underwater vehicles (AUVs) have received much

attention from the underwater robotic community

because of their ability to carry out missions without

close human intervention and supervision. There are

many open research areas related to AUVs such as safe

and reliable autonomous navigation. An autonomous

vehicle indeed needs to demonstrate high autonomy

in order to keep track of its position and orientation

and to build a map of this environment while suc-

cessfully completing autonomous tasks. Many ap-

proaches have been developed for land and aerial

vehicles [1–3]. However, the constraints and peculia-

rities of the underwater environment prevent the

direct application of techniques developed for land or

aerial vehicles in the underwater domain. A careful

study of each technique with regard to the constraints

of the underwater domain is required.

The primary navigation system used in land, aerial,

and underwater applications is the inertial measure-

ment unit (IMU), which provides an estimation of the

acceleration of the vehicle. In addition to being

expensive, this system suffers from drift errors, which,

doubly integrated over time, result in the need for

some external system to correct the localization

errors. In land and aerial robotics, this can be achieved

by incorporating Global Positioning System (GPS)

measurements. The GPS signal is not available in an

underwater environment and other techniques to

correct the drift errors of the IMU are needed. The

IMU is also not able to give an absolute localization

but only an estimation of the inertial movement.

There are, then, many cases in which the IMU alone

fails to provide accurate localization. This happens

when the starting position is unknown or in the
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classical kidnapped robot problem [4] where the robot

starts from an unknown position in a known environ-

ment and needs to determine its position. Providing

only relative values, the IMU is also not able to recover

after an incorrect localization. Similar considerations

are valid for the Doppler velocity log (DVL), which

provides an estimation of the velocity vector using

acoustic measurements.

The absence of a GPS signal and the difficult sensing

conditions make underwater localization a complex

problem. The lack of visibility and scattering make the

use of cameras difficult, if not impossible, at long

ranges. Precise laser range finders, widely exploited for

land robots, cannot be used efficiently in the water. As

a consequence, acoustic techniques are the most

widely used and have specific problems such as high

noise, poor resolution, and slow frame rate.

This paper investigates solutions to two problems.

1. AUV localization. In this case, the environment is

known a priori and a local map of the environment

is captured by an imaging sonar. The algorithm

uses the local sonar map to localize itself in the

known global map. This is a typical problem for

deep-water inspection of structures or port and

harbour surveillance where the environment is well

known but the vehicle’s position is not accurate by

the time that it has reached the area of interest for

the mission.

2. Beacon-based simultaneous localization and map-

ping (SLAM). In this case, the environment is un-

known and feature poor. Classical feature-based

mapping and localization techniques cannot be

used. In the present approach, the environment is

composed of acoustic transponders whose posi-

tions are a priori unknown. It has been assumed

that the transponders broadcast only range infor-

mation which corresponds to the current state of

the art in readily available transponders technol-

ogy. The algorithm presented here estimates jointly

the position of the vehicle and the position of the

beacons. This can be seen as a self-calibrating long-

baseline (LBL) system.

It is, then, possible to imagine a system built on

the two solutions presented here which solves the

full localization problem; in open water, the vehicle

deploys beacons as it moves and uses the network

generated to localize until it reaches a structure that

requires closer inspection for which some a priori

information is known (a local map, for instance).

The particle filter localization algorithm is used for

this task.

1.1 Related work

Several techniques have been proposed for AUV loca-

lization. Caiti et al. [5] developed an acoustic localiza-

tion technique using freely floating acoustic buoys

equipped with GPS connection. This system requires

the buoys to emit a ping at regular time intervals with

coded information of its GPS position. The vehicle can

locate itself using time-of-flight measurements of

acoustic pings from each buoy. The limitations of this

approach are the necessity to deploy a sufficient num-

ber of floating buoys in the mission area, the need to

collect them after the end of the mission, and a non-

efficient communication scheme, as the buoys peri-

odically send acoustic messages. Limitations for deep-

water missions are also evident. Erol et al. [6] pro-

posed to use GPS-aided localization. The problem in

this approach is that the GPS signal does not propa-

gate in the water. The AUV is therefore forced to

acquire the signal at the surface. This approach is not

very reliable, since the vehicle has no access to a GPS

signal during the submerged period and has to

estimate its state with other sensors. To handle this

problem, the vehicle dives to a fixed depth and follows

a predefined trajectory, which is not suitable for

navigation in complex environments.

Other acoustic-based localization techniques in-

clude the LBL, short-baseline (SBL), and ultra-short-

basline (USBL) systems. In these cases, the vehicle’s

position is determined on the basis of the acoustic

returns detected by a set of receivers. For LBL sys-

tems, a set of acoustic transponders is first deployed

in the area of operation. The vehicle is then able to

locate itself with respect to the transponders (or, in

the opposite way, the transponders are able to track

the vehicle), as explained in reference [7]. For SBL

and USBL systems, Storkensen et al. [8] proposed to

use a support ship equipped with a high-frequency

directional emitter able to determine the AUV’s

position accurately with respect to the mother ship.

This approach requires, however, the support of a

ship. Furthermore, it cannot be used in many situa-

tions as it requires the ship and the vehicle to be

close to each other. This approach is therefore not

suitable for navigation around deep offshore struc-

tures. In terms of the computational framework,

particle filter techniques have been used for the

localization of underwater vehicles although not as

widely as for land and aerial vehicles. Karlsson et al.

[9] proposed a particle filter approach for AUV

navigation but the focus was more on the mapping

part than on the localization. Silver et al. [10] pre-

sented a particle filter merged with scan-matching

techniques. Recent work by Ortiz et al. [11] addressed
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the use of particle filters for tracking undersea narrow

telecommunication cables.

Regarding the SLAM problem, the earliest method

put forward uses an extended Kalman filter (EKF) to

estimate jointly the state of the AUV and the position

of the transponders [12]. This approach has been

used with success in various cases [13–15], but the

filter suffers from linearization of non-linear models

which can quickly lead to divergence as the covar-

iance estimates become unreliable. In addition, the

algorithmic complexity of the EKF algorithm grows

quadratically with the number of beacons (in the two-

dimensional (2D) case). For example, the prediction

step of the EKF not only affects the state of the AUV

but also involves the computation of the Jacobian of

the motion model which also takes into account the

transponders. Several methods have been put for-

ward to reduce the complexity of the EKF algorithm,

such as the linear state augmentation principle or the

partitioned update approach, both presented in

reference [16]. These methods have a linear complex-

ity with the number of beacons. Other solutions to the

SLAM problem are the extended information filter

[17], the unscented Kalman filter (UKF) [18], and the

FastSLAM algorithms [19].

1.2 Contribution

The present approach to the localization problem uses

the ability of the vehicle to sense the environment and

requires a general, but not too precise, a priori map of

the environment. Most algorithms proposed to date

(in air or an land) perform very well in small envi-

ronments but do not always scale well to large en-

vironments and long trajectories. The present ap-

proach extends this technique to the underwater

domain and demonstrates the robustness of a map-

based localization system in a real large-scale scenario.

Moreover, most of the approaches for localization

assume a perfect knowledge of the environment. This

assumption is unrealistic because the ground truth is

not available in many situations. Here, however, the

map generated [20] with a SLAM approach is used.

This map does integrate errors and the demonstration

that it can still be used validates the use of SLAM-

generated maps for other applications. For instance,

once the robot has built a coherent map on an

unknown environment, it is indeed desirable to use

the generated map for further activities in the same

portion of environment. The computational complex-

ity of localization decreases and it is easier for the

vehicle to perform other tasks in the area.

While the first approach is very useful to navigate

around underwater structures, the environment sur-

rounding the robot might not be sufficiently distinc-

tive to allow reliable localization (e.g. large areas with

a flat featureless seabed). Acoustic transponders

deployed in the area of interest help to localize the

vehicle. The position of the transponders is usually

unknown, in which case the vehicle has to localize

itself and the transponders simultaneously. A range-

only SLAM algorithm inspired by reference [21] is

proposed; this is based on a particle-filtering imple-

mentation of the SLAM problem and is coupled with a

mixture-of-Gaussians representation of the posterior

distribution of the beacon’s position. This is demon-

strated in the simulation and shows the potential of

the technique as a self-calibrating LBL system.

The paper is divided into four parts: the first part

presents the Bayesian filtering techniques for robot

localization. The next two parts address the two com-

mon scenarios in underwater localization: in closed

and open environments, with the use of particle filter

and Gaussian sum filter techniques. The fourth part

presents the experimental results, both in the simula-

tion and in real conditions. Finally, conclusions and

future work are detailed.

2 THE BAYESIAN FILTERING FRAMEWORK

2.1 Optimal Bayesian filtering

The state of the AUV at time t is a random vector

denoted by Xt that usually includes the position and

the speed of the AUV. The evolution of the AUV’s state

is provided by the motion model. Usually, the motion

model assumes that (Xk) is a Markov process entirely

defined by the transition kernel p(xk|xk 2 1) and the

distribution of the initial state X0. The transition

kernel is related to the measurements provided by the

IMU or the DVL that predict the future state of the

AUV, given its past state. The state Xt is not directly

observed but is known through measurements reg-

ularly gathered by the AUV. The measurements are,

for example, the scan of a rotating sonar or range of

measurements with respect to acoustic transponders.

The measurement at time t is a random vector

denoted by Yt that only depends on Xt. The measure-

ment model provides the conditional density p(yt|xt)

that statistically links the observation Yt to the state

Xt. These assumptions are those of a hidden Markov

model.

The objective in Bayesian filtering is to calculate the

conditional density p(xt|y0:t) so that an estimate of the
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state Xt can be obtained through the conditional

expectation

E X t jY 0:t½ �~
ð

xtp xt jy0:tð Þdxt ð1Þ

This conditional expectation is the estimate of Xt,
given Y0:t, which minimizes the mean square error,
namely

E X t{E X t jY 0:t½ �j j2
h i

¡E X t{y Y 0:tð Þj j2
h i

ð2Þ

for any other estimate y(Y0:t) of Xt, given the obser-
vations Y0:t. The conditional density p(xt|y0:t) may be
recursively calculated from p(xt 2 1|y0:t 2 1) through the
exact prediction and correction steps

p xt jy0:t{1ð Þ~
ð

p xt{1jy0:t{1ð Þ p xt jxt{1ð Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
transition kernel

dxt{1 ð3Þ

and

p xt jy0:tð Þ~ctp xt jy0:t{1ð Þ p yt jxtð Þ|fflfflfflffl{zfflfflfflffl}
measurement model

ð4Þ

The normalization constant ct is unknown and given
by

1

ct
~

ð
p xt jy0:tð Þdxt

~

ð
p xt jy0:t{1ð Þp yt jxtð Þdxt ð5Þ

Assuming that the motion and the measurement

models are both linear and Gaussian, the distribution

of Xt|Y0:t is also Gaussian. The mean and the co-

variance matrix of Xt|Y0:t may then be calculated using

the recurrence relations of the Kalman filter [22, 23].

The calculation of the conditional expectation

E X t jY 0:t½ � is exact so that the Kalman filter is optimal;

i.e. it provides the estimate of Xt, given Y0:t, which

minimizes the mean square error mentioned pre-

viously.

The motion and the measurement models of an

AUV are seldom both linear and Gaussian. Conse-

quently, approximate and thereby suboptimal solu-

tions to the non-linear non-Gaussian Bayesian filtering

problem have to be provided. Various approximation

schemes have been put forward, among which are the

Monte Carlo and the sum of Gaussian approximations.

The former approximation is at the core of any particle

filter and the latter is known as the Gaussian sum filter.

2.2 Particle filters

Any particle filter relies on a Monte Carlo approxima-

tion of the conditional density p(xt|y0:t) using a finite

set of N points ji
t in the state space called particles.

The approximation is of the form

p xt jy0:tð Þ&
XN

i~1

wi
tdji

t
xtð Þ

where

XN

i~1

wi
t~1

ð6Þ

and where dji
t

denotes the usual Dirac function,

namely

dji
t

xð Þ~ 1 if x~ji
t

0 otherwise

(
ð7Þ

Equation (6) may be interpreted in the following way:
the denser the particles in a region of the state space
and the higher their weights, the higher is the pro-
bability that the state lies in this region. Assuming that
the way in which samples can be obtained from
p(xt|y0:t) is known, the Monte Carlo approximation
becomes

p xt jy0:tð Þ&
XN

i~1

1

N
dji

t
xtð Þ

with

ji
t*p xt jy0:tð Þ

ð8Þ

where , means ‘follows the distribution of’. The
previous assumption is unrealistic, since it implies
that the Bayesian filtering problem is solved. Any par-
ticle filter relies on the importance sampling principle
which provides a mechanism to build a Monte Carlo
approximation of p(xt|y0:t).

Suppose that it is required to sample from a dis-

tribution whose density f is of the form

f xð Þ~cr xð Þg xð Þ

where

g 5 density of a distribution from which it is easy to

sample and which is called the proposal distribution

r 5 weighting function which is easy to evaluate

c 5
R

f(x) dx is an unknown normalization constant
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The importance sampling principle provides the ap-

proximation for f as

f xð Þ&
XN

i~1

widji
xð Þ

with

ji
t*g xð Þ

ð9Þ

where the weights wi~f jið Þ
.PN

j~1 f jj

� �
are not equal

to 1/N, since they account for the particles being

generated using a distribution other than f.

The first particle filter ever proposed was the

bootstrap filter introduced by Gordon et al. [24] but

the most commonly used particle filter is the sampling

with importance resampling (SIR) filter. Other kinds of

particle filter such as the auxiliary particle filter or the

kernel filter have been introduced in order to improve

the performance of the SIR algorithm. The interested

reader can find an overview of the existing sequential

Monte Carlo methods for Bayesian filtering in refer-

ences [25] and [26].

The SIR filter intends to reproduce the optimal pre-

diction and correction steps of the optimal Bayesian

filter. The three steps of iteration t > 1 of the SIR algo-

rithm are as follows.

Step 1: selection: Generate ti
t* w1

t{1, . . . ,wN
t{1

� �
.

Step 2: propagation: Generate ji
t*p xt jj

ti
t

t{1

� �
.

Step 3: correction: Set wi
t!p yt jji

t

� �
.

In the SIR particle filter, the propagation step of

iteration t uses the transition kernel to simulate the

new set of particles j1
t , . . . , jN

t

� �
, as in the bootstrap

filter. However, only the most likely particles at time

t 2 1 are selected to generate the particles at time t.

The selection is made according to the weights, since

the higher a weight the more adequate are the obser-

vation of the corresponding particle. This selection

step makes the SIR particle filter more efficient than

the bootstrap filter.

2.3 Gaussian sum filter

Particle filters rely on a Monte Carlo approximation of

the distribution of Xt|Y0:t. They require a large number

of particles so that the approximation is sufficiently

accurate and thereby have a high computational cost.

A long time before the emergence of particle filters, an

approximation scheme based on a mixture of Gaussian

distributions was suggested by Alspach and Sorenson

[27]. This Gaussian sum approximation was shown to

perform better than the EKF while being compatible

with the computational capabilities of that time. The

conditional density p(xt|y0:t) is approximated by

p xt jy0:tð Þ&
XN

i~1

ai
tC xt ; mi

t , Pi
t

� �

with

XN

i~1

ai
t~1

ð10Þ

where x ¨ C(x; m, P) denotes the probability density
function (PDF) of a Gaussian multi-variate distribution
of mean m and covariance matrix P. The individual

means mi
t and individual covariance matrices and Pi

t

are updated according to the recurrence relations of

the EKF. The interested reader can find a complete

description of the Gaussian sum filter in reference [27].

2.4 Bayesian approach to the SLAM problem

The Bayesian filtering framework is suitable for esti-

mating the state Xt of an AUV. The SLAM problem

also requires the estimation of the state Xt together

with the estimation of the map of the environment. In

the SLAM problem considered in this paper, the envi-

ronment is composed of acoustic transponders

whose positions are to be found. The position of each

transponder is denoted by Bi and B denotes the set of

all the transponders.

The Bayesian approach to the SLAM problem re-

quires the calculation of the conditional density p(xt,

b|y0:t) so that an estimate of (Xt, B) can be obtained

through the conditional expectation

E X t , BjY 0:t½ �~
ð

xt , bð Þp xt , bjy0:tð Þd xt , bð Þ ð11Þ

3 PARTICLE FILTER FOR LOCALIZATION IN A
DISTINCTIVE ENVIRONMENT

The first scenario is when the vehicle can sense a

sufficiently distinctive environment. By distinctive is

meant that the sensor’s measures vary significantly

with position. A typical example is the navigation in

man-made environments, such as marinas, or navi-

gation close to underwater structures, both natural
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and artificial, such as an off-shore underwater oil

infrastructure.

The chosen approach uses particle filter techniques

for a variety of reasons. First, it can handle the estima-

tion of non-Gaussian and non-linear processes. This

is very important because non-linearities are very

frequent in AUVs, both in the motion model speci-

fication and in the observation process. Additionally,

the noise cannot be modelled as Gaussian in many

situations. Another advantage of using particle filters

is that it does not require any assumption on the

initial position and orientation of the vehicle. How-

ever, the standard approach presents two main

problems. The first is the large number of particles

required in order to explore the state space, resulting

in an increase in the computational power needed.

The other major issue in particle filter approaches is

the sample impoverishment problem, i.e. the loss of

diversity for the particles to represent the solution

space adequately [28]. In the present approach, both

these problems are addressed, as shown next.

3.1 Particle resampling

The standard SIR algorithm for particle resampling

lets the particles with high weights reproduce, while

the particle with low weights are more unlikely to

survive. However, the resulting PDF at time t depends

only on the PDF at time t 2 1. In time, this means that

only a small part of the state space is represented by

the particles and the system cannot recover from an

incorrect estimation of the vehicle’s position (owing to

sensor noise, for instance). In the present system, at

each step, a portion of the particles is instantiated

randomly in the state space. Thus, the resampling

algorithm is built with two modules. The first is a

standard SIR module, returning N 2 k particles. The

second module returns k particles, created randomly.

The combination of these two modules constitutes the

resampling step in the proposed system. The algo-

rithm is then able to recover in the case of a wrong

convergence, as shown in section 3.4. The benefits

from the computational point of view are also rele-

vant, since there is no need to instantiate a large

number of particles. Even if in the initial step there are

no particles near the real position of the vehicle, the

proposed solution is still able to find the correct

position, after some time, because of the partial

random resampling.

3.2 Sensor model and the likelihood calculation

The sensor used here is a forward-looking sonar

profiler which returns range profiles (Fig. 1). The

general idea to compute the likelihood is to compare

two arrays of distances. The first is the array generated

by the real sonar system, while the second is simulated

on the basis of the possible position of the vehicle

(given by the particle) and knowledge of the environ-

ment (a priori map). For the simulated set-up, a ray-

tracing algorithm was used to compute the intersec-

tion between the sonar beams and the environment.

In order to determine the array of distances for each

particle, an alternative solution to ray tracing has been

used. As the map given by Ribas et al. [20] is a set of

lines, a geometrical approach based on line intersec-

tion is much faster than and as accurate as ray tracing.

For the real tests, sonar data processing is required in

order to obtain the array of distances. The imaging

sonar returns for each beam an intensity array. To

transform this array to a distance value, a threshold is

applied in order to separate the acoustic imprint left

Fig. 1 Illustration of the calculation of the likelihood for the particle filter
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by an object in the image from the noisy background

data. Once the two arrays of distances have been

computed, the next problem is the likelihood calcula-

tion. The likelihood value should reflect the similarity

of the two arrays. To provide better understanding of

the proposed approach, the case of arrays composed

by a single element each (r and s) will now be

described. In this case, the likelihood is given by the

equation

L xð Þ~ 1ffiffiffiffiffiffi
2p
p exp {

1

2
x2

� 	
ð12Þ

where x 5 r 2 s, r represents the real value of distance
given by the vehicle, and s represents the simulated
value given by the particles. In the case of arrays with
more than one value, the same procedure can be
applied to all indices of the array, producing a like-
lihood array. In order to calculate a single likelihood
value, a mean-value solution was chosen. The like-
lihood function calculated in this way is therefore a
mixture of Gaussians. A pure Gaussian likelihood was
also tested, multiplying the likelihoods of the single
indices, like a joint probability of independent vari-
ables. Both methods proved to be valid and reliable.
However, the product method is more selective but
also more sensitive to noise, as a few bad-index like-
lihoods have a great impact on the overall likelihood of
the particle. On the other hand, the average method
seems to preserve better the diversity of the particles
in the solution state. Thus, it is to be preferred when
few particles are used, while the product method is to
be preferred when there are many particles in the
same area, to discriminate better between them.

3.3 Motion model

For the simulated set-up, the motion model is simply

the difference between the ground truth positions at

time t and at time t 2 1, disturbed with some process

noise. The particle state is thus updated considering

that value, plus a different noise for each particle, in

order to explore more effectively the solution space

(Fig. 2). For the real set-up, the motion estimation is

given by the sensors. The Ictineu vehicle is equipped

with a SonTek Argonaut DVL unit which provides

bottom tracking and water velocity measurements at a

frequency of 1.5 Hz. Additionally, an MTi sensor, a

low-cost motion reference unit (MRU), provides atti-

tude data at a 0.1 Hz rate. These values are integrated

in an EKF. A six-degrees-of-freedom constant-velocity

kinematic model is used to predict the state of the

vehicle. Since AUVs are commonly operated describ-

ing rectilinear transects at a constant speed during

survey missions, such a model, although simple,

represents a realistic way to describe the motion.

3.4 Results

3.4.1 Results on simulated data

The first step in the validation of the proposed system

is by simulation. The present system can model a

vehicle with six degrees of freedom. In this particular

set-up it has been assumed that the pitch and roll of

the vehicle are neglected. Additionally, at this point,

the sensor’s orientation in relation to the vehicle is

fixed. A simulated gyroscope is used to have a noisy

estimation of the orientation of the vehicle’s heading

(yaw). A simulated depth sensor provides a noisy

estimation of the vehicle’s depth. Finally, a simulated

sonar is modelled to acquire range profiles. It is

assumed that an a priori map of the vehicle’s sur-

roundings is known. No assumptions are made on the

initial position of the vehicle within the map. The

particle state is represented by six variables (three for

the orientation and three for the position of the

vehicle), plus an additional variable representing the

weight of the particle.

A synthetic environment was created to validate the

approach. Different types of scenario were considered

in order to analyse the algorithm performances. The

system has proved to be valid for both structured and

unstructured scenarios. In more than 95 per cent of

cases, the algorithm converges to the real trajectory

before the end of the experiment. Two methods have

been explored in order to infer the trajectory, given

the particles’ state. The first method considers the

mean of the Monte Carlo approximation (i.e. the

weighted sum of the particles), and the second

method considers the best particle as an estimate of

the state of the AUV (a crude estimate of the mode of

the distribution). In the simulated set-up, the best

particle trajectory always gives better results, mini-

mizing both the time needed for convergence and the

overall error.

3.4.2 Results on real data

The localization system was tested on the same data

set used in reference [20] to perform underwater

SLAM. The data were gathered during an extensive

survey of an abandoned marina on the Costa Brava

(Spain). The Ictineu AUV gathered a data set along a

600 m trajectory which included a small loop around

the principal water tank and a 200 m straight path

through an outgoing canal. The data set included
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Fig. 2 Three consecutive states of a mission (2D projection of a three-dimensional simulation).
This tests shows the ability to recover after a wrong state estimation. The real trajectory is a
solid black curve, where the rectangle on top of the line represents the actual position of the
AUV at that time. (a) Wrong particle convergence; 90 per cent of the particles are in the
circle, quite far from the real AUV position. (b) Recovering from the wrong convergence; the
particles are now close to the real position (with increased likelihood). (c) The actual AUV
state has been correctly estimated
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measurements from the imaging sonar (a Tritech

Miniking), DVL, and MRU sensors. For validation

purposes, the vehicle was operated close to the

surface attached to a buoy equipped with a Differ-

ential Global Positioning System (DGPS) and used

for registering the real trajectory (ground truth).

Figures 3 and 4 show the results of the localization

algorithm, in two different settings. In Fig. 3, 100

particles are used and they are spread over an area of

1 848 m2. In Fig. 4, the initial area where the particles

are spread increases to 10 368 m2 and the number of

particles is consequently increased to 600.

As can be seen, the dead-reckoning trajectory

obtained by merging DVL and MRU data suffers from

an appreciable drift (even causing it to go outside the

caral). On the other hand, during all the mission, the

trajectory computed by the localization system is very

close to the trajectory given by the DGPS. Figure 5

shows a zoom in a specific area of the marina (part

of the large trapezoid). The particles have different

shapes according to their weights. It is clear that the

error given by the dead-reckoning trajectory is

continuously increasing, while the performance of

the trajectory given by the localization is very good

during all the mission.

The localization system has also been integrated

into the navigation system of the Nessie IV robot of the

Ocean Systems Laboratory, the winning entry in the

Student Autonomous Underwater Competition –

Europe (SAUC-E) [29]. The sensor measures were

provided by a Tritech Micron sonar, scanning con-

tinuously. The motion estimation was provided by an

optical flow detection algorithm, using a camera

looking downwards, as the use of DVL was forbidden.

Figures 6(a) and 7(a) show the raw sonar images,

Figs 6(b) and 7(b) the segmented image, and Figs 6(c)

and 7(c) the vehicle state estimation in the environ-

ment, a rectangular tank. In spite of the high inter-

ference noise in the sonar image in Fig. 7(a) (due to

another active sonar operating nearby), the state of the

AUV is accurately estimated, which shows the robust-

ness of the algorithm.

4 RANGE-ONLY SLAM USING THE GAUSSIAN
SUM FILTER

In the case where the environment is unknown or not

sufficiently distinctive to be recognized, SLAM-based

solutions need to be explored. The solution to the

range-only SLAM problem presented in this paper is

based on a Rao–Blackwellized particle filter. It is

thereby an extension of the two FastSLAM algorithms

presented in reference [19]. The underlying idea is to

take advantage of the statistical dependences be-

tween the observations, the state of the AUV, and the

Fig. 2 (continued)

Acoustic-based techniques for AUV localization 301

JEME197 Proc. IMechE Vol. 224 Part M: J. Engineering for the Maritime Environment



Fig. 3 2D plot of the environment, with the particles, plotted for all the time stamps, the DGPS
trajectory (blue), the dead-reckoning trajectory (red), the uncertainty ellipse from the
dead reckoning, and the trajectory inferred by the particles (green). 100 particles are
spread over an area of 1 848 m2

Fig. 4 2D plot of the environment, with the particles, plotted for all the time stamps, the DGPS
trajectory (blue), the dead-reckoning trajectory (red), the uncertainty ellipse from the dead
reckoning, and the trajectory inferred by the particles (green). 600 particles are spread over
an area of 10 368 m2
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transponders. The Rao–Blackwellized particle filter

takes advantage of the fact that the transponders are

mutually independent, given the trajectory and the

observations, according to

p bjx0:t , y0:tð Þ~P
i

p bijx0:t , y0:tð Þ

The conditional density of (X0:t, B), given Y0:t, may
consequently be written as

p x0:t , bjy0:tð Þ~p x0:t jy0:tð Þp bjx0:t , y0:tð Þ

~p x0:t jy0:tð ÞP
i

p bijx0:t , y0:tð Þ

The objective is to approximate the conditional dis-

tribution of (X0:k, B), given Y0:k. The trajectory of the

AUV is approximated using a set of particles given by

p x0:t jy0:tð Þ&
XN

i~1

wi
tdji

0:t
ð13Þ

In the FastSLAM algorithms, the conditional distribu-

tion of Bj|(X0:t, Y0:t) is assumed to be Gaussian. It is

updated using the classical EKF recurrence relations

once a transponder is observed. In this paper, the

distribution of Bj|(X0:t, Y0:t) is approximated using a

sum of Gaussian distribution, which was first sug-

gested in reference [21], since a sum of Gaussian

distributions provides a better approximation of the

inverse sensor model than a single Gaussian does.

The recursive calculation of the means and the

covariance matrices is made according to the recur-

rence relations of the Gaussian sum filter.

A Rao–Blackwellized particle filter is usually much

more efficient than the EKF and the UKF algorithms

[17]. It is also more flexible regarding the number of

beacons, since the distributions of the beacons, given

the trajectory and the observations, are independent.

A newly observed beacon is simply added to the map

of each particle. If a beacon has not been observed

yet, the sum of Gaussian distributions is initialized. If

Fig. 5 Zoom of the area to show how close the inferred trajectory (green) is to the real trajectory
(blue) in comparison with the dead reckoning (red)
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a beacon has already been observed, the sum of

Gaussian distributions is updated.

4.1 Results

The proposed solution to the range-only SLAM

problem has been tested in the simulation only. The

scenario is that of an AUV navigating in a 2D envi-

ronment and regularly collecting range measure-

ments from a set of transponders. The AUV performs

a trajectory typically used for survey missions. The

trajectory is made of long straight lines and short

sharp turns (Fig. 8). The AUV’s state includes only its

position and orientation. The vehicle collects dead-

Fig. 6 (a) Raw sonar image, with range 10 m; (b) segmented image; (c) vehicle state estimation in
the environment, 6 m611 m. Note that the raw sonar image is in the sonar reference
frame, with the sonar mounted with the head looking down and with a rotation of 90u,
while the segmented image is already transformed in the vehicle reference frame. The
crossing lines in the image in (c) show the particle with greater weight. The real position
of the vehicle is not known, as there is no ground-truth sensor available underwater.
However, it can be inferred by looking at the raw sonar image

Fig. 7 (a) Raw sonar image, with range 20 m and with high interference noise; (b) segmented
image; (c) vehicle state estimation in the environment, 6 m611 m. Similar considerations
to those made for Fig. 6 are valid here. Although it might be hard to understand from the
raw sonar image, the pool is a rectangle, with one long side starting near the centre, on
the left, slightly down. The other is above it. In addition to the noise, the image presents
multi-path reflections, which should not be confused with the pool borders
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reckoning measurements from its internal sensors

and has thereby an estimate of the distance travelled

and of the change in the orientation. In the scenario,

the AUV receives potentially more than one range

measurement depending on the range to the trans-

ponders. The further away from the AUV a transpon-

der is, the less likely is the AUV to receive a reliable

measurement. The number of observed transponders

influences the behaviour of the particle filter. It was

observed that, if at some point the AUV observes only

one transponder, the particle filter is likely to diverge

as it cannot track the vehicle orientation reliably with

only one landmark. The observation at time t is,

indeed, used to select among the set j1
t , . . . , jN

t


 �
the

particles that are adequately most represented by the

observation. If this observation consists of only one

range measurement, the particles that lie on the circle

centred on the corresponding transponder are those

with a high weight. If the observation consists of more

than one range measurement, the particles that are at

the intersection of a set of circles are assigned a high

weight. The position of the transponders is estimated

using a mixture of Gaussian distributions. The mix-

ture is initialized using the first measurement so that

a sufficiently good approximation of the measure-

ment model is attained. The details of the initializa-

tion procedure have been given in reference [21].

When a transponder is observed more than once, the

mixture is updated according to the Gaussian sum

filter, which changes the means and the covariance

matrices of each component (Fig. 9).

5 CONCLUSION AND FUTURE WORK

This paper has presented two solutions to the critical

problem of underwater navigation and localization.

One is designed to work in structured environments

where some of the structures are known. The other is

designed to work in featureless environments where

man-made beacons whose location might not be

known have to be relied on. The first problem is solved

using a particle filter approach for localization of

AUVs. The theoretical approach has first been pre-

sented, followed by results of the simulation and of a

real large-scale data set. The experimental results

show the high performances of this algorithm, which

is robust to noisy measurements and suitable for long

Fig. 8 Initialization of the sum of Gaussian distributions for the first two observed beacons. The
red and yellow full circles are the beacons deployed around the AUV. The yellow full
circles correspond to the beacons that have been observed and the red full circles to those
that have not. The small pink full circles and the blue ellipses correspond to the means
and the covariance matrices of the mixture of Gaussians respectively. Two mixtures are
shown in the figure, one for each beacon that has been observed
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trajectories. Additionally, it was demonstrated that the

algorithm can deal with uncertainty in the a priori

map by using the map produced by the SLAM

algorithm proposed in reference [20], instead of the

ground truth. The second problem is approached by

an algorithm that solves the range-only SLAM pro-

blem. The algorithm is based on the FastSLAM

algorithm, which is also particle filter based. The

localization of the transponders is enhanced with

respect to the original FastSLAM algorithms as the

distribution of the individual transponders is approxi-

mated by a sum of Gaussians. The convergence of the

particle filter is highly sensitive to the number of

received range measurements. The higher this num-

ber is, the more likely it is that the filter will converge.

Future work will focus on active localization.

Currently, the localization algorithm does not take

control of the vehicle’s trajectory. In the future, the

algorithm will move the vehicle in order to localize

the vehicle better. This could be achieved by cluster-

ing the particles and actively deciding the best motion

to reduce the entropy in the particle’s distribution, in

order to minimize the time needed for convergence.
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