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a b s t r a c t

Although phase shifts (PS) are frequently used to acquire colored surfaces of static objects, especially
when acquisition time is not critical, the periodic nature of relative (wrapped) PS maps makes it neces-
sary to deal with the issue of phase unwrapping. Consequently, multiple phase shifts (MPS) have been
widely used as an alternative, but this usually involves a large number of different PS maps to unwrap
an absolute (unique) phase. In this paper we propose a new MPS method to unwrap a phase and accu-
rately perform the dense 3D acquisition of neutral and colored objects using only two PS maps. Accuracy
is reported including a quantitative and qualitative evaluation of the results.

� 2010 Elsevier B.V. All rights reserved.

1. Introduction

A powerful way to produce a dense 3D reconstruction is to intro-
duce structured light (SL) techniques in a stereovision system [1,2].
SL assumes a projection of controlled illumination of the scene
through one or more projected patterns, commonly using DLP or
LCD video projectors. Projected light patterns have a characteristic
structure (appearance) because projector image pixels are coded
in a certain way. Detecting the same code on the pixels from multiple
cameras, i.e., a minimum of one camera and one projecting device,
quickly solves the correspondence problem for a large number of
points and leads to dense 3D surface acquisition. The simplest clas-
sification of the projection strategies is based on the patterns used
for static scenes and those used for dynamic scenes. Our interest in
the acquisition of static scenes is largely motivated by the growing
demand for it from a variety of areas and applications, e.g., the
inspection of manufactured parts for quality control purposes, and
reverse engineering 3D digitation in the art and cultural heritage
preservation and souvenir industries.

During the course of our work we have set out a number of con-
ditions that optimal SL patterns should comply with:

1. Every pixel of the projected pattern should contain the entire
code. This will create the conditions for high-resolution 3D
reconstruction.

2. There should be high distance between the codewords of neigh-
boring pixels. This will allow high sensitivity to spatial depth
resolution.

3. There should be robustness to object color/albedo reflectance
properties. Any sort of color (calibration) particular adjust-
ments to or restrictions on the ambient light should be avoided.
This will assure almost immediate system use and applicability
to various types of object surfaces and ambient light scenarios.

4. There should be robustness to objects with sharp discontinu-
ities and depth changes. This will guard against the problem
of possible code perturbation and its misinterpretation during
the de-codification stage.

5. The patterns should assure full 3D reconstruction where all
three spatial coordinates of the object shape are attainable. In
other words, ultimately computing only depth coordinate with
respect to one reference plane will not be satisfactory.

6. Simple image processing of the acquired patterns, ideally the only
image processing used, should consist of addition, multiplication,
comparison and look-up table indexing. More complex image pro-
cessing, such as finding edges, corners, detecting various shapes,
centers of stripes, and color thresholding, should be avoided. Sim-
ple image processing will allow relatively easy implementation
from a software point of view and fast processing, hopefully com-
parable with state-of-the-art commercial products.

7. Only off-the-shelf components should be used. No special
devices such as special lights sources or colorimeters should
be part of the system. This will allow easy and affordable imple-
mentation from a hardware point of view.
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In fact, there are very few SL methods that can meet all of the
above conditions, even for static scenarios where we are allowed
to project more than one pattern. One of the very few is based
on the so-called phase-shift (PS) method, which can be categorized
as one of the time multiplexing strategies [3]. The PS method
projects a sequence of periodic intensity patterns, each of which
is offset by a fraction of its period from the previous one, so that
the entire period is covered. As a result, one obtains a so-called rel-
ative phase map, which is also of a periodic nature: values readily
available from the relative (wrapped) phase map are said to be
wrapped in the range modulo 2p. This raises the problem known
as a phase unwrapping procedure, i.e. a computation of the abso-
lute (unwrapped) phase map. The simplest unwrapping solution
is called spatial unwrapping, which basically only works well on
smooth surfaces, since it assumes that during the unwrapping pro-
cedure the phase difference between neighboring pixels is less
than p. Evidently, in the case of sharp changes in depths, shadows,
occlusion, etc. an extension of this rather basic technique is
needed. In [4] an additional color-coded pattern is projected, giving
a rough estimate to be used during spatial unwrapping, at the ex-
pense of the color pattern being basically restricted to color neutral
objects. Specially made hardware can be used to tackle the prob-
lem of unwrapping [5]. Another part of the proposed extension
consists of temporal phase unwrapping [6], using more than one
relative phase map, which is occasionally referred to as the multi-
ple phase-shift (MPS) method. The simplest MPS unwrapping prin-
ciple comes down to totaling the wrapped phase differences
between individual relative phase maps. Unfortunately, in order
to achieve very good 3D reconstruction accuracy the total number
of relative phase maps is typically fairly large, e.g., 20–30 maps, as
shown in [6]. More specifically, to unwrap the finest phase map
with N periods one needs a total of N phase maps. Improvements
have been devised whereby the number of relative phase maps
has been cut down from N to log2 N [7,8], during which the periods
of the various relative maps follow an exponential sequence. Addi-
tionally, there is an approach in which an arbitrary sequence,
although still lengthy, can be used [9]. There is also an MPS alter-
native where one can use even fewer relative phase maps (ideally
only two) and where they all have a rather large number of periods
(note that the number of periods has a direct effect on condition
(2)). This is the so-called number theoretic approach, based on
the properties of the relative prime numbers [10,11], where the
condition is that individual maps’ periods have to be relative
primes. The core of the idea can be explained through a consider-
ation of the famous Chinese remainder theorem [12]. In this case,
depending on the various system parameters, measurements show
that in practice at least three relative maps are often needed to reli-
ably unwrap the phase [10]. Finally, unwrapping a single PS can be
realized if combined with Gray-code patterns [13,14]. Gray code
uniquely codes various image areas belonging to the individual
periods of a single relative phase map. The problem here is that
on the borders between different Gray coded image areas it is com-
mon to see pixels incorrectly Gray-coded. Such image regions can
be excluded from processing, which obviously decreases the
ultimate number of reconstructed points. For completeness, we
mention a composite pattern based on the PS approach to recon-
struct dynamic scenes in real time [15]. Unfortunately, this method
requires a careful spatial alignment of the camera and projector. In
addition, it blurs depth acquisition due to its use of band-pass and
low-pass filters.

Apart from the references mentioned, and to the best of our
knowledge, there are relatively few recently published works con-
cerning MPS unwrapping despite its advantages in creating an
extremely effective SL strategy in terms of the above list of condi-
tions for optimal SL patterns. In fact, recent developments in other

SL categories – spatial neighborhood, direct codification [3] and the
somewhat special category of Fourier transform profilometry (FTP)
– strongly suggest that MPS is still superior for static scenes. Spa-
tial neighborhood concentrates, in the majority of cases, all the
coding schemes in a unique pattern, which is a clear advantage
for the acquisition of dynamic scenes. As the name suggests, the
codeword that labels a certain point of the pattern is obtained from
a neighborhood of the points around it. Commonly used cues for
(de)codification can be different single or multiple shapes, e.g.,
stripes or slits [16,17], lines [18,19], circles [20,21], squares [22],
which are either colored or have different gray-level intensities.
The main problem here is a high sensitivity to colored surfaces
and/or code misinterpretation due to sharp changes in the object’s
depth. Up to a certain extent, both problems can be lessened
through color reflectance calibration [23,24] and dynamic pro-
gramming [25,26]. Direct codification methods encode points on
the pattern using a spectrum of gray-level intensity [27] or a wide
spectrum of colors [28] in which case the method is typically re-
stricted to color neutral objects. Besides the problems already
mentioned when using color, sometimes complicated hardware
is needed to project a color spectrum [29]. There have been some
attempts at improvements [30], but the biggest obstacle in this
category is high sensitivity to noise because the distance between
adjacent codewords is near zero [31]. Finally, FTP, introduced in
[32], ideally projects only a single sinusoidal pattern projection.
The depth information of the object is encoded into a phase of
an imaged pattern. FTP assumes Fourier transform computation,
filtration in spatial frequency domain and inverse Fourier trans-
form calculation [33]. The attainable depth range is highly depen-
dent on the system geometric parameters, which is obviously not
very convenient. Using modified p-phase shifting FTP, the depth
range is extended three times [34]. However, it requires the pro-
jection of an additional pattern that, as a rule, makes the method
inapplicable for dynamic scenes, unless there is prior knowledge
about the object speed [35]. There have been attempts to perform
p-phase shifting FTP by constructing a single composite pattern
either with or without color codification [36,37], but a major
drawback remains: similarly as any other (multi)frequency meth-
od, FTP faces a problem of blurred depth acquisition, largely due
to not trivial choice of carrier frequencies and related to the filter-
ing step [15].

In this work we propose an MPS approach that provides satis-
factory results using not more than two relative phase maps. In
brief, for a given pixel, we start from the tuple obtained from rela-
tive phase values and a possible set of the full number of periods
needed to reach any value on the absolute (unwrapped) phase axis.
Adding the relative phase value of one relative phase map to all the
possible full numbers of periods gives us candidate solutions for
absolute phase values. Doing the same thing for other relative
phase maps gives us other candidate solutions. Finding the mini-
mum difference between two sets of candidate solutions solves
the ambiguity of the absolute phase value. In Section 2 we give a
brief outline of a phase shift projection strategy, i.e., a computation
of a relative phase map. In Section 3 we propose our method to
solve the ambiguity, already mentioned, caused by the periodic
nature of a relative phase map, and to compute an absolute phase
map from two or more relative phase maps. In Section 4 we briefly
explain the design, components and calibration of our system. Re-
lated to this, and as an additional contribution of this work, we
then present our method of computing image correspondences be-
tween cameras. We then proceed in Section 5 to show our experi-
mental results and use them to quantitatively and qualitatively
evaluate our method. In the same section we discuss the experi-
ments and a few other implementation issues. In Section 6 we state
our conclusions.
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2. Brief overview of the phase-shift method

Consider a projection pattern where the pixels in the same col-
umn all have equal intensity, and where that intensity varies along
the horizontal axis according to a sine function. The phase-shift
method typically assumes a projection of periodic sinusoidal pat-
terns several times, where a periodic sine pattern is shifted be-
tween projections. Put in more formal terms, a periodic pattern
is actually shifted N times by an amount of ui, where shifts are
equally distributed to cover the entire period:

ui ¼
2 � p

N
� i; i ¼ 0;1; . . . ;N � 1 ð1Þ

For a camera image pixel, the detected gray-level intensity, Ii,
obtained as a result of a projected periodic pattern in context
and for a shift i can be modeled as:

Ii ¼ I0 þ A � sinðuR �uiÞ ð2Þ

where I0 is the intensity when using no source of projection, A re-
flects the amplitude of a projected (i.e., detected in image) sine sig-
nal and uR is the so-called relative phase map value we are looking
for. Note that the value of A implicitly includes the effect of the al-
bedo/reflectance variation of a surface patch in the space which is
projected onto a particular pixel. After projecting the full sequence
of N consecutive shifted images, a common approach to computing
uR is to minimize the following sum:

e ¼
XN�1

i¼0

½Ii � ðI0 þ A � sinðuR �uiÞÞ�
2 ð3Þ

Expression (2), showing the camera pixel detected gray level
pixel intensity Ii as a function of projection pattern parameters, is
a substantial idealization and subject to various sources of errors
in practice. A convenient way to minimize (3) is simply to use
the least square method (see Appendix A for more details). It can
be shown that for N P 3 computation of the relative phase, uR, is
reduced to:

uR ¼ atan �
XN�1

i¼0

Ii � cosðuiÞ;
XN�1

i¼0

Ii � sinðuiÞ
 !

ð4Þ

where atan is the four-quadrant inverse tangent function, yielding
angle uR in the interval [�p, p].

This typical phase shift approach can be upgraded to MPS as fol-
lows. Let us suppose that we have obtained the set of relative
phases uR;k from k P 2 relative phase maps, each characterized
by its number of periods pk. We want to identify the pixel position
on the abscissa axis based solely on the uR;k set of values. That
leaves us with the problem of the unwrapping of the absolute (un-
ique) phase UABS. In other words, due to the periodic nature of a gi-
ven periodic pattern, a single uR;k value by itself is not, generally
speaking, a unique representative that we can use to solve the cor-
respondence problem between the image pixels of two or more
cameras, i.e., between a single camera and the source of projection
(e.g. a common video projector).

3. A proposal for unwrapping the absolute phase map

A pattern period can be defined either directly by the number of
requested periods that pattern must have, or by the length of a sin-
gle period, bearing in mind the total available pattern width in the
context. For simplicity of explanation, we can start by representing
our approach by considering two periodic sine patterns, defined by
integer length periods k1 and k2. Fig. 1 shows the appearance of
two sine patterns (each pattern column has an intensity according
to the sine value of its position on the abscissa axis) and the prop-

agation of the absolute phase axis along the width of the pattern. A
pair of relative phases (uR;1, uR;2) is indicated for the arbitrary
absolute phase value UABS and the following equations hold:

UABS ¼ k1 � k1 þuR;1 ¼ k2 � k2 þuR;2 ð5Þ

The core of most MPS approaches, including ours, relies on the
fact that for suitable chosen period lengths k1 and k2, one obtains,
propagating along the absolute phase axis, a unique set of pairs
(uR;1, uR;2), all the way up to a certain value of UABS. ‘‘Suitable”
means that for typical MPS strategies, pattern periods (lengths)
have to unconditionally be relative primes to produce any kind
of usable output. When this is the case, a product of pattern period
lengths k1�k2 determines the range on the absolute phase axis
within which we acquire the unique pairs for relative phase values.
However, our method can successfully cope even with sets of
period lengths which are not necessarily relative primes. More spe-
cifically, our method correctly unwraps the phase up to the value
in the absolute phase which is equal to lcm(k1, k2). Here lcm() rep-
resents a function whose output is the least common multiple for
input parameters, which is a minimal number divisible by the per-
iod lengths used. If for some predefined pattern width W there is a
case where inputs k1 and k2 cannot be chosen as relative primes,
then our method adjusts the corresponding pattern periods pi

(i = 1, 2). More specifically, instead of just saying pi = W/ki, our
method uses the expression pi = lcm(k1, k2)/(ki), where lcm(k1, k2)
is rescaled to cover full width W. It should be plain to see that in
cases where period lengths are prime numbers, then the lcm()
function simply boils down to multiplication of the lengths. In
other cases, we simply rely on an efficient Euclid algorithm to
compute the greatest common divisor gcd(k1, k2) and ultimately
compute lcm(k1, k2) = (k1�k2)/gcd(k1, k2) [38].

If ‘‘suitable” period lengths are chosen, then one can gather un-
ique pairs of (uR;1, uR;2) while propagating along the absolute
phase axis. This originates from number theory and the divisibility
properties of integers [12]. As rule, any formal mathematical proof
is left out of published work presenting MPS strategies; occasion-
ally there are references to a previous work and/or materials spe-
cifically discussing a topic of number theory. Therefore, as an
additional contribution of this work and before we proceed with
further explanation of our method, we will try to first give here a
less formal proof of the above.

Fig. 1. A propagation of the absolute phase value UABS along two different sine
intensity patterns. For the absolute phase position a pair of relative phases
(uR;1, uR;2) is indicated as an example.
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Consider two values on the absolute phase axis UABS – U0ABS. For
point UABS we recall the derivation of Eq. (5) and for U0ABS we write
accordingly:

UABS ¼ k1 � k1 þuR;1 ¼ k2 � k2 þuR;2

U0ABS ¼ k01 � k1 þu0R;1 ¼ k02 � k2 þu0R;2
ð6Þ

Next, assume the situation where uR;1 = u0R;1 and uR;2 = u0R;2 or,
equivalently, the situation where the necessary condition to obtain
a unique pair of relative phase values is violated. Since UABS – U0ABS,
we now search for a minimal distance between two absolute phase
values when the assumed situation (violation) arises. Subtracting
the absolute phase values in (6) yields:

k01 � k1
� �

� k1 ¼ k02 � k2
� �

� k2

n1 � k1 ¼ n2 � k2
ð7Þ

where we emphasize that n1 and n2 are integer numbers. Addition-
ally, it is useful to note that the product of n1�k1, i.e., n2�k2, should be
as small as possible, since we are interested in the minimal distance
|U0ABS�UABS|. It almost leads to the natural conclusion that this prod-
uct should be a least common multiple of period lengths in the con-
texts k1 and k2. Hence, there will again be the very same (uR;1, uR;2)
pair on the absolute phase axis after distance determined by
lcm(k1, k2). We now proceed with a further explanation of our
method.

Once the extent lcm(k1, k2) on the absolute axis value is deter-
mined, it is a simple matter to also compute the range of possible
k1 and k2 integer values (5) (Fig. 1), as follows:

k1 2 0 lcmðk1 ;k2Þ
k1

h i
; k2 2 0 lcmðk1 ;k2Þ

k2

h i
ð8Þ

Unfortunately, given a (uR;1, uR;2) pair, the values k1 and k2 are
not, in principle, readily known. In addition, with realistic relative
phase data, a UABS,2 value computed from uR;2, k2 and k2 data will
differ from a UABS,1 value obtained on the basis of uR;1, k1 and k1.
Nevertheless, it is reasonable to assume that a difference due to
noise in computed uR will be smaller than a difference obtained
by a completely wrong combination of integers k1 and k2 involved
in the computation of UABS,1 and UABS,2. Thus, the proposed method,
given uR;1 and uR;2, first computes UABS,1 and UABS,2 for all possible
combinations of k1 and k2 (recall that k1 and k2 are defined through
the definition of the requested number of periods). The ambiguity
which is the correct value for UABS is solved by finding a (k1, k2) pair
which gives the smallest difference |UABS,1 � UABS,2|. Note that our
method acknowledges the fact that the possible combinations of
(k1, k2) pair sets do not include all theoretical pair combinations
from the ranges of k1 and k2, as determined by (8). For instance,
Fig. 1 shows changes of two relative phase maps along the absolute
phase axis where the first relative phase map has p1 = 5 periods
and the second has p2 = 3 periods. Careful consideration reveals
that certain intervals on the absolute phase axis are characterized
by unique pairs of (k1, k2). Therefore in order to speed up data pro-
cessing, all these unique pairs of (k1, k2) can be pre-computed, once
the number of periods (i.e. period lengths) for specific periodic
intensity patterns are chosen.

Besides the periodic intensity images needed for phase shifting it-
self, we also acquire two reference images: one ‘black’ and one
‘white’. The former assumes a shut-off projector and imaging of the
scene using only ambient light. The later assumes imaging of the
scene with the projection of a full white pattern. Computing the im-
age difference of those two images allows us to detect shadow/oc-
cluded areas and normalize ambient light. All pixels below a
certain, manually set threshold are excluded from further processing.

Having explained the theoretical aspects of our proposed meth-
od, it would be useful to reflect on the fulfillment of optimal SL
patterns, as stated in the introduction. It is evident that our method

codes every projected pixel, which promises a dense 3D recon-
struction, and we may recall that this is typically not the case for
the spatial neighborhood family of methods. Furthermore, periodic
patterns allow a high distance between codewords of adjacent pix-
els on the abscissa axis. Consequently, high sensitivity to spatial
depth resolution is guaranteed, unlike for the direct codification
category methods. Next, our patterns use gray-level intensities
that, using PS methods (as shown in Appendix A), cancel out the
negative influence of varying albedo/reflectance properties. Hence,
our method is also a suitable design for colored surfaces, some-
thing that would be very hard to expect from any method using
color patterns. Our method does not suffer from code perturba-
tions due to sharp depth change, which is common with the spatial
neighborhood or even Gray code alone. In addition, it imposes no
restriction on the magnitude of depth change that is present in
FTP methods. Moreover, our method is invariant to the problems
caused by the improper band pass filtering, and it gives code that,
during a subsequent triangulation, will provide all three spatial
coordinates, and not only the depth coordinate with respect to
the reference plane, as is typical of some FTP methods. Finally,
apart from the commercially available projector and camera(s),
no particular hardware pieces are needed for pattern generation/
projection or system color calibration. For adjustments to the envi-
ronment our method uses just two reference images, as explained
in the previous paragraph.

In fact, it appears that the only two methods that could theoreti-
cally fulfill the same conditions as ours are two time-multiplexing
methods: MPS-based on the number theoretic approach and Gray co-
de + PS. However, as will be shown in the experimental results, a
straightforward implementation of those two methods is inferior in
terms of correctly computed pixel codes, i.e., available 3D resolution.

4. System set up description

We implemented our SL method using two different system
versions: System A is composed of an uncalibrated video projector
and a pair of calibrated cameras. System B consists of a calibrated
video projector and a single camera.

In more detail, our 3D SL System A consisted of a pair of Basler
A601fc FireWire cameras, calibrated and rigidly attached to a bar.
An InFocus DLP video projector (Infocus IN26+EP) was positioned
between the cameras and served only as a means of pattern projec-
tion. The camera-grabbed images had a resolution of 640 � 480
pixels. Our own routines, written in Matlab and using the Image
Acquisition toolbox, allowed communication with the cameras
and all other data processing, including the generation of projected
patterns and their projection with a DLP video projector. The cam-
eras were calibrated using a 2D calibration pattern with 11 � 8
black circles on a white background. The diameter of the circles
was 15 mm and they were 10 mm apart. The calibration algorithm
used closely resembled the one explained in [39], although assum-
ing a specific hardware system design there are even more user-
friendly methods [40]. The calibration volume was approximately
400 mm � 400 mm � 500 mm. The distance from the cameras to
the center of the calibration volume was nearly 1000 mm and
the camera baseline was almost 500 mm. The angle between the
cameras’ optical axes was approximately 30�. The mean error
and standard deviation between the calibration point positions
detected on the images and the positions provided by the calibra-
tion model using computed calibration parameters were for one
camera 0.097 pixels and 0.078 pixels, respectively. For the second
camera, the mean error obtained and the standard deviation were
0.093 pixels 0.075 pixels, respectively.

The realization of System B involved a spatial readjustment of
one of the cameras with respect to the projector in such a manner
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that the calibration volume size, base distance and angle between
the optical axes mentioned above for two cameras were now basi-
cally the same for only one camera and a projector. Of course, a
completely new set of calibration images was acquired to calibrate
the camera, but the same 2D calibration pattern and algorithm
were used as already explained [39]. To calibrate the projector,
the SL method proposed in this work was used to come up with
the projector image coordinates which corresponds to the calibra-
tion points of 2D calibration pattern. More specifically, for every
spatial position of the 2D calibration pattern (during camera cali-
bration) we projected the proposed patterns in both a vertical
and a horizontal direction with respect to the projected image
axes. Finding from our patterns the unique codes (in both pro-
jected image axes) of centroids on the 2D pattern, and knowing
their 3D spatial counterparts, enabled us to use essentially the
same calibration algorithm as the one for a camera [39]. For the
camera the mean error and standard deviation between the de-
tected calibration point positions in the images and the positions
provided by the calibration model using computed calibration
parameters were 0.090 pixels and 0.066 pixels respectively. Simi-
larly for the projector, the mean error obtained and the standard
deviation were 0.149 pixels 0.114 pixels, respectively.

It seems that most of the 3D structured light systems have
hardware designed along the lines of System B. In fact, even a quasi
projector calibration is possible if we, for example, laser scan the
object at a constant scanning speed [41]. However, the truth is that
both System A and System B designs offer certain pros and cons. In
the case of System B, another advantage besides the obvious sim-
pler hardware configuration is that after the de-codification stage
is finished, it is a relatively simple matter to undertake 3D triangu-
lation between the camera and the projector. Unfortunately, on the
projector side typically only one axis image coordinate is known,
which makes image coordinate undistortion (normally undertaken
during 3D triangulation) more liable to error. Another drawback of
System B is the need to calibrate a projector. Projector characteris-
tics (primarily optics) are typically behind those of cameras, which
puts an additional burden on successful calibration. Moreover, the
projector is typically calibrated further than the camera, leading to
error propagation that introduces inaccuracies in the projector
parameters. Hence, ultimate 3D reconstruction accuracy is likely
to be impaired. Besides, some high-end professional video projec-
tors project stripes which are slightly bent and therefore make pro-
jector calibration even more demanding. Considering all this, a 3D
acquisition system designed so that it does not explicitly depend
on a (certain type of) calibrated projector, but rather is capable
of working elegantly with and switching to almost any source of
light as needed, requiring only projector features to be satisfactory
for pattern projection and application in the context (e.g., depth ra-
tio, image resolution, refresh rate and luminance), appears to be
quite attractive. These were some of the major arguments that
led us to test our proposed SL strategy using System A as well as
the more common System B design.

On the other hand, a price to pay for having the 3D System A de-
sign is that correspondence between pixels that have the same
code has to be carried out between cameras, prior to 3D triangula-
tion. It is possible to design projection patterns so that correspon-
dence between pixels in multiple cameras is readily available, but
in most cases additional computation effort is needed. For the sake
of the completeness of this work, we briefly explain below our pro-
posal for how to accurately find correspondences between two
cameras.

We pick one camera as the reference one. For every pixel in the
reference camera and its code UABS,1 we first find its undistorted
image position. Based on this undistorted value, we compute the
epipolar line in the image of a second camera. Next we consider
only the pixels on the epipolar line, i.e. its codes. From that set

we choose a pixel that has the code UABS,2 closest to the code UABS,1

of our pixel from the reference camera image. That is our initial
correspondent solution and we can now compute the initial 3D po-
sition. Next we proceed with the refinement phase. Based on the
3D initial solution, we can compute depth w1, which is the Euclid-
ean distance between the reference camera’s optical center and the
3D initial solution. Note that the difference initially found between
absolute phase values e:

e ¼ UABS;1 �UABS;2 ð9Þ

is normally different from zero and either positive or negative. We
need to find a pixel position on the second camera’s image with
sub-pixel precision and a code UABS,2 as close as possible to UABS,1,
i.e. e ? 0. Let us suppose that our initial w1 gave us e > 0. Next we
look for a new depth w2 along the initial back projected line from
the pixel on the reference camera image, which would give us a
new 3D position that, in turn, when projected on the second cam-
era’s image, would give e < 0. Evidently the difference e is a function
of depth w. Therefore, we strive to bracket our final solution for
depth w between values w1 and w2. Once we find w2 it is a simple
matter, using Brent’s method [42], for instance, to find an iteratively
refined solution for a depth w for which holds:

UABS;1 ¼ UABS;2 () e ¼ 0 ð10Þ

Finding the depth w is equivalent to determining the refined 3D
position. Additionally, note that for each new candidate of depth in
the Brent iterative algorithm we project a new 3D candidate point
on the image of the second camera. After projection of the 3D point
on the second image we apply a distortion model to find the final
image position. Since the projected and distorted image coordi-
nates will almost certainly be non-integer values, we compute a
corresponding code UABS,2 using bilinear interpolation of four
neighborhood pixels.

5. Experimental evaluation

The first series of experiment concerns the System A design.
One of the key issues with the SL principle is, without doubt, the

necessary number of patterns to be projected. To compute a single
PS map we need at least three images according to (4). In Fig. 2 we
show typical examples of the absolute phase map’s appearance
computed from two relative phase maps, in which at each instance
a different number of shifted images was used to compute the indi-
vidual PS maps. It is clear that the absolute map as shown in Fig. 2a
is totally useless and, at least in the case of our proposed method,
the theoretical minimum of projecting only three patterns does not
apply. The situation changes considerably as we move from three
to five and eight, in Fig. 2b and c, respectively. In fact, our experi-
ment shows that we obtain a smooth absolute phase map every
time we project and shift six patterns for each individual relative
PS map. That holds for various pattern periods and period combi-
nations. However, to increase the redundancy and robustness of
our method, and in accordance with the assumption that for static
scenes a few more images will not make much difference, we nor-
mally recommend using eight shifted images to compute a single
relative PS map.

The next important issue is to discover how many individual PS
maps are needed to find a reliable absolute phase map and eventu-
ally perform accurate 3D acquisition. In Table 1 (left and middle
part) we show the reconstruction results when using two and three
PS maps, respectively. In both cases we projected patterns on the
flat surface, positioned at various places in the volume, where sub-
sequently a 3D cloud of points was acquired. Then we fitted a plane
through the reconstructed points (ideally all lying in a space on the
plane) and computed the mean error and the standard deviation of
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the distances between the reconstructed points and the fitted
plane. The figures shown in Table 1 reveal basically the same level
of accuracy, given our experimental conditions. However, the num-
ber of projected patterns did increase by roughly 50% in the case of
three PS maps, which is strong evidence in support of using our
method and relying only on two relative PS maps. This is certainly
favorable to the traditional MPS-based methods, categorized as
temporal phase unwrapping, and the number theoretic approach,
which usually requires more than two PS maps.

Finally, a natural question arises: how does the increase in pat-
tern periods contribute to ultimate accuracy, which itself is related
to the question of whether there is an optimal combination of pat-
tern periods. The fact is that the dynamic range of projected/de-
tected (sinusoidal) gray levels is finite. Therefore, to decrease
sensitivity to noise between adjacent code words, i.e., to increase
the distance between code words of adjacent pixels and conse-
quently increase spatial resolution as well, it is certainly beneficial
to project multiple period patterns. Increasing the number of peri-
ods helps, in principle, at the very beginning. However, at a certain
point shifting the pattern with an extra large number of periods
does not provide significantly different intensities of light between
adjacent code words either. The bottom line is that the shifts are
too small with respect to the actual period lengths (looked at from
the perspective of a projector coordinate system). On the other
hand, too few shifts may make it difficult to compute relative
phase values and eventually compute the absolute phase map (as
shown previously in Fig. 2). Our method can certainly deal with
patterns with periods over 30, 40 or even more. But in such cases
we would need to use at least three PS maps to come up with a cor-
rect absolute phase map, since the noise would be too great to rely
on only two PS maps. Those experimental results with pattern

periods over 30 or 40 are not shown in this paper since they did
not contribute to an increase in accuracy. In fact, it is useful to note
that the accuracy results shown (Table 1) are pretty constant for
any combination of periods where individual patterns are greater
than five. This is largely due to the fact that ultimate accuracy also
depends on numerous other factors, e.g., the quality of cameras
(optics) and the calibration method used, the ambient light, the
camera projection geometry, and the size of the calibration vol-
ume. Given the other parameters of our system, we have achieved
an available level of accuracy that is fairly immune to the specific
combination of pattern periods used to construct the PS maps.

In the previous sections we have emphasized the fairly well-
known advantage of the PS method, namely that it is robust to col-
ored surfaces and even to surfaces with abrupt changes in albedo.
To test our method against it we generated a random pattern of
32 � 24 squares of various colors (Fig. 3). We show here the repre-
sentative 3D acquisition accuracy results when using two relative
phase maps constructed from periodic patterns with 15 and 19
periods, respectively. The color pattern was printed out on an A4
sheet of paper and stucked onto the same flat pale object we had
previously used in our experiments. We also reconstructed a cloud
of points, fitted a plane through it and, finally, computed a mean
error and standard deviation of distances between the recon-
structed points and the fitted plane. The figures shown in reveal
a slight decrease in accuracy as compared to results when we
reconstructed a pale flat surface (Table 1). This had been expected
to a certain extent since the theoretical assumption of full robust-
ness to a colored surface is only a substantial idealization, which is
particularly hard to fulfill in areas where abrupt changes in albedo
take place. Besides, a laser printed paper (sticker), although glued
with the greatest care onto a planar surface and without any

Fig. 2. The impact of a number of shifts/projected patterns on the computation of relative phase maps, and ultimately on the absolute phase map. (a–c) Show the appearance
of an absolute phase map computed from two relative phase maps. In (a) the relative maps were found based on three shifts (projections of periodic patterns) and in s (b) and
(c) there were five and eight shifts, respectively.

Table 1
Mean error and standard deviation of distances for the total of N reconstructed points with respect to the fitted plane through those N points. p1, p2 and p3 show the chosen
number of periods for periodic patterns used to construct two or three relative PS maps in the context. Note that for the pale plane, the width of the reconstructed flat surface
ranged approximately between 300 mm and 370 mm and the height between 210 mm and 270 mm. Besides, for the colorful plane the dimensions of the reconstructed flat
surface were the ones of an A4 paper, i.e. 297 mm � 210 mm.

System A, pale plane, two maps System A, pale plane, three maps System A, colorful plane, two maps p1 = 15, p2 = 19

p1 p2 N Mean (mm) Std. (mm) p1 p2 p3 N Mean (mm) Std. (mm) N Mean (mm) Std. (mm)

1 3 70887 0.269 0.214 4 7 9 69009 0.143 0.120 62264 0.142 0.126
3 5 72355 0.145 0.118 8 11 13 69319 0.131 0.110 42820 0.149 0.129
5 7 72395 0.132 0.109 10 13 15 69241 0.130 0.108 38896 0.143 0.126
7 11 72185 0.130 0.107 12 15 17 69110 0.129 0.109 43744 0.138 0.119

11 15 72066 0.131 0.109 16 19 21 69231 0.130 0.114 55076 0.146 0.129
15 19 71531 0.131 0.109 20 23 25 69229 0.128 0.111 41584 0.145 0.127
17 21 71374 0.132 0.109 24 27 29 69314 0.131 0.116 49314 0.143 0.124
17 23 71385 0.131 0.109 28 31 33 69292 0.130 0.113 59292 0.148 0.130
19 25 71194 0.132 0.109 32 35 37 69333 0.136 0.118 38324 0.139 0.120
20 27 71081 0.132 0.109 36 39 41 69494 0.133 0.123 45494 0.146 0.127
25 27 70396 0.132 0.110 44 47 49 68667 0.137 0.144 58667 0.149 0.131
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apparent defects, was probably less perfectly flat than the underly-
ing surface.

As part of the qualitative evaluation of our method we chose
three rather demanding objects: a manikin head, a human foot
(sole) and a yogurt bottle. In these cases we used only two relative
phase maps to unwrap the relative phase, constructed from peri-
odic patterns with 17 and 21 periods, respectively. Figs. 4 and 5a
and b show details of the manikin’s head scan, which exhibits
sharp transitions from dark to bright intensities along its surface.
Nevertheless, a close qualitative examination of the reconstructed
3D surface with the corresponding image (Fig. 5a and b) reveals
that fine details visible on the manikin image are preserved on
the accompanying reconstructed 3D surface. Finally, a profile view
of the generated 3D mesh is depicted to enhance the shape of the
object (Fig. 7a top left). Note that the bounding box encompassed
by the reconstructed volume was 154 mm (width) � 231 mm
(height) � 87 mm (depth).

Our second test object was a human foot (Figs. 6a and 7b). The
corresponding bounding box encompassed by the reconstructed
volume was 119 mm (width) � 227 mm (height) � 43 mm (depth).
This experiment was demanding primarily with respect to a rela-
tively dubious assumption about how stationary the human body
can be during the process of imaging. Note that the pair of cameras
and the video projector were unsynchronized. In addition, our
MATLAB image acquisition software required several seconds to
acquire the 18 images (8 images per PS map, plus two reference

images) needed for this experiment. In a more ideal situation, we
would have been able to acquire the images using specialized
hardware where the camera(s) and video projector were synchro-
nized, thereby reducing acquisition time to less than a second for
the 18 images. In spite of this, even with the hardware set up de-
scribed and an image acquisition duration of several seconds, the
3D surface of the foot that was obtained resembled very closely
the fine details visible on the image next to it (Fig. 6a). The less de-
tailed reconstructed area around the toes is simply due to a greater
surface complexity, shadowing and occlusions of those parts with
respect to either the camera(s) or the projector or both. Hence, just
like with any other more complex surface, one needs to scan and
reconstruct the same object from multiple views and ultimately
perform surface registration; however, that issue is beyond the
scope of this work [43].

Our third test object was explicitly chosen as one that had a col-
ored surface (Fig. 6b). Once again, for a qualitative evaluation we
relied on the image provided and a reconstructed 3D cloud of
points. It is clear that many surface details from the image, primar-
ily in terms of surface color (texture), are successfully preserved on
the surface of the reconstructed 3D cloud of points that is shown.
In this case the generated mesh of 3D reconstructed data without
the original object texture is depicted in Fig. 7c and the bounding
box encompassed by the reconstructed volume was of 44 mm
(width) � 153 mm (height) � 42 mm (depth). All the profile views
considered so far in Fig. 7 show a very good visual match of the
reconstructed meshes to the objects’ silhouettes.

Next we show performance results using the System B design,
performing similar experiments to those with the System A design.
In addition, because the System B design features more frequently
in other published works, we also show System B’s comparative re-
sults with respect to two other commonly-used SL methods: the
number theoretic approach and Gray code combined with PS.
However, it should be clear that similar conclusions could be
drawn using System A. As explained in previous sections in the pa-
per, the two common SL methods used to compare our method
were specifically chosen since from a theoretical point of view they
appear to fulfill set conditions about the optimal SL projection
strategy we defined at the very beginning. Table 2 shows the 3D
reconstruction accuracy results of the pale and colored flat planes
(Fig. 3) when implementing System B, a number theoretic ap-
proach and Gray code + PS, respectively. From the figures in the ta-
bles there does not appear to be a great difference in accuracy.
However, there is a substantial difference in the number of cor-
rectly reconstructed points, i.e., the acquired 3D resolution. Specif-
ically, as we increase the number of the pattern periods used and/

Fig. 3. Method evaluation in the case of colored surfaces: an appearance of a
randomly generated colored pattern, printed out on a flat surface that is
subsequently reconstructed.

Fig. 4. Manikin head: (a) one of the eight shifted and projected periodic patterns; (b) one of the relative phase maps computed from eight shifted and projected periodic
patterns; (c) an absolute phase map computed from two relative phase maps.
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or the length of the Gray code word, the number of wrongly
decoded image points increases and the attainable 3D resolution
drops. Fig. 8 shows this negative effect for the number theoretic
approach and Gray code + PS, respectively. Ideally, we would ex-
pect an unwrapped absolute map with a smooth appearance, as
shown in Fig. 2c. The number theoretic approach uses, essentially,
a linear equation where inputs are PS values. Consequently, it de-
pends heavily on the computational accuracy of the PS values. A
further increase in the number of PS maps used or more careful
system parameter optimization could ease the problem [10,44].
Both solutions impose additional constraints not present in our
proposed method. In the case of Gray code + PS the worse situation
is in the finest Gray-code pattern, where the number of Gray-code
labeled regions is equal to the number of PS map periods involved.
Evidently, incorrectly Gray-code labeled image points combined
even with an error-free PS map will eventually give an erroneous
absolute phase code. A straightforward solution would be to detect
(discard) incorrectly labeled image points (detection would not
necessarily be trivial if there were too many of those) where a com-
promise would have to be made between the size of the Gray code
word (i.e., direct impact on the depth resolution) and the total
number of incorrectly labeled image points on the finest Gray-code
pattern. However, it is important to note that even if the reduced
resolution were acceptable, it takes a substantial image processing

to automatically detect those invalid pixels having incorrect abso-
lute values. Particularly, in the case number of invalid pixels be-
comes excessive, it is very hard to detect all of invalid pixels and
at the same time not to discard some correct ones, which brings
an additional resolution decrease. Besides, it is possible that some
of the invalid pixels will remain undetected. To detect invalid pix-
els we have simply used a scanning mask of size n = 3 pixels,
where we have computed for every pixel the abrupt changes of
unwrapped values in its neighborhood of n pixels. It worked rea-
sonably well, nevertheless recall that according to our idea about
an optimal SL strategy such additional image processing should
be certainly avoided and a full projector resolution should be uti-
lized. To further visualize the effect of decreased 3D resolution,
we show in Fig. 5 the appearance of the manikin head using
our approach, the Gray code + PS and the number theoretic ap-
proach. Obviously, the number theoretic approach gives the worst
result. This experiment is completed showing profiles of the
generated mesh of 3D reconstructed points (Fig. 7a). Our pro-
posed method shows a very good match of the reconstruction
to the original object’s silhouette. For completeness, we reveal
that the bounding box encompassed by the reconstructed volume
for the proposed method (System B option, Gray code + PS and
number theoretic approach) was 142 mm (width) � 248 mm
(height) � 157 mm (depth).

Fig. 5. Manikin head scan. (a) Image and reconstructed surfaces: (b) System A, (c) System B, (d) Gray code + PS, (e) number theoretic approach.
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Finally, we compare the performance of System A and System B.
The 3D reconstruction accuracy figures (Table 1 vs. Table 2) give a
slight advantage to System A, which is perfectly in accordance with
the theoretical expectations outlined in Section 4. Whether this
will actually make a difference will most likely vary in practice
from one application to another. In fact, the difference could in-
crease or decrease given other system parameters (e.g., the camera
quality, the projector, the size of the calibration volume, or the
complexity of the calibration/reconstruction algorithm). We
believe that in our case the major cause is the different ways the
camera and projector image coordinates are undistorted (prior to

triangulation) when using the System A and System B designs. Lens
(un)distortion is usually modeled with a polynomial expression
where the distance r from an image point (u, v) to what is believed
to be the center of distortion plays one of the key roles [45,46]. Sys-
tem A triangulates 3D points using image points from two cameras
where both image coordinate components u and v are available,
and r is computable. System B, however, only has available the ab-
scissa component u on the side of the projector, i.e., triangulation is
based on the plane (projector) and the line (camera). Fortunately,
with fairly good quality lenses it is safe to assume that the magni-
tude of (un)distortion for (u, v) will not change significantly in its

Fig. 7. Profile views of the reconstructed objects: (a) manikin head: System A (top left); System B (top right); Gray code + PS (bottom left); theoretic approach (bottom right).
(b) Foot: System A. (c) Yogurt bottle: System A.

Fig. 6. System A. (a) 3D scan of the foot: image and reconstructed surface. (b) 3D scan of the yogurt bottle: image and reconstructed surface.
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Table 2
Mean error and standard deviation of distances for total of N reconstructed points with respect to the fitted plane through those N points. p1 and p2 show the chosen number of
periods for periodic patterns used to construct PS maps in the context. n is the Gray code word length. Note that for the pale plane, the width of the reconstructed flat surface
ranged approximately between 300 mm and 370 mm and the height between 210 mm and 270 mm. Besides, for the colorful plane the dimensions of the reconstructed flat
surface were the ones of an A4 paper, i.e. 297 mm � 210 mm.

p1 p2 Pale plane Colorful plane

N Mean (mm) Std. (mm) N Mean (mm) Std. (mm)

System B
1 3 70887 0.273 0.228 69678 0.347 0.303
3 5 72355 0.203 0.178 72355 0.257 0.244
5 7 72395 0.154 0.139 72395 0.245 0.236
7 11 72185 0.159 0.144 72185 0.233 0.221

11 15 72066 0.155 0.140 72066 0.220 0.199
15 19 71531 0.152 0.137 71531 0.227 0.209
17 21 71374 0.158 0.145 71374 0.225 0.210
17 23 71385 0.155 0.137 71385 0.222 0.213
19 25 71194 0.153 0.137 71194 0.219 0.208
20 27 71081 0.149 0.139 71081 0.213 0.207
25 27 70396 0.156 0.140 70396 0.210 0.195

Number theoretic approach
1 3 69678 0.250 0.209 67543 0.389 0.362
3 5 50675 0.207 0.172 53721 0.271 0.258
5 7 43218 0.160 0.145 47392 0.239 0.228
7 11 29660 0.144 0.129 28411 0.244 0.232

11 15 31145 0.157 0.148 26567 0.231 0.204
15 19 25800 0.158 0.141 27123 0.220 0.199
17 21 14009 0.150 0.140 15871 0.234 0.229
17 23 9472 0.148 0.132 11457 0.218 0.209
19 25 10848 0.151 0.136 9563 0.201 0.196
20 27 8456 0.148 0.135 9321 0.223 0.215
25 27 7807 0.152 0.138 8267 0.205 0.192

n p1 Pale plane Colorful plane

N Mean (mm) Std. (mm) N Mean (mm) Std. (mm)

Gray code + PS
2 4 70803 0.281 0.233 71345 0.338 0.297
3 8 54089 0.165 0.151 52974 0.251 0.221
4 16 43123 0.158 0.142 40985 0.231 0.219
5 32 39213 0.148 0.137 39011 0.210 0.197
6 64 30213 0.149 0.133 31117 0.213 0.204

Fig. 8. Top row: number theoretic approach. The effect on the appearance of the absolute phase map using different periods (p1, p2) for two relative phase maps: (a) (3, 5), (b)
(7, 11), (c) (15, 19). Bottom row: Gray code + PS. The effect on the appearance of the absolute phase map using different Gray code word lengths: (d) three bits (e) four bits (f)
five bits.
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vicinity. Thus, if we could at least approximate the v component on
the side of the projector, we could use this value to compute dis-
tance r and subsequently undistort the u component, which after
de-codification we do know accurately. First we triangulate an
approximate position of a 3D point using the distorted u projection
coordinate component. Then, we simply project this 3D point back
to the projector image plane, finding the approximate value for v.
In turn, we are able compute distance r and ultimately undistort
the u component. A straightforward alternative would be, at the
expense of doubling the number of projected patterns, to project
patterns in the directions of both projector image axes. In fact,
when this is done the accuracy results (not shown in the paper)
hardly differ between System A and System B. We may also recall
that we did this during the projector calibration. However, given
that the projector and camera(s) are firmly attached, over a longer
period of time calibration is generally considered to be a one-time-
effort.

6. Conclusion

We have considered numerous well-known SL strategies and
concluded that MPS is one of the very few that fulfils many of
the desired conditions, as laid out in the introductory section, for
an optimal SL strategy. For experimental comparison with our pro-
posal we have identified and implemented two popular SL solu-
tions which also satisfy set conditions and in theory require a
relatively small number of patterns: Gray code + single PS and a
number theoretic approach. However a simple, straightforward
implementation of these two solutions is inferior, compared to
our proposed MPS method, in terms of attainable reconstruction
resolution. Related to it, these two solutions would also require
an additional image processing (time consumption) to detect pix-
els with the incorrect absolute phase values.

Our MPS method successfully unwraps relative phases and
accurately performs dense 3D acquisition of various objects, using
no more than two PS maps. We construct each PS map using eight
shifted images. An additional two images are used as references to
facilitate the detection of shadows and occluded regions. Eighteen
patterns is a reasonable compromise, particularly in cases where a
pair of cameras is synchronized to the projector, since then the
entire pattern projection/image grabbing should not last more than
a second. The theoretical background of our method is quite simple
and is based on the observation that given a certain range of values
along the abscissa axis of absolute values, one encounters unique
pairs of relative phase values. We have also offered straightforward
proof of the uniqueness mentioned, which is typically left out of
published works. Through experimenting, we have shown a
respectable degree of accuracy when reconstructing planar sur-
faces, even when the surface is particularly colorful. In addition,
a qualitative inspection of the acquisition of non-coplanar surfaces
has proven to be very good, in cases where both monochromatic
surfaces and colored surfaces are reconstructed.

We have demonstrated the proposed method with two differ-
ent hardware designs, System A (an uncalibrated video projector
and a pair of calibrated cameras) and System B (a calibrated video
projector and a single camera). Besides experimental comparison,
we have also pointed out the major arguments in favor of using
each. In addition, we have contributed to the issue of how to accu-
rately find correspondences between cameras using the System A
design.

Appendix A

We give here some details for deriving an expression to com-
pute the relative phase value uR from a least square minimization

of Eq. (3) – in other words, minimizing the following sum of
squares, over the parameter uR:

e ¼
XN�1

i¼0

½Ii � ðI0 þ A � sinðuR �uiÞÞ�
2 ðA:1Þ

The minimum of Eq. (A.1) is easily found by setting a derivative
of e over uR to zero:

@e
@uR

¼
XN�1

i¼0

Ii � cosðuR �uiÞ � I0 �
XN�1

i¼0

cosðuR �uiÞ

� A �
XN�1

i¼0

cosðuR �uiÞ � sinðuR �uiÞ ¼ 0 ðA:2Þ

It is useful to recall that the following equations hold, assuming
sampling of ui as shown in (1) and for N P 3:

cosðuR �uiÞ ¼ cosðuRÞ � cosðuiÞ þ sinðuRÞ � sinðuiÞ
sinðuR �uiÞ ¼ sinðuRÞ � cosðuiÞ � sinðuiÞ � cosðuRÞPN�1

i¼0
cosðuiÞ ¼

PN�1

i¼0
sinðuiÞ ¼

PN�1

i¼0
sinðuiÞ � cosðuiÞ ¼ 0

PN�1

i¼0
cos2ðuiÞ ¼

PN�1

i¼0
sin2ðuiÞ

ðA:3Þ

Eq. (A.3) allows a substantial simplification of Eq. (A.2). After
some algebraic manipulation it becomes clear that second and
third summands in (A.2) vanish and we obtain:

@e
@uR

¼
XN�1

i¼0

Ii � cosðuR �uiÞ � I0 � 0� A � 0 ¼ 0

cosðuRÞ �
XN�1

i¼0

Ii � cosðuiÞ þ sinðuRÞ �
XN�1

i¼0

Ii � sinðuiÞ ¼ 0

ðA:4Þ

Finally, we are able to write the same expression as already
shown in (4):

uR ¼ atan �
XN�1

i¼0

Ii � cosðuiÞ;
XN�1

i¼0

Ii � sinðuiÞ
 !

ðA:5Þ

where atan is the four-quadrant inverse tangent function, yielding
angle uR in the interval [�p, p].
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T. Pribanić et al. / Image and Vision Computing 28 (2010) 1255–1266 1265



Author's personal copy

[13] G. Sansoni, A. Patrioli, F. Docchio, OPL-3D: a novel, portable optical digitizer for
fast acquisition of free-form surfaces, Review of Scientific Instruments 74 (4)
(2003) 2593–2603.

[14] G. Wiora, High resolution measurement of phase-shift amplitude and numeric
object phase calculation, in: Proceedings of SPIE Vision Geometry IX, vol. 4117,
2000, pp. 289–299.

[15] C. Guan, L. Hassebrook, D. Lau, Composite structured light pattern for three-
dimensional video, Optics Express 11 (5) (2003) 406–417.

[16] M. Tehrani, A. Saghaeian, O. Mohajerani, A new approach to 3D modeling using
structured light pattern, in: 3rd ICCTA, Damascus, Syria, 2008, pp. 1–5.

[17] J. Pagès, J. Salvi, J. Forest, Optimized De Bruijn patterns for one-shot shape
acquisition, Image and Vision Computing 23 (8) (2005) 707–720.

[18] H. Kawasaki, R. Furukawa, R. Sagawa, Y. Yagi, Dynamic scene shape
reconstruction using a single structured light pattern, in: CVPR, Anchorage,
AK, USA, 2008, pp. 1–8.

[19] T. Koninckx, L. Van Gool, Real-time range acquisition by adaptive structured
light, TPAMI 28 (3) (2006) 432–445.

[20] P. Griffin, L. Narasimhan, S. Yee, Generation of uniquely encoded light patterns
for range data acquisition, Pattern Recognition 25 (6) (1992) 609–616.

[21] C. Albitar, P. Graebling, C. Doignon, Design of a monochromatic pattern for a
robust structured light coding, in: IEEE International Conference on Image
Processing, San Antonio, TX, USA, 2007, pp. 529–532.

[22] M. Ito, A. Ishii, A three-level checkerboard pattern (TCP) projection method for
curved surface measurement, Pattern Recognition 28 (1) (1995) 27–40.

[23] D. Caspi, N. Kiryati, J. Shamir, Range imaging with adaptive color structured
light, TPAMI 20 (5) (1998) 470–480.

[24] F. Forster, A high-resolution and high accuracy real-time 3D sensor based on
structured light, in: 3rd International Symposium on 3D Data Processing,
Visualization, and Transmission, University of North Carolina, Chapel Hill, USA,
2006, pp. 208–215.

[25] P. Fechteler, P. Eisert, Adaptive color classification for structured light systems,
IET Computer Vision 3 (2) (2009) 49–59.

[26] L. Zhang, B. Curless, S. Seitz, Rapid shape acquisition using color structured
light and multi-pass dynamic programming, in: Proceedings of the 1st
International Symposium on 3D Data Processing, Visualization, and
Transmission, Padova, Italy, 2002, pp. 24–36.

[27] B. Carrihill, R. Hummel, Experiments with the intensity ratio depth sensor,
Computer Vision, Graphics, and Image Processing 32 (3) (1985) 337–358.

[28] C. Wust, D. Capson, Surface profile measurement using color fringe projection,
Machine Vision and Applications 4 (3) (1991) 193–203.

[29] J. Tajima, M. Iwakawa, 3-D data acquisition by rainbow range finder, in: 10th
International Conference on Pattern Recognition, Atlantic City, NJ, USA, 1990,
pp. 393–313.

[30] T. Sato, Multispectral pattern projection range finder, in: Proceedings of SPIE,
Conference on Three-Dimensional Image Capture and Applications II, San Jose,
California, vol. 3640, 1999, pp. 28–37.

[31] G. Chazan, N. Kiryati, Pyramidal Intensity-Ratio Depth Sensor, Technical
Report 121, Center for Communication and Information Technologies,
Department of Electrical Engineering, Technion, Haifa, Israel, 1995, pp.
1–22.

[32] M. Takeda, M. Mutoh, Fourier transform profilometry for the automatic
measurement of 3-D object shapes, Applied Optics 22 (1983) 3977–3982.

[33] X. Su, W. Chen, Fourier transform profilometry: a review, Optics and Lasers in
Engineering 35 (5) (2001) 263–284.

[34] J. Li, X. Su, L. Gou, An improved Fourier transform profilometry for automatic
measurement of 3-D object shapes, Optical Engineering 29 (12) (1990) 1439–
1444.

[35] E. Hu, Y. He, Surface profile measurement of moving objects by using an
improved p phase-shifting Fourier transform profilometry, Optics and Lasers
in Engineering 47 (1) (2009) 57–61.

[36] W. Chen, P. Bu, S. Zheng, X. Su, Study on Fourier transforms profilometry based
on bi-color projecting, Optics and Laser Technology 39 (4) (2007) 821–827.

[37] H. Yue, X. Su, Y. Liu, Fourier transform profilometry based on composite
structured light pattern, Optics and Laser Technology 39 (6) (2007) 1170–
1175.

[38] R. Sedgewick, Algorithms in C, Addison-Wesley, New York, USA, 1998.
[39] Z. Zhang, A flexible new technique for camera calibration, TPAMI 22 (11)

(2000) 1330–1334.
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