
SLAM based Selective Submap Joining for

the Victoria Park Dataset ⋆

Josep Aulinas ∗ Xavier Lladó ∗ Joaquim Salvi ∗
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Abstract: One of the main drawbacks of current SLAM algorithms is that they do not result
in consistent maps of large areas, mainly because the uncertainties increase with the scenario.
In addition, as the map size grows the computational costs increase, making SLAM solutions
unsuitable for on-line applications. The use of local maps has been demonstrated to be useful
in these situations, reducing computational cost and improving map consistency. Following this
idea, this paper proposes a technique based on using independent local maps together with
a global stochastic map. The global level contains the relative transformations between local
maps, which are updated once a new loop is detected. In addition, the information within the
local maps is also corrected. Thus, maps sharing a high number of features are updated through
fusion and the correlation between landmarks and vehicle is maintained. Results on synthetic
data and on the Victoria Park Dataset show that our approach is able to consistently map large
areas and the computational costs are lower.
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1. INTRODUCTION

Simultaneous Localization and Mapping (SLAM), also
known as Concurrent Mapping and Localization (CML),
is a fundamental challenge of robotics. An autonomous
vehicle must be able to localize itself in either known or
unknown environments. When the environment is known,
the problem is only a localization problem. But in many
other occasions, the environment is completely unknown.
Therefore, the vehicle needs to build a map, and also needs
to localize itself inside this map. The idea of solving both
problems at the same time originated the SLAM term.
SLAM algorithms aim to accomplish these two goals at
the same time, building a map of an unknown environ-
ment and determining the position of the vehicle within
this map, see Durrant-Whyte and Bailey (2006). This un-
known environment might be structured or unstructured,
populated with artificial or natural salient features. In
order to solve this problem, a known kinematic model
of the vehicle is defined. The vehicle moves through the
unknown environment. On-board sensors measure these
salient features, which are then used as landmarks for the
SLAM algorithms. One of the main characteristics on the
field of robot mapping and localization is the uncertainty
caused by sensor noises, see Thrun et al. (2005). For this
reason, finding appropriate representation for both, the
observation and the motion models, is of vital importance.
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Probabilistic techniques are able to model explicitly differ-
ent sources of noise and their effects on the measurements.
For this reason, probabilistic algorithms, such as Kalman
Filters (KF), Particle Filters (PF), Montemerlo et al.
(2003) and Expectation Maximization (EM) Burgard et al.
(1999) are very popular in the SLAM context.

A well known and widely used SLAM approach is the
Extended Kalman Filter SLAM (EKF-SLAM), see Smith
et al. (1988). EKF-SLAM represents the vehicle’s pose and
the location of a set of environment features in a joint state
vector. This vector is estimated and updated by the EKF.
EKF relies on the assumption that the state transition and
the measurement functions are linear with added Gaussian
noise, and the initial posteriors are also Gaussian. Un-
fortunately, real world is non-linear. EKF accommodates
the non-linearities from the real world by approximating
the robot motion model using linear functions. Therefore,
the EKF solution is only suboptimal due to the approx-
imations introduced when linearising the models. These
approximations together with the assumption that the
uncertainties associated to the motion and measurement
models are only additive white Gaussian noise may result
in inconsistencies, see Castellanos et al. (2007). In fact, this
is one of the main drawbacks of EKF for long missions. A
second but not least important drawback, is the scaling
increase on complexity that arises because each landmark
is correlated to all the other landmarks. The correlation
appears since the observation of a new landmark is ob-
tained with a sensor mounted on the moving vehicle and
thus the landmark location is correlated with the vehicle



current pose and the other landmarks of the map. This
correlation is a key point for the long-term convergence
of the algorithm, and needs to be maintained during the
whole mission.

1.1 Contribution

In this paper we propose a technique based on the use
of independent local maps together with a global level
stochastic map. The main contribution of our approach
is in the local map update strategy. This strategy de-
termines whether the last local map built so far has to
be fused with previous local maps or kept independent.
The general idea of our approach is as follows. The vehicle
navigates through the environment. Local maps are built,
together with a global stochastic map containing the rela-
tive transformations between these local maps. The use of
a global level allows to identify loop closure events. A loop
closure event is given when the vehicle is revisiting an area,
therefore a certain amount of map features are repeated in
two local maps. The decision of whether to joint and fuse
two maps that share features is the main novelty in our
approach. This decision is made according to the amount
of repeated features. Then, when this number of repeated
features exceeds a certain value, the decision is to joint and
fuse the two maps, becoming a single one. This decision is
made on the basis that fusing two maps that share many
landmarks will produce a better update than fusing two
maps that only share few landmarks. This novelty has been
implemented and tested on synthetic and real dataset.
The experiments show a consistent reconstruction of the
map, since the drift suffered and the linearisation errors
are small in short distances.

The rest of the paper is organised as follows. A brief
background on the state of the art on related algorithms is
given in Section II. Section III presents the key novelty of
our approach, together with its mathematical derivations.
Section IV summarises the experimental results under
synthetic and real data. Finally, the paper ends with
conclusions and future work.

2. RELATED WORK

In the introduction, the two main drawbacks of an EKF
based SLAM algorithm for large scale missions have been
identified: 1) the computational complexity and 2) the
inconsistencies caused by the linearisation errors. Both
issues have been analysed by several researchers during
the last years.

Regarding the computational complexity, Guivant and
Nebot (2001) presented the Compressed Extended Kalman
Filter algorithm (CEKF), while Knight et al. (2001) pro-
posed the Postponement approach. Both approaches delay
the global update stage after several observations, reducing
significantly the cost without introducing any penalties
in the accuracy of the results. On the other hand, map
consistency problem has motivated the use of different
filtering techniques, for instance the Unscented Kalman
Filter (UKF), see Wan and Van Der Merwe (2001). The
UKF achieves better consistency addressing the approx-
imation issues of the EKF, but increasing the computa-
tional complexity.

The Information Filter (IF) and its variations compose
another set of approaches. Some examples of this group are
the Sparse Extended Information Filter (SEIF) by Thrun
et al. (2004), the Exactly Sparse Extended Information
Filter (ESEIF) by Walter et al. (2007) or the Exactly
Sparse Delayed state Filter (ESDF) by Eustice et al.
(2006). All these approaches reduce the computational
cost taking advantage of the sparsity structure of the
inverse of the covariance matrix (information matrix).
However, these techniques suffer from the difficulty to
perform data association since no covariance matrix is
involved. Another efficient example following this strategy
is the Treemap algorithm presented by Frese (2006), which
requires O(log n) time per step to recover part of the state
and O(n) to recover the whole map.

More recent techniques address the consistency problem
and computational complexity by dividing the map. These
techniques use submaps with the only constraint of keeping
complete independence between them. The Decoupled
Stochastic Map (DSM) from Leonard and Feder (2000)
uses submaps, but they are not statistically independent,
and therefore, introduces inconsistencies in the map. A
similar behaviour is observed in the Aulinas et al. (2009)
work, where local maps are kept separately while sharing
common information, which means that some correlations
are approximated, thus leading to divergences.

The Constrained Local Submap Filter (CLSF) by Williams
et al. (2002) or the Local Map Joining (MJS) by Tardós
et al. (2002) produce efficient global maps by consistently
combining completely independent local maps, with a
total cost of O(n2). Paz et al. (2008) presented the
Divide and Conquer SLAM (DCS), which is capable to
recover the global map in approximately O(n) time. More
efficient techniques, such as the Constant Time SLAM
(CTS) by Leonard and Newman (2003), the Atlas ap-
proach by Bosse et al. (2004), and the Hierarchical SLAM
by Estrada et al. (2005), store the link between local
maps by means of an adjacency graph. The CTS and
the Atlas do not impose loop consistency in the graph,
obtaining a suboptimal global map. Instead, the most
precise path along the graph is computed to find the
location of local maps in a global reference frame. The
Hierarchical SLAM approach performs consistent global
maps by imposing loop constraints. However, the common
information shared by different maps is discarded or only
used when maps are joint. In this way only the joint map
information is kept. Finally, Piniés and Tardós (2008) pro-
posed the Conditionally Independent Local Maps (CILM),
which is based on sharing information between consecutive
submaps, this way a new local map is initialised consider-
ing the a priori knowledge.

All these submapping techniques demonstrate that using
submaps both linearization errors and computational cost
can be addressed at the same time, improving the consis-
tency of EKF-SLAM, see Castellanos et al. (2007). Work-
ing with limited size submaps maintains the uncertainties
of the submap and the linearisation errors small. Fur-
thermore, having small uncertainty matrices improves the
consistency of the data association methods. For instance,
in the Joint Compatibility Branch and Bound (JCBB) al-
gorithm, the smaller the covariance matrix values are, the
better the performance is (see Neira and Tardós (2001)).



Algorithm 1: Extended Kalman Filter: (xk, Pk, uk+1, zk+1)

Prediction (estimate)

1: x̂k+1 = f(xk, uk+1)

2: P̂k+1 = FkPkF T
k

+ GkQkGt
k

3: ẑk+1 = h(x̂k+1)

Observation (innovation vector and matrix)

4: νk+1 = zk+1 − ẑk+1

5: Sk+1 = HkP̂k+1HT
k

+ Rk

Update (correction, Kalman Gain)

6: Wk+1 = P̂k+1HT
k

S−1
k+1

7: xk+1 = x̂k+1 + Wk+1νk+1

8: Pk+1 = P̂k+1 −Wk+1Sk+1P̂k+1

Iterate with xk+1 and Pk+1

Notice that:

Fk = f ′(xk, uk+1) =
∂f(xk,uk+1)

∂xk

Gk = f ′(xk, uk+1) =
∂f(xk,uk+1)

∂uk

Hk = h′(xk+1) =
∂h(̂xk+1)

∂xk

Another advantage of working with small maps is that the
amount of data involved in the EKF-SLAM is kept small,
reducing computational cost.

3. MATHEMATICAL FORMULATION

Our purpose is to work with a 3DOF vehicle, i.e. a 2D
motion model. We assume that this vehicle carries several
sensors, giving navigation data relative to the vehicle’s
reference frame, such as velocity and orientation. In ad-
dition, the vehicle must carry some sort of sensors capable
of acquiring information from the scenario. The scenario
is supposed unknown and unstructured, but populated
with objects, trees, rocks and other detectable features.
From the information given by these sensors the vehicle
and map state estimates can be written in a joint state
vector x̂, as in (1). In addition, the state uncertainty is

stored in a covariance matrix P̂, and the procedure to
filter the measurement noise is the well known EKF (see
Algorithm 1 ), where f and h are the transition and the
observation models from time k to k+1, and F and H are
their linearised version.

x̂ = (xv yv ψv xl1 yl1 ... xln yln)t (1)

The main idea of our approach is to use the EKF to per-
form SLAM on a limited size areas of the whole scenario.
Hence, a map is initialised with zeros x0 = 0 and P0 = 0
and for every discrete step time k the vehicle position and
the map are estimated, new measures are done, and an up-
date stage is conducted. This iterative process stops when
the number of landmarks in the map exceeds a certain
threshold, limiting the problem to small size matrices and
vectors; or when the uncertainties involved exceed certain
boundaries, because this would lead to overconfidence or
to inconsistencies.

Once a map is finished, the last position of the vehicle gives
the topological transformation between the beginning of

Fig. 1. Global level example, where M are the submaps,
and T are the relative transformations from adjacent
maps.

the map and its end, or what is the same, the relative
transformation between the base reference of the current
map Mi and the next one Mi+1 (see Fig. 1). This next
map is initialised with zeros and the EKF iterative process
starts again. The link between the two maps MiTMi+1

is
stored in a global level xG, together with its corresponding
uncertainty xG, as in (2).

xG =





.
Mi−1TMi

MiTMi+1

.



 PG =





. . . .

. σ2
Mi−1TMi

0 .

. 0 σ2
MiTMi+1

.

. . . .



 (2)

This global level can be understood as an adjacency graph,
where the submaps are the nodes, and the relative trans-
formations to go from one to another are the arcs. The
global level is used to check the possibility of being in front
of a loop closing event. A loop closure is accepted when
the vehicle is revisiting a region. In order to know how
big is the revisited region, the data association between
those maps that are closing the loop is computed. The
loop closing strategy involves a decision on whether to fuse
maps, it is therefore a Selective Submap Joining SLAM
(SSJS), see Algorithm 2. If the correspondences between
maps are higher than a threshold, they are joint and fused
to a single map, as it is done in the Map Joining algorithm
(see Tardós et al. (2002)). Given two submaps Mi and Mj

referred to a common base B, they are first stored into a
joint state vector, as in (3).

Bxij =

[
Bxi
Bxj

]
Pij =

[
Pi PiJ

t
1

J1Pi J1PiJ
t
1 + J2PjJ

t
2

]
(3)

The common landmarks from Mi are the predictions (as in
a standard EKF) and the common landmarks from Mj are
understood as new observations. Afterwards, the innova-
tion vector and matrix are computed, followed by the EKF
update stage. Finally, the rows and columns corresponding
to common landmarks from Mj are removed from the joint
state, to avoid repetition. Together with the map fusion,
the corresponding link in the global level is corrected. This
correction is obtained directly from the map fusion since



Algorithm 2: Selective Submap Joining SLAM

begin mission

while navigating do

x̂i, P̂i = EKF SLAM() ← (Build submap Mi)

x̂G, P̂G = build global map(x̂i, P̂i)

HLoop = check possible loops(x̂G, P̂G)

for j = HLoop do

referMi and Mj to a common base reference

Hij = data association(x̂i, x̂j , P̂i, P̂j)

if Hij > threshold then

x̂ij , P̂ij = map fusion(x̂i, P̂i, x̂j , P̂j , Hij)

x̂G, P̂G = update global map(x̂ij , P̂ij)

endif

endfor

endwhile

the links within the fused maps are correlated and updated
with all the information. After deciding whether to fuse
the maps, a new submap is built and the whole process is
repeated again.

4. REAL EXPERIMENTS

The performance of our method is analysed in this section.
In order to do so, the SSJS algorithm was tested using
synthetic data. An example of this synthetic experiments is
shown in Fig. 2. This figure represents a loop closing event,
showing the performance of our selective fusion approach.
These synthetic experiments allowed us to check: 1) the
overall consistency of our method, and 2) the computa-
tional complexity improvement compared to a standard
EKF.

The overall consistency of our method was checked via
the statistical test, Normalized Estimation Error Squared
(NEES) (4).

NEES = (xk − x̂k)tP−1

k (xk − x̂k) < χ2
r,1−α (4)

where r = dim(xk) is the degree of freedom, and α is
the desired significance level (usually 0.05). Given the
ground truth, the state (x̂,P) estimation is consistent
when NEES < χ2

r,1−α, otherwise the estimation is too
optimistic, becoming inconsistent. Fig. 3 shows the SSJS
performing inside the theoretical consistency boundaries.

Regarding the computational demand, Fig. 4 shows the
improvement of our method with respect to a stan-
dard EKF. The EKF computational time increases on a
quadratic order to the number of features in the map, while
our approach increases almost lineally.

After obtaining positive results using synthetic data,
real experiments were conducted using the Victoria Park
dataset recorded by Nebot (2009) at the Australian Cen-
tre for Field Robotics, see Fig. 5. This dataset describes a
path through an area of around 197m x 93m. This sequence
consists of 7247 frames along a trajectory of 4 kilometres,

Fig. 2. Example of a map fusion step. In the top image,
three local maps have been built. In the bottom, two
maps have been fused after closing the loop.
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Fig. 3. Consistency test using the NEES.
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Fig. 4. Accumulated time along a simulation on synthetic
data. SSJS time demand grows lineally, while for the
EKF it grows dramatically, because the scenario was
populate with a high amount of landmarks.



Fig. 5. Satellite image of the Victoria Park dataset (font:
Google Earth). The GPS data captured during the
mission is drawn in yellow, while the vehicle estimated
trajectory is represented in black. The final submaps
obtained with the SSJS are also shown.

recorded over a total time of 26 minutes. The data set
contains sensor readings from steering and rear-axis wheel
(odometry) and laser range finder (one 360 degrees scan
per second) along with the data from a GPS. For the laser
range data a tree detector function is provided together
with the dataset. These detected trees are used as point
feature landmarks. They usually have a large distance to
each other and can be separated or uniquely identified with
common data association techniques. However, at some
cases, spurious data is detected and has to be removed. All
the experiments were conducted on a Pentium Core Duo
1.77-GHz. The purpose of this experiment was twofold:
1) to evaluate the consistency of our approach, and 2) to
analyse the computational complexity.

The final solution of the SSJS on the Victoria Park dataset
is shown in Fig. 5. This figure shows qualitatively the level
of correction of our approach. The final estimated map
(black trajectory) is almost the same as the one generated
using GPS data (yellow trajectory). However, having a
single look on the plot it is not possible to extract any
further conclusion such as the consistency of the method
or the time consumption. Therefore, we decided to perform
a quantitative evaluation. Hence, the consistency of our
approach is checked via map consistency analysis. When
the ground truth for the state variable is not known, the
Normalised Innovation Squared (NIS) (5), can be used to
analyse the consistency.

NIS = νt
kS

−1

k νk < χ2
r,1−α (5)

where r = dim(xk) is the degree of freedom, and α is
the desired significance level (usually 0.05). Given the
estimation of the innovation vector ν and the innovation
matrix S, the state (x̂,P) estimation is consistent when
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Fig. 6. Consistency test, where the dashed line represents
the χ2 corresponding to each step, and the continuous
line corresponds to the NIS.
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Fig. 7. Time required to compute the whole mission. Our
approach is able to finish in about 200 seconds, while
a standard EKF required almost 5000 seconds.
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Fig. 8. Time per step along the whole mission. As the
map gets larger, the EKF time per step increases
considerably, while our approach, requires a constant
time per step, except on the steps where a map fusion
is conducted.

NIS < χ2
r,1−α, otherwise the estimation is too optimistic,

becoming inconsistent. Fig. 6 shows the SSJS always
performing inside the theoretical consistency boundaries.

Regarding the computational demand, Fig. 7 shows the
improvement of our method with respect to a standard
EKF. As it happened with synthetic data, the EKF
computational time increases on a quadratic order to
the number of features in the map, while our approach
increases almost lineally. This improvement is also visible
in the time per step, see Fig. 8. The time per step is almost
constant in our approach, while the EKF time per step
increases with the size of the map. The time per step for
our approach has some peaks corresponding to map fusion



events. However, this peaks does not produce any dramatic
delay, therefore the improvement with respect to the EKF
is still considerable.

5. CONCLUSIONS

The Selective Submap Joining SLAM approach presented
in this paper has been demonstrated to be suitable to
map consistently large scale scenarios. The main contri-
bution of our approach is the local map fusion strategy.
This strategy determines whether to fuse two local maps,
depending on the amount of information they share. The
experimental results have shown the consistency of the
method. Then, we demonstrated that the algorithm re-
duces the computational cost compared to the standard
EKF method. Further work is intended to develop a 6DOF
version of the algorithm. Extensions for the proposed ap-
proach include the generalization of the models to different
vehicles and sensors.
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