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Abstract. The strength of appearance-based mapping models lies in their ability to 
represent the environment through high-level image features; and provide human-
readable information. However, developing localization and mapping methods 
with these models could be very challenging, especially if robots must deal with 
long-term mapping, localization, navigation, occlusions, and dynamic 
environments.  This paper proposes an appearance-based mapping and localization 
method based on the human memory model, which is used to build a Feature 
Stability Histogram (FSH) at each node in the robot topological map, these FSH 
register local feature stability over time through a voting scheme, and most stable 
features are considered for mapping and Bayesian localization. Experimental 
results are presented using omnidirectional images acquired through long-term 
acquisition considering: illumination changes (day time and seasons), occlusions, 
random removal of features, and perceptual aliasing. This method is able to adapt 
the internal node’s representation through time to achieve global and local robot 
localization. 
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Introduction 

Nowadays, mobile robots are needed to interact within non-structured environments, to 
deal with people, moving obstacles, perceptual aliasing, weather changes, occlusions, 
and robot-human interaction, and to resolve mapping, localization and navigation 
issues as best as possible. These requirements are useful for service robots designed to 
conduct surveillance, inspect, deliver, clean, and explore. In addition, to localization, 
mapping and navigation problems, have to guarantee a high level of autonomy through 
long-term navigation using stable features.  

Mapping and localization methods can be geometrical, topological or hybrid. Our 
work is focused on topological localization and mapping using appearance-based 
models of the environment. Topological maps are compact, consume less computer 
memory, can be stored in efficient data structures, and speed up the navigation process. 
They use graphs for environmental modeling, and the appearance of the environment 
can be introduced through vision sensors [1]-[2]. Omnidirectional vision is receiving 
special attention nowadays due its long term landmark tracking, its one-shot 
environment sense regardless of heading, its robustness to occlusions, and it can be 
fused with range data [3]. Appearance-based methods for mapping and localization 
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have also gained increasing attention in recent years. The strength of these models lies 
in their ability to represent the environment through high-level image features. They 
use similarity measures to localize robots and to decide if new information can be 
added to the robot map. In a review of some remarkable studies of appearance-based 
mapping and localization, we found different types of sensors, such as single camera 
sensors [4]-[7], laser range finder (LRF) sensors (2D and 3D) [8]-[9], fusion between 
an LRF and a single camera sensor [10], omnidirectional cameras [11]-[16] and an 
omnidirectional camera combined with LRF sensors [17]. We also discovered different 
techniques for feature extracting/matching, and the similarity measures used. 
Environmental features are diverse, but our review shows that SIFT and SURF are 
commonly used to describe the appearance of the environment [4], [6], [13], [15], [16-
17]. The similarity measure used is commonly L1 or L2, since SIFT and SURF 
descriptors can ensure an adequate level of local discrimination. These kinds of local 
features are stable and fast enough even for omnidirectional images. Other local 
features used are discrete cosine transforms (DCT) [5], and PCA [3], but in these cases 
the appearance of the environment is a bit lost. Intuitively, appearance-based models of 
the environment describe the environment as it is, taking advantage of its natural 
features. This has been done in [7] using image information content implemented 
through quad-tree decomposition, or depth images taken by laser scans [8-10], PHLAC 
features [11], and vertical lines features [12], [14]. 

The main contribution of our work is an appearance-based mapping and 
localization approach based on the Feature Stability Histogram (FSH), which is 
inspired by human memory model [18] to deal with dynamic environments, where 
temporary or definitive changes occur with occlusions and illumination changes, and 
long-term mapping and localization is needed. Unlike [13], we build a histogram using 
a voting scheme instead of a hard-wired finite state machine. This histogram stores a 
stability value for each feature; stable/unstable features are distinguished using a 
threshold, and stable features are used for mapping and Bayesian localization. We 
perform global and local localization tests and obtain better results compared with 
static environment representations. 

This article is organized as follows: section 1 presents a description of our method, 
section 2 the robot localization method, section 3 experiments and results, and section 4 
our conclusions. 

1. Appearance-Based Mapping and Feature Stability Histograms 

Topological maps are a suitable environment representation since they can be used to 
move on to a semantic environment representation, they are compact and hold high 
level environmental information. Our topological map is composed of several nodes; 
each one stores one or more omnidirectional views. The map is defined as follows:  
• A node is denoted by ni, i ∈ {1, …, N} where N is the number of nodes in the map. 
• A node is composed of a set of SIFT [21] descriptors extracted from views, which 

are denoted by Dn(i,j) where i is the node index, and j ∈ {1, …, K}, K is the 
number of feature descriptors stored within a node.  

• A node stores its own FSH denoted fsh(i,t), i ∈ {1, …, N} at time t, where t denotes 
the number of times the FSH has been updated; also, the FSH evolution through 
time is stored and denoted rfsh(i,p), i ∈ {1, …, N}, p ∈ {1, …, t}.  
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• Edges between nodes define neighboring positions and store a set of corresponding 
features extracted from a two-view geometry process and denoted Edr, r ∈ {1, …, 

R}, where R is the number of edges between nodes. This edge can be defined as: 
Edr = match(Dni, Dni-1), where Dni-1 and Dni are the previous and actual set of 
SIFT descriptors at each (i-1)-th  and i-th node, and match() denotes the matching 
process described in subsequent sections. 

• Estimated camera motion is also stored. It is constrained to a planar motion 
denoted as mi = [xi, yi, θi]

T, where xi, and yi can be recovered up scale, but θi is 
estimated using a modified version of [22]. 

In this work we used a calibrated omnidirectional camera to extract full size SIFT 
feature descriptors from the region of interest of the image. A major challenge in 
appearance-based approaches, when a new image is acquired, is to decide when to add 
a new node to a topological map. We have defined a visual similarity between two sets 
of descriptors in Eq. (1). 

��,� � �����������,����������������,���� � ���   (1) 

Where vdesc is the new image descriptors set, Dni is the i-th node descriptor set,  
match(vdesc, Dni) is the number of corresponding features between the new image and 
the node features, and DnR is the number of total features in the current node. We 
defined a geometrical average in the denominator of Eq. (1) to prevent high values 
influence of DnR. The matching process occurred in two parts. First, given an (i-1)-th 
image and an actual image, tentative matched features were extracted using a nearest 
neighbor method as described in [21]; second, an epipolar geometry estimation was 
performed with these matches using RANSAC, where p and q are mirror points of the 
first and second view; a look-up table was created to speed-up the process of lifting the 
image points on the mirror’s sphere-equivalent model. The essential matrix E was 
estimated such that for all correspondences:  !"# � 0 . An essential matrix was 
calculated for every nine random correspondences. A correspondence is regarded as an 
inlier if in the second image the point v satisfies %!&% � 0, where C is defined in Eq. 
(2) according to [23]. 

& �  '()
*�1 , -*� , (.*-* ()(/�1 , -*� ()(.()(/�1 , -*� (/*�1 , -*� , (.*-* (/(.()(. (/(. (.* 0  (2) 

Where ξ is the mirror parameter, and nx, ny, and nz form the normal vector to the 
plane between the feature and the central projection points of the two views, which is 
calculated by 1(), (/, (.2 � "3. The E-matrix with the maximum of inliers was chosen. 

The optical axis of the omnidirectional camera was vertically aligned to and 
mounted on a mobile robot constrained to horizontal plane movements. Once the 
correspondence problem was solved, the planar motion was estimated and denoted as 
mi = [xi, yi, θi]

T, where xi, and yi can be recovered up scale, but θi was estimated using a 
modified version of [22] described here: 

• Extract the corresponding image key-points denoted ukp and vkp. 

B. Bacca et al. / Mapping and Localization for Mobile Robots 293



• Compute the orientation error for all corresponding features as defined in Eq. 
(3). 

4566 � 78(9: �;<,=�;<,> , 78(9: ?;<,=?;<,>   (3) 

Where, vkp,y, vkp,x, ukp,y and ukp,x are the key points vector components of 
the actual and previous image. The corresponding features have to satisfy 
another constraint, they have to be equally distributed along the previous 
omnidirectional image, and only the features that satisfy this constraint were 
selected. 

• Using these features, a histogram H was computed using the orientation error 
vector of Eq. (3) with a resolution of 1º between -180º and 180º. The 
orientation was estimated using: 4@ � 8ABC8D�E�. 

 

�������������������������������������������������������

Robot mapping and localization in real environments with temporary occlusions, 
pedestrians, illumination changes, among others leads to changes in the robot 
environment model. In appearance-based approaches these inconveniences are more 
pronounced. A solution inspired by nature can separate stable features from unstable 
ones, and use only the stable features to focus mapping and localization.  According to 
[18] and [20] this process occurs naturally in animals with motor skills. In the specific 
case of human beings, [18] proposes a memory model that is valid for all human 
memories, feelings and experiences. This approach is shown in Figure 1. Stimuli input 
enters the short term memory (STM) which retains information long enough to use it. If 
the information in the STM is rehearsed or reinforced in some way it becomes part of 
the long term memory (LTM) and can be used a lifetime. Another component is the 
sensory model, which experimentally demonstrates the capability of sensory organs to 
discriminate information for subsequent processing. Note that the forgetting stage is 
always present. This model has been applied to robot mapping approaches [13] and 
mobile robot control architectures [19]. Our approach does not consider sensory 
memory. It modifies the human memory model, proposed for use in mobile robotics, as 
follows: first, in the very beginning only one image is stored per node, and there is no 
difference between LTM and STM features (all features are assumed to be LTM); 
second, the LTM and STM features are distinguished thanks to a voting scheme, which 
is stored in the FSH, and the rehearsal method consists of associating a counter to each 
node feature in the FSH, incrementing it each time the robot re-observes a feature in 
this node, then having the robot use the FSH to measure how persistent a feature is by 
just observing its actual value; and third, the forgetting stage for the LTM is modified 
to allow not forgetting at all. 

According the human memory model described above, a feature descriptor can be 
defined as an LTM if it has a high value in the FSH, otherwise it is considered an STM 
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feature. If an LTM feature is temporarily occluded, it will suffer a relative decrease in 
its FSH value. However, if the occlusion remains, the LTM feature will become an 
STM feature, but with a chance of becoming an LTM feature again if the occlusion 
disappears in the future. STM features are commonly produced by pedestrians, 
illumination changes, shadows and temporary occlusions, and for this reason they are 
not considered for map building and localization; indeed, only LTM features are used 
for these purposes. According to how the FSH is built, a good way to distinguish LTM 
features is to select a threshold such that FSH values greater than the threshold are 
considered LTM features. But a fixed threshold could drastically reduce the number of 
LTM features, or increase them considerably, reducing feature representativeness in 
both cases. We experimentally tested that a threshold of 0.6 shown a good commitment 
between the inconveniences described above and scalability in large environments. 

Through our approach we were able to automatically construct a topological map 
from a set of omnidirectional images taken at regularly spaced intervals.  Each image is 
a node in the map. Later, the map was updated eight times with other omnidirectional 
images obtained under different environmental conditions. The map building algorithm 
works as follows: after image acquisition and feature extraction, a high similarity check 
is done to prevent robot stand-by images; then, the matching process begins and a 
similarity threshold is used to determine if a current image belongs to a node or not. If 
so, the FSH and its register are updated over time, if not, a new node is created and the 
matching features with the last node are kept for motion estimation.  

2. Localization 

A topological map gives sparse locations in the environment because the training 
image set does not cover all possible positions. Hence, given an image, the localization 
algorithm is able to find the node where the robot is likely to be, and this node is 
related to a real world position in the environment. Robot localization involves two 
main localization problems: global and local. The former is a concern when no a priori 
information on the location is available. In contrast, if the robot knows the initial pose, 
its mission is to track subsequent poses under the assumption that closer locations are 
more likely than distant ones. We propose an appearance-based mapping and 
probabilistic localization approach to deal with both problems. SIFT features are 
commonly used as local features, but perceptual aliasing in the environment can 
confuse robots. However, the proposed mapping approach based on the human memory 
model described above and using a Bayesian filtering technique for robot localization 
can reduce the location ambiguity and assign a probability value at each time instant.  

Our state is defined as x ∈ {n1, …, nN}, a node in the topological map, and zv = vdesc 
is the observation at time t and composed by the current SIFT descriptors. Given a 
collection of LTM features Z = {Dn1, …, DnN}, the goal is to find the node location xt 
where the image was taken. The Bayesian filter recursively calculates the posterior 
state distribution p(xt | z1:t).  Applying the Bayes’ rule Eq. (4) can be defined. 

#�D�|G::�� � I�.J|)J,.JKL,…,.N�I�)J|.JKL,…,.N�I�.J|.JKL,…,.N�    (4) 

Where, the denominator can be replaced by a normalization factor. Bayesian 
filtering methods assume that the dynamics of the system is Markovian, which means 
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that future locations do not depend on past locations, Eq. (4) can be expressed as Eq. 
(5) allowing recursive position estimations since p(xt-1 | z1:t-1) is the last estimation. 

#�D�|G::�� � O#�G�|D��∑ #�D�|D�9:�#�D�9:|G::�9:�)JKLQR�L,…,�ST    (5) 

Eq. (5) has two unknown distributions: p(xt|xt-1) and p(zt | xt). The first is called the 
motion model, expresses the probability transition between two locations in the map. 
To define it, we enforce the temporary coherence of the position estimation and assume 
transitions between closer places are more likely than transitions between more distant 
ones. We model this as a Gaussian distribution centered at xt and expressed in Eq. (6). 

#�D�|D�9:� � UV9W>JK>JKLWX>Y    (6) 

Where, γ is a normalization constant, ||xt – xt-1|| is the distance between the two 
nodes in the map, and σ2

x is the variance of the distances on the map. The second 
unknown in Eq. (5) is p(zt | xt), or the sensor model. In our case this distribution is 
related to the visual similarity between the current view zv at xt and the observations 
stored in the topological map Z = {Dn1, …, DnN}, such that there is an expected and 
high probability of finding a maximum of Z(x) at xt rather than at other nodes of the 
map. As a result of perceptual aliasing, the sensor model can have more than one 
maximum value. To overcome this inconvenience and avoid discarding other possible 
hypotheses, the sensor model can be defined as a sum of Gaussians, corresponding to 
the number of peak values between the maximum of the similarity measure sim(zt, 
z(xt)) and this value minus σz (the variance of the similarity measure) as denoted in Eq. 
(7). Then, the sensor model assumed is shown in Eq. (8). 

Z � C8D[\�]C^G�, G�D��_ , σab  (7) 

#�G�|D�� � cd?� ∑ efV9��ghiJ,j,ik>J,jlmXjYf    (8) 

Where, δsum is a normalization factor, wl is the mixture weight which equals the 
selected peak value of Eq. (7), sim(zt, z(xt)) is the similarity measure defined by Eq. (1), 
and σ2

l is the variance of this measure. 

3. Experiments and Results 

We implemented our approach in a mobile robot equipped with an omnidirectional 
vision setup composed of a RemoteReality parabolic mirror and a Sony FCB-IX47AP 
color camera. Additionally, the robot was controlled by an embedded computer at 900 
MHz. To evaluate our approach, in the map building phase we first guide the mobile 
robot through an indoor environment, and this first image set was used to build the 
early topological map and to estimate the camera motion. Figure 2 shows the 
environment representation and the node locations obtained in the topological map 
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and appearance change due to weather conditions cause low similarity measures when 
the representation of the environment at the corresponding node is not updated 
accordingly. But, in the case of an LTM-based similarity measure this effect is reduced 
because most LTM features remain present and a good representation of the 
environment is maintained. 

The third step of our experiment is topological localization. For this experiment 
eight map updates were performed during the day, at night, and in summer, winter and 
spring. A database of 720 images of 640x480 pixels each was obtained. After that, two 
additional new image sets were taken at completely different base line distances (1m 
and 2.5m approx.), and different positions and orientations compared with the image 
map updates. With these two sets, global and local localizations were tested using the 
Bayesian filtering approach described above. For each image in these sets the real node 
in the map was stored, to extract the position error between this value and the estimated 
location node. Global and local localization results were extracted from four tests: the 
first one used the original set of images; in the second 15% of noise was added to the 
current image; and in the third and fourth ones additional artificial occlusion was added 
by randomly removing 25% and 50% respectively, of the current image features. To 
evaluate the localization performance in each set, 100 random initial positions were 
generated for each test, and then 11 consecutive images were presented to each map 
update. We evaluated the global localization performance of our approach using the 
first image of the 11 consecutive images; in this we ensured that not previous 
knowledge about the location was available. These experiments were performed for 
both maps: the map without an updated appearance (not LTM-based) and the one with 
an updated appearance. 

Table 1. Correct global localization results. 

"�#$�

%&'��()#��*�'��#�$� +,&�$�()#��*�'��#�$�
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Table 1 and 2 show the correct global and local localization results. Correct 
localization means that the estimated position was ±1.5 nodes from the real one. All 
location estimates were selected in a winner-takes-all way. As can be seen, our 
approach shows better results if the map appearance is updated. In addition, during the 
result extraction phase we observed that position uncertainty decreased and the initial 
belief broadness got shrugged as the updates were incorporated into the topological 
map. Table 2 shows the correct local localization, where our approach has better results 
than a map without an appearance update. Table 2 shows small difference between the 
two data sets.  In the local localization context this can be explained by the long base 
line between images, greater changes in environment appearance, and higher position 
uncertainty, which leads our sensor model to keep track of more hypotheses than the 
short base line set. Throughout the experiments, the sum of Gaussians assumed for the 
sensor model allowed our approach to recover from bad global location estimations, 
and then progressively obtain a good localization update as the image sequence 
continued. In this case, it was assumed that the robot continues on its path to collect 
more evidence about its locations, which is not far from reality since active map 
building and localization algorithms often use this technique [24]. This is advantageous 
in indoor environments like office corridors with high perceptual aliasing. Finally, our 
results might be improved by changing the environment description itself. SIFT 
features are often used in standard pin-hole cameras, and they cope well when used in 
omnidirectional images, but a better way to increase feature representation might be to 
use another feature close to the environment appearance [25]. 

4. Conclusions and Future Works 

We have proposed an innovative feature management approach for topological 
mapping and localization and appearance-based environment representation. Our 
approach is based on a modified human memory model, and implements concepts such 
as LTM and STM to distinguish stable from non-stable features. These concepts were 
applied to topological mapping and localization using FSH, which store at each node a 
statistic about what features have been observed repeatedly. STM and LTM features 
are distinguished using a threshold, and LTM features only used for robot mapping and 
localization. Using the voting schema implemented through the FSH our method can 
deal with temporary occlusions caused by dynamic environments, and illumination 
changes. It was tested in static and dynamic experiments. The former included images 
acquired over a long period of time to show that our approach and the image similarity 
measure offers better results than a static description of the environment. The latter 
used a topological map that was updated up 8 times, and a Bayesian-based localization 
approach for global and local localization experiments. These experiments were 
conducted using two data sets with highly different positions, orientations, base lines 
and environmental conditions from those stored in the topological map. We used a 
threshold method to distinguish LTM from STM features, but an automatic 
classification of these features could be obtained using pattern recognition techniques 
such as k-means. Finally, SIFT features behave well in our experiments, but they do not 
have enough representative information to be used as global features. So another 
improvement will be to use features closer to the appearance of the environment. 
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