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Abstract: Autonomous Underwater Vehicles (AUVs) need positioning systems besides the
Global Positioning System (GPS), since GPS does not work in underwater scenarios. Possible
solutions are the Simultaneous Localization and Mapping (SLAM) algorithms. SLAM algorithms
aim to build a map while simultaneously localizing the vehicle within this map. However, they
offer limited performance when faced with large scale scenarios. For instance, they do not create
consistent maps for large areas, mainly because uncertainties increase with the scale of the
scenario. In addition, the computational cost increases with the map size. The use of local maps
reduces computational cost and improves map consistency. Following this idea, in this paper
we propose a new SLAM approach that uses independent local maps together with a global
level stochastic map. The global level contains the relative transformations between local maps.
These local maps are updated once a new loop is detected. Local maps that are sharing a high
number of features are updated through fusion, maintaining the correlation between landmarks
and vehicle. Experimental results on real data obtained from the REMUS-100 AUV show that
our approach is able to obtain large map areas consistently.
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1. INTRODUCTION

Mapping and localization techniques are necessary for
many underwater applications. Some examples of these
applications are underwater cartography, geological map-
ping, off-shore structures inspection, studies of biodiver-
sity or deep-water archaeology. Different underwater vehi-
cles have been developed in order to explore completely
unknown underwater regions, for instance the so called
Autonomous Underwater Vehicles (AUVs). An AUV is
equipped with onboard sensors, which provide information
about the vehicle, such as speeds, orientations or acceler-
ations, and about the environment, such as 3D clouds of
points from the sea floor or the relative location of salient
features with respect to the vehicle. This information is
very valuable to calculate the approximate position of the
vehicle.

Terrestrial and aerial vehicles can localize themselves with
Global Positioning System (GPS). However, underwater,
GPS can not be used because electromagnetic waves are
strongly attenuated through the medium of water. A stan-
dard for bounded xyz navigational position measurements
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for underwater vehicles is the long-baseline (LBL) acoustic
transponder system (Hunt et al. (1974)). LBL operates
on the principle of time-of-flight and it is been proven
to operate up to a range of 10 km (Whitcomb et al.
(1999)). The main drawback of LBL is that it requires two
or more acoustic transponder beacons to be tethered to
the sea floor. Short-baseline (SBL) systems provide more
accurate positioning information, but suffer from the same
drawbacks than the LBL. Internal sensors, such as the In-
ertial Measurement Unit (IMU) and the Doppler Velocity
Log (DVL) do not give absolute localization, therefore the
localization problem suffers from drift due to odometric
noise. Furthermore, the detection of salient features in
the environment is a complex task due to measurement
noise. These noises makes the mapping and localization
a difficult challenge. Simultaneous Localization and Map-
ping (SLAM), also known as Concurrent Mapping and Lo-
calization (CML), is one of the fundamental challenges of
robotics (Durrant-Whyte and Bailey (2006)). The SLAM
problem involves a joint task of simultaneously estimating
the map and localizing the vehicle inside this map.

A well known and widely used SLAM approach is the
Extended Kalman Filter SLAM (EKF-SLAM) (Smith
et al. (1988)). EKF-SLAM represents the vehicle’s pose
and the location of a set of environment features in a
joint state vector. This vector is estimated and updated by
the EKF. The EKF provides a suboptimal solution due to



several approximations and assumptions, which result in
divergences (Castellanos et al. (2007)). In large areas, EKF
complexity grows with the number of landmarks, because
each landmark is correlated to all other landmarks. This
means that EKF memory complexity is O(n2) and a time
complexity of O(n2) per step, where n is the total number
of features stored in the map.

The use of submaps has been shown to address the prob-
lems of consistency and computational complexity. An
early example of this strategy is the Decoupled Stochas-
tic Map (DSM) (Leonard and Feder (2000)). The DSM
uses non-statistically independent submaps. Therefore the
correlations are broken introducing inconsistency in the
map. Similar inconsistencies were seen in (Aulinas et al.
(2010)), where submaps were assumed to be independent
but still shared information. Different techniques, such as
the Constrained Local Submap Filter (CLSF) (Williams
et al. (2002)) or Local Map Joining (MJS) (Tardós et al.
(2002)) produce efficient global maps by consistently com-
bining completely independent local maps. The Divide
and Conquer SLAM (DCS) (Paz et al. (2008)) is capable
to recover the global map in approximately O(n) time.
The Constant Time SLAM (CTS) (Leonard and Newman
(2003)), the Atlas approach (Bosse et al. (2004)), and the
Hierarchical SLAM (HS) (Estrada et al. (2005)) store the
link between local maps by means of an adjacency graph.
The HS imposes loop constraints on the adjacency graph,
producing a better estimation of the global level map. The
Conditionally Independent Local Maps (CILM) (Piniés
and Tardós (2008)), is based on sharing information be-
tween consecutive submaps. This way, a new local map is
initialized considering the a-priori knowledge.

These submapping techniques demonstrate that using
submaps, both linearization errors and computational cost
can be addressed at the same time, improving the con-
sistency of EKF-SLAM (Castellanos et al. (2007)). Only
few of them have been tested on underwater scenar-
ios (Williams (2001); Roman and Singh (2007)), where
some extra constraints have to be taken into account.
Firstly, the terrain sensing is limited to either acous-
tics (Ribas (2008)) or near-field vision (Eustice (2005)),
because electromagnetic waves are strongly attenuated in
the water. Secondly, underwater scenarios are in general
unstructured and require 3D navigation (6-DOF motion),
while most current SLAM solutions are used on man-made
(geometrically simple) indoor spaces, where a 2D map
representation is sufficient. Therefore, the use of SLAM
on AUV navigations requires further testing and improve-
ments.

The main contribution of our approach is the strategy used
to decide whether to fuse the submaps. This decision is
made on the basis that fusing two maps that share many
landmarks will produce a better update than fusing two
maps that only share a few landmarks. The experiments
done with real data show a a bounded effect of the
linearization error and also a precise reconstruction of the
map since the drift suffered in shorter distances is smaller,
and the data association can be more robustly solved as
compared to other state of the art techniques.

The rest of the paper is structured as follows: Section 2
describes the novelty of our SLAM approach. The standard

Algorithm I: Selective Submap Joining SLAM

begin mission

while navigating do

x̂i, P̂i = EKF SLAM() ← (Build submap Mi)

x̂G, P̂G = build global map(x̂i, P̂i)

HLoop = check possible loops(x̂G, P̂G)

for j = HLoop do

refer Mi and Mj to a common base reference

Hij = data association(x̂i, x̂j , P̂i, P̂j)

if Hij > threshold then

x̂ij , P̂ij = map fusion(x̂i, P̂i, x̂j , P̂j , Hij)

x̂G, P̂G = update global map(x̂ij , P̂ij)

endif

endfor

endwhile

EKF and the map fusion approach are also presented.
Section 3 describes the experimental setup and the results
obtained using a 6-DOF vehicle. Finally, conclusions and
future work are presented in Section 4.

2. SELECTIVE SUBMAP JOINING BASED SLAM

The basis of the Selective Submap Joining SLAM (SSJS)
(see Algorithm I) lies in the EKF-based SLAM. A sequence
of EKF-based submaps is built, as explained in Subsec-
tion 2.1. The size of these submaps is predefined by the
total number of features per map and by the uncertainty
boundaries. The links between local maps are stored in
a global level map, as described in Subsection 2.2. This
graph information allows checking whether a loop closing
event is occurring, following the strategy presented in
Subsection 2.3. The main novelty of our approach lies
in the fact that upon loop closure, we decide to fuse
two maps or to keep them independent depending on
the number of common landmarks, in contrast to other
approaches that fuse maps regardless of the information
they share (Williams (2001); Tardós et al. (2002); Estrada
et al. (2005); Paz et al. (2008)).

2.1 Map Building

A map is built using a standard EKF algorithm (Al-
gorithm II). The EKF estimates the state, at a certain
time step k, of a dynamic non-linear system from a series
of incomplete and noisy measurements, as its mean xk
and the covariance Pk. The algorithm iterates continously
through three steps: prediction, observation and update.
The prediction stage uses the motion model f to estimate
the current state x̂k from the previous time step xk−1, and
control inputs (i.e. odometry) uk, if available. (see (1)).
The hat notation denotes an estimate based only on this
prediction, before corrections from sensor input.

x̂k = f(xk−1,uk) P̂k = FkPk−1F
T
k + GkQkG

T
k (1)

In general, the motion model is a non-linear function,
which requires the following linearizations for predicting
the state covariance at time k:

Fk =
∂f

∂x
|xk−1

Gk =
∂f

∂x
|uk

(2)



Algorithm II: Map Building, EKF-SLAM

map initialization()

z0,R0 = get measurements()

x0,P0 = add features()

for k = 1 until end of map do

xod,Qod = get odometry()

x̂k|k−1, P̂k|k−1 = EKF prediction(x̂k−1,P̂k−1, xod,Qod)

zk,Rk = get measurements()

Hk = data association(x̂k|k−1,zk,P̂k|k−1,Rk)

x̂k, P̂k = EKF update(x̂k|k−1,P̂k|k−1, zk,Rk,Hk)

x̂k, P̂k = add features(x̂k,P̂k,zk,Rk,Hk)

endfor

return: Mi = {x̂k, P̂k}
*NOTE: end of map could either be the end of the mission

or a predefined interruption, for instance a

uncertainty boundary has been reached.

During the observation phase the vehicle’s onboard sen-
sors provide measurements about the true EKF state.
These are stored in an observation vector zk. In addition,
an observation model gives the predicted sensor readings
from the state estimate. This is represented by the non-
linear function ẑk = h(x̂k). The a-priori predictions from
the observation model ẑk are associated with the current
measurements using the Joint Compatibility Branch and
Bound (JCBB) by (Neira and Tardós (2001)). The JCBB
is very robust because it considers the relative location
between features. Knowing the data association Hk, the
innovation vector νk and the associated innovation covari-
ance matrix Sk can then be calculated (See (3)). These are
then used for the EKF update stage.

ẑk = f(x̂k) (3)

νk = zk − ẑk

Sk = HkP̂k−1H
T
k + Rk

The term Rk represents the covariance of the zero mean
white Gaussian observation noise (vk ∼ N (0,R)), and Hk

is the linearization of the observation model given by (4)

Hk =
∂h

∂x
|x̂k

(4)

The update stage provides an improved a-posteriori state
estimate using νk and the Kalman gain Wk.

Wk = P̂kH
T
k S
−1
k (5)

xk = x̂k + Wkνk

Pk = (I−WkHk)P̂k(I−WkHk)T + WkRkW
T
k

The observations that were not associated to any existing
landmark in the map are considered as new map features,
and xk and Pk are augmented to include the new features.

2.2 Submapping and Global Map Building

Local maps Mi Mi+1 ... Mj are built sequentially.
The reference frame of a submap is at the vehicle’s starting
point. This starting point of a local map Mi+1 coincides
with the last position of the previous mapMi. Therefore,

the relative transformation between two consecutive maps
Mi

Mi+1
T is the vehicle’s pose at the last position of Mi.

This link is stored in a global level map xG together with
the vehicle uncertainty at that position PG, see (6). A
new link is then stored every time a local map reaches its
end. The information contained in this global level is very
important to detect loop events, since a local map can be
referred w.r.t. the frame reference of any other local map.

xG =


.

Mi−1

Mi
T

Mi

Mi+1
T

.

 PG =


. . . .
. σ2
Mi−1
Mi

T
0 .

. 0 σ2
Mi
Mi+1

T
.

. . . .

 (6)

2.3 Loop Closing Strategy

A sequence of submaps and a global level stochastic map
have been built. Navigating in loops improves the map
consistency by revisiting previously seen portions of the
map which have higher levels of certainty, and propagating
the improved estimations through subsequently visited
regions. Our loop closing procedure begins with a search
within the global map level, every time a submap is fin-
ished. According to the proximity of different submaps in
the global level, loop closing hypotheses are made. After-
wards, the data association between those maps defined
as loop closing candidates is computed. If the correspon-
dences between maps are higher than a threshold, they
are joined and fused to a single map. Together with the
map fusion, the corresponding link in the global level is
corrected. This correction is directly obtained from the
map fusion since the links within the fused maps are
correlated and updated with all the information.

The map joining approach used is the one presented by
Tardós et al. (2002). Two independent local maps MBi =

(xBi ,P
B
i ), that contain a set of n features F1, ..., Fn, and

MB′j = (xB
′

j ,P
B′
j ), that contains a set of m features

E1, ..., Em, are joined by referring them both to the same
reference. Therefore, the features from both maps are
expressed relative to the same base B forming a joint state
vector xBi+j and covariance matrix PBi+j (see (7)).

xBi+j =

[
xBi
xBj

]
PBi+j = JiP

B
i J

T
i + JjP

B
j J

T
j (7)

Where the matrices for the Jacobian Ji and Jj are in (8).

Ji =
∂xBi+j

∂xB
i

Jj =
∂xBi+j

∂xB
j

(8)

Assuming that the number of features shared between
MBi and MBj is above the threshold, a data association
algorithm such as the JCBB is carried out. Features from
MBj are understood as new measurements for the features

from MBi . Therefore, a non-linear measurement matrix
ẑiji = hiji mapping a feature EBji corresponding to a

feature FBi needs to be linearized by means of Jacobian
computation (see (9)).

Hiji =

[
∂hiji

∂xB
vi

0 ... 0
∂hiji

∂xB
Fi

0 ... 0
∂hiji

∂xB′
Eji

0 ... 0
]

(9)



Fig. 1. The REMUS-100 AUV.

Fig. 2. Vehicle trajectory for the entire mission.

Afterwards, the local map information and links between
maps are improved using the EKF update equations
(see (5)). Once the joint maps have been updated, the rows
and columns corresponding to common landmarks from
Mj are removed from the joint state to avoid repetitions.

3. EXPERIMENTAL RESULTS

The AUV REMUS-100 in Fig. 1 was used to test our
algorithms with real-world data. The vehicle was sent
underwater to perform a reconaissance mission. During
the mission the vehicle navigated a large area, about
300m × 400m. The trajectory consisted of a large number
of loops, i.e. revisiting the same area several times (Fig. 2).
The vehicle maintained a depth of 12-14 meters. The
scenario’s sea floor was rather flat (oscillating around
16 meters), but with several salient objects. The total
navigation time was almost 4 hours. Our algorithms were
then tested offline using the navigation and measurement
data gathered during the mission.

The vehicle was equipped with a DVL and IMU, giving
navigation data relative to the vehicle reference frame
such as velocities, orientations and depth. In addition, the
vehicle was carrying a side-scan sonar pointing both ways,
starboard and port. From the navigation information
provided by the sensors, the vehicle state can be defined
by a 9D-vector, composed of the 6-DOF vehicle pose
(x y z φ θ ψ)T and the vehicle frame linear velocities
(vx vy vz)T .

The map was composed of objects, rocks and other de-
tectable features. These features’ states are defined as
3D points (xli yli zli)

T . Note that the 3D point of an
object represents the gravity centre of the object. Feature
extraction from sonar measurements was accomplished by

the Seebyte AutoTracker software (Evans et al. (2003)).
In addition to feature information, the side-scan sonar
provided a measure of the altitude, i.e. the distance from
the sensor to the seabed. Therefore, the joint state vector
estimate x̂ for our problem contains both vehicle state and
map information, as shown in (10).

x̂ = (xV yV zV φV θV ψV vx vy vz ... (10)

... xl1 yl1 zl1 ... xli yli zli ... xln yln zln)T

The motion model for the REMUS-100 is a 6-DOF con-
stant velocity kinematics model as shown in (11). Where
xk−1

xk
R is the rotation matrix necessary to go from instant

k − 1 to instant k (as explained in Appendix A).

xk
yk
zk
φk
θk
ψk

vxk

vyk

vzk


=



k−1
k R

[
vxk−1

dt
vyk−1

dt
vzk−1

dt

]
+

[
xk−1
yk−1
zk−1

]
φk−1
θk−1
ψk−1
vxk−1

vyk−1

vzk−1


(11)

The observation model gives the predicted sensor pose
from the last known position, and is represented by the
non-linear function ẑk = h(xk) and its linearized version
Hk in (12).

Hk =
∂h

∂x
|xk

=

[
Hk,o

Hk,v

Hk,d

]
(12)

Through the sensors of our system, we obtain measure-
ments for the vehicle’s orientation, linear speeds and the
depth, the altitude (seabed depth), and salient feature
positions (see Fig. 3). The linearized observation models
are the ones shown in (13) for the orientations, (14) for
the velocities, and (15) for the depth.

Hk,o =

[
0 0 0 1 0 0 0 0 0 0 . . . 0
0 0 0 0 1 0 0 0 0 0 . . . 0
0 0 0 0 0 1 0 0 0 0 . . . 0

]
(13)

Hk,v =

[
0 0 0 0 0 0 1 0 0 0 . . . 0
0 0 0 0 0 0 0 1 0 0 . . . 0
0 0 0 0 0 0 0 0 1 0 . . . 0

]
(14)

Hk,d = [ 0 0 1 0 0 0 0 0 0 0 . . . 0 ] (15)

3.1 Computational Time

Two of the algorithm’s parameters, the number of features
per submap and the threshold for map joining, were
tuned to evaluate computational performance. Figs. 4
and 5 show that for our dataset, the shortest execution
times occur for submaps containing between 10 and 15
features, while joining submaps that have above 40% of
their features in common.

3.2 Consistency Analysis

Map consistency is shown qualitatively in Fig. 6. This
figure compares the trajectory given by dead reckoning



Fig. 3. Schematic representation of the side-scan sonar
measurement procedure.

Fig. 4. Minimum, maximum, and mean mission execution
times for a given submap size while varying the map
joining threshold.

Fig. 5. Threshold values which gave the minimum mission
execution time for each submap size.

to the one obtained by our SSJS and LBL. The LBL
provides an accurate positioning of the vehicle, therefore
it can be considered as the ground truth. Notice that our
SSJS SLAM approach clearly improved the dead reckon-
ing (DR). Another example that shows the consistency of
our approach is shown in Fig. 7. This figure shows that the
discrepancy between LBL and SSJS is always kept inside
the uncertainty boundaries, which means that the filter
will not cause divergences due to overconfidence. However,
when the size of the submaps is increased, the estimation
becomes overconfident, which will lead to inconsistencies.
This was an expected result, as with large submaps the
approach tends to be a standard EKF, leading to the
conclusion that submap size is an important parameter
for map consistency as well as computational time.

Fig. 6. Detailed excerpt from trajectory estimates. The
results shows that our SSJS SLAM provides a path
estimate that is closer to the LBL ground truth,
compared to dead reckoning (DR).

Fig. 7. Example of a consistent configuration for our
approach, where the discrepancy between LBL and
SSJS (real error) is always lower than the uncertainty
boundary (estimated error).

4. CONCLUSIONS

The Selective Submap Joining SLAM approach presented
in this paper has been demonstrated to be suitable to con-
sistently map large scale scenarios. The main contribution
of our approach is the local map fusion strategy. The local
map fusion strategy determines whether or not to fuse two
local maps, depending on the amount of information they
share. We have shown that our map creates consistent
maps under the REMUS-100 Dataset.

As future work, new datasets will be used, as well as the
feature extraction algorithm will be added to the SLAM
approach in order to check the whole method on-line.
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Appendix A. 6-DOF TRANSFORMATIONS

Following the coordinate frame notation introduced in (Smith
et al. (1988)) we define a 6-DOF pose of frame j with
respect to frame i as in (A.1).

xij = [xij , yij , zij , φij , θij , ψij ]
T

(A.1)

In this notation, xij , yij , zij are the 3-vector translation
form i to j expressed in frame i, and φij , θij , ψij is a 3-
vector of xyz-convention roll, pitch and yaw Euler angles.
From these Euler angles the 3×3 orthonormal rotation
matrix that rotates frame j into frame i is defined as
in (A.2).

i
jR = rotz(ψ)T roty(θ)T rotz(φ)T (A.2)

Given the orthonormal rotation (A.2) together with the
translation, we can obtain the homogeneous 4×4 corre-
sponding transformations matrices i

jT and j
iT as in (A.3).

i
jT =

[
i
jR

i
jt

0 1

]
j
iT =

[
i
jR

T −i
jR

T i
jt

0 1

]
(A.3)

Given the pose vector xij and xjk, the frame k can
be expressed w.r.t. frame i according to (A.4). The
associated Jacobian to the composition of transformations
is given by (A.5). The Jacobians are necessary to compute
covariance estimates.

i
kT = i

jT
j
kT

xik = xij ⊕ xjk = [xik, yik, xik, φik, θik, ψik]
T
(A.4)

J⊕ =
∂xik

∂(xij ,xjk)
= [J⊕1 J⊕2] = [

∂xik

∂xij

∂xik

∂xjk
] (A.5)

The notation ⊕ and 	 is used to denote the composition
and inversion of transformations described by Smith et al.
(1988). In order to reverse a coordinate frame, the inverse
transformation (A.6) together with its associated Jaco-
bian (A.7) is needed. This inverse transformation provides
the coordinate frame i with respect to frame j (i.e. xji),
given the pose xij .

j
iT = i

jT −1

xji =	xij = [xji, yji, xji, φji, θji, ψji]
T

(A.6)

J	 =
∂xji

∂xij
(A.7)

Finally, given the poses xij and xik it is possible to obtain
the relative pose xjk by combining the two previous oper-
ations, as expressed in (A.8) together with its associated
Jacobian in (A.9).

j
kT = j

iT
i
kT =i

j T −1 i
kT

xjk = xji ⊕ xik = 	xij ⊕ xik =

= [xjk, yjk, xjk, φjk, θjk, ψjk]
T

(A.8)

J	⊕ =
∂xjk

∂(xij ,xik)
= [J⊕1J	 J⊕2] (A.9)


