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Abstract. Many motion segmentation algorithms based on manifold
clustering rely on a accurate rank estimation of the trajectory matrix
and on a meaningful affinity measure between the estimated manifolds.
While it is known that rank estimation is a difficult task, we also point
out the problems that can be induced by an affinity measure that neglects
the distribution of the principal angles. In this paper we suggest a new
interpretation of the rank of the trajectory matrix and a new affinity
measure. The rank estimation is performed by analysing which rank leads
to a configuration where small and large angles are best separated. The
affinity measure is a new function automatically parametrized so that it
is able to adapt to the actual configuration of the principal angles. Our
technique has one of lowest misclassification rates on the Hopkins155
database and has good performances also on synthetic sequences with
up to 5 motions and variable noise level.

1 Introduction

Given a cloud of features tracked throughout a video sequence, the motion seg-
mentation problem consists of clustering together features that follow the same
movement. Such a problem is a fundamental step for many computer vision
tasks like robotics, inspection, video surveillance, and many other applications.
Motion segmentation has become even more important after the introduction
of the structure from motion algorithms, which can mostly deal with only one
motion at a time [8].

A 3D cloud of P points that belong to N independent and rigid motions can
be mapped onto the video sequence through affine projection. The 2D position
of each point at each frame can be stored into a trajectory matriz W € R2EXP
where F' is the total number of frames of the input sequence. Assuming no
noise and no outliers, most of the rigid motion segmentation algorithms based
on manifold clustering rely on a simple assumption: each independent motion
generates a local subspace of size at most 4, therefore the union of the local
subspaces generates a global subspace of size at most 4N, size that corresponds
to the rank of W.

Two main ideas distinguish the majority of motion segmentation algorithms
based on manifold clustering that can be found in the literature: the first is how
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they estimate the manifold generated by each trajectory, the second is how they
group them through the selection of suitable common properties.

Related Works on Motion Segmentation via Manifold Clustering.
In [10] the authors use the Generalized Principal Component Analysis (GPCA)
in order to fit a polynomial of degree N to the data, where N is the number of
subspaces. Then, they estimate the basis of the subspaces using the derivatives
of the polynomial and they build a similarity matrix based on the cos? func-
tion of the principal angles (PAs) between the subspaces. Another way for the
subspace estimation is via the singular value decomposition (SVD) of W, like
in the Local Subspace Affinity [11] framework (LSA). LSA also uses the PAs
between subspaces in order to build the affinity matrix, however, LSA adopts
a different similarity function. An Enhanced LSA (ELSA) is proposed in [12]
where one of the improvements is a more robust model selection for the estima-
tion of the global subspace size. Also in [6] the dimension of the global subspace
is at the center of the study, they suggest lower and upper bounds together with
a data-driven procedure for choosing the optimal ambient dimension. In [3], a
new way for describing the subspaces called Sparse Subspace Clustering (SSC) is
presented. The authors exploit the fact that each point (in the global subspace)
can be described with a sparse representation (obtained by an ¢; optimization)
with respect to the dictionary composed by all of the points. The final similarity
matrix is built using the coefficients of the sparse representation. Another idea
is used in [4], where the authors propose a subspace segmentation algorithm
based on a Grassmannian minimization approach. The estimation of the sub-
spaces is performed via the Maximum Consensus Subspace (MCS) criteria. The
same framework is further extended by using the Normalized Subspace Inclusion
(NSI) similarity measure [5] between the PAs of the estimated subspaces. The
Agglomerative Lossy Compression (ALC) algorithm [7] differs from the previous
methods in that it does not require a similarity matrix. ALC is an agglomerative
strategy that consists of minimizing the segmentation coding length in order to
find the shortest coding length which is theoretically the optimal.

All of these techniques rely on the ability of the algorithms to estimate the
subspaces and then to compare them (with exception of ALC). As shown in [9,
12] the size estimation of the global subspace (when required) is a critical and
very difficult step. Moreover, the similarity measures used until now are rigid
as they always assume that the features between similar and different subspaces
are well separated. However, we show in section 2.4 that such an assumption is
not always verified.

Our Contribution. In this work we provide two main contributions: a new
interpretation of the global subspace size estimation and a new similarity mea-
sure between subspaces. Our new subspace size estimation does not depend on
any sensitive parameter, and it is able to select the dimension of the global sub-
space where the distribution of the PAs is the most suited for the clustering step.
Moreover, our similarity measure is able to dynamically adapt to the distribution
of the PAs.
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The results of these two contributions are evaluated on the LSA framework.
We compared our model with some state of the art techniques [11,9,7,12,5, 3]
on the Hopkins155 database [9], showing that our proposal outperforms all of
the LSA-based algorithms, providing one of the lowest misclassification rate in
the literature. Our method will be also applied on synthetic sequences from 2
to 5 motions with a controlled noise level in order to test the robustness against
noise and the behaviour with more than 3 motions. Matlab source code of our
algorithm can be found at: http://eia.udg.es/~zappella.

2 Our proposal

In this section we present a new rank estimation for W based on the cluster-
ization level of the principal angles and a new adaptive similarity measure for
principal angles. We apply these two techniques to the LSA framework as it
is theoretically able to deal with different types of motion: independent, artic-
ulated, rigid, non-rigid, degenerate and non-degenerate. Before going into the
detail of our proposal we introduce a convenient notation and we discuss some
issues regarding the principal angles.

2.1 Notation

Given a collection of N subspaces, the PAs between two subspaces S; and Sy,
for j,l = 1,..., N, are defined recursively as a series of angles 0 < 6; < ... <
0; <...< 0y <m/2, where M = min{rank(S;), rank(S;)}:

cos(f1) = max uTv=ulv
( 1) u€S;,veES] 171 (1)
cos(f;) = max ulv=ulv,Vi=2,...M
u€S;,veES)
such that: |lu]| = ||v|| = 1, uTu; = 0, vTv; =0, Vj =1,...,i — 1. The vectors
U1,...,u; and v1,...,v; are the principal vectors (u and v being two generic
principal vectors). We denote with:
0; (S5, 1) 2)

the i*" PA between the subspaces S; and S; computed when the estimated size
of the global subspace is r. As j and [ vary we define the set:

er ={67(8;,8), j,l=1,...,P} (3)

Finally, we define:

Tmax

O; = U o; (4)

where rp.x is the upper bound of the global subspace size. For an at-a-glance
overview of our notation refer to Fig. 1(a).
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Fig. 1. Small random subset of the PAs of @ (largest PAs) of the sequence 1IR2RCT_A
taken from the Hopkins155 database. PA between similar subspaces are represented
with blue squares, PAs between different subspaces are represented with red asterisks.

2.2 Issues Regarding the Behaviour of Principal Angles

PAs between two subspaces are an efficient measure of orthogonality when the
exact subspace bases are known. However, when the bases are estimated there
are some issues that should be taken into account, especially when the exact
size of the global subspace is unknown. In [12] the behaviour of PAs, computed
following the LSA algorihtm, when the estimated rank r of the global subspace
changes is studied. The authors explain that the trend of PAs, going from an
underestimation to an overestimation of r, is overall increasing typically starting
from 0 radians and ending in 7/2 radians, as in Fig. 1. In the same study it is
explained that despite the overall increasing trend, the PAs may have oscillations,
as in Fig. 1(b), due to the fact that when the rank is underestimated the bases
are not well defined, while when the rank is overestimated the extra components
introduced act like noise.

In order to reduce the influence of these oscillations we propose a polyno-
mial interpolation of the PAs across the different ranks. We avoid the trivially
useless interpolation of order 1. The interpolation of order 2 is decreasing after
its maximum, this does not fit with the increasing behaviour of the PAs. The
interpolation of order 3 is able to smoothly follow the PAs trend, as shown in
Fig. 1(a). Interpolation of higher degrees would adhere too much to the data
making the interpolation not effective. We conducted different tests on synthetic
and real sequences that confirm the PAs behavior and the reliability of the in-
terpolation of order 3.

2.3 Rank Selection via Principal Angles Clusterization (PAC)

One of the most recognized weaknesses of LSA is the lack of robustness of the
Model Selection (MS) procedure for the estimation of the rank r:

A
r=argmin | =—— + kr) (5)
(s

T 2
=1 >\z
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\; being the " singular value of W, and k a parameter that depends on the
noise of the tracked point positions. Eq. (5), is extremely sensitive to changes
of the parameter k. On the other hand, k is necessary in order to deal with
sequences with different amounts of noise and number of motions. In [9] the
authors decided to avoid the use of MS due to the difficult task of finding a
value of k that could cope with all of the sequences of the Hopkins155 database.
Therefore, they fixed the global subspace size to 4N. Fixing the global subspace
size to 4N implies that the motions are all rigid and fully independent. Such
an assumption reduces the efficiency of LSA. In order to solve this problem
in [12] the authors present an algorithm named ELSA with an Enhanced Model
Selection (EMS+). EMS+ consists of computing different affinity matrices, by
using different k£ values with the MS formula, and selecting the affinity matrix
with the maximum entropy. This technique allows homogeneous affinity matrices
(which correspond to over- or underestimation of the rank) to be discarded, and
to use an affinity matrix with the highest content of information. ELSA with
EMS+ performs better than LSA with MS. Nevertheless, as the authors explain,
EMS+ tends to underestimate the rank and it fails in the ideal case when the
affinity matrix is binary.

The problem of the rank estimation in real cases, with noise and dependent
motions, is challenging because the eigenvalue spectrum of W tends to become
smooth and the selection of a threshold becomes a difficult task. Therefore, we
decided to renounce the computation of the rank in the traditional way and
we studied the distribution of the PAs in each ©;. The fundamental idea on
which our proposal is based is that the rank r should be selected, for each fized
i, as the one that mazximizes the clusterization level of the PAs in the set ©;.
By clusterization we mean that the angles between similar and different local
subspaces are well separated. In the ideal case (no noise and perfectly orthogonal
local subspaces) the PAs would cluster around 0 and /2. In real cases the PAs
are not perfectly clustered, however, it is possible to evaluate the clusterization
level for each O] and select the one with the highest clusterization level for each i.
We propose to measure the clusterization of each 6] by using a function inspired
by the Linear Discriminant Analysis, we call it Principal Angles Clusterization
(PAC):

PAC(T) = (tta — ppac)® + (u — ppac)? (6)
ag(ga) +0.g(ab)

where ppac is the center of @ computed as the mean of the P largest and
smallest angles, u,, 0, and up, op are the arithmetic means and the standard
deviations of the PAs that are above and below upac, respectively. Our tests
have shown that P = 25% of the O gives a upac that is robust with respect
to the presence of outliers (due to oscillations of the PAs). Note that upac is
not computed as the mean of all the PAs to avoid biases due to the unbalanced
number of representatives of one or the other class. In our experiments r goes
from 2 to 8N.

An important component of the formula is the functional exponent (o).
If we used v(¢) = 2, as in the LDA formulation, the maximum of the PAC
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Fig. 2. v(o) function used in the PAC formula.

function would always be in the extremes of its domain. In fact, it was explained
in section 2.2 that when r ~ 2 the PAs tend to cluster around 0, hence the tiny
values of the o’s that appear in the denominator of Eq. (6) would boost the PAC
value, despite the fact that the p’s are very close to each other. At the other
extreme, when 7 ~ rp,., the p’s increase and become well separated even though
the two classes partially overlap. However, as the ¢’s remain smaller than 1, the
global effect would be a magnification of the numerator, boosting again the PAC
value. Hence, it is necessary to use a variable exponent that takes small values
at the extremes while approaching to 2 for middle values.

A simple function that complies with these requirements is the following;:

@102+ a0 ifo<m
7(0)={ T o <m/8 (7)

0.1 ifo>mn/8

The numerical coefficients a; and ay are not chosen after a tuning procedure
but are determined through the following reasoning. Assuming an average case
with PAs uniformly distributed, ppac = 7/4, o = 37/8 while p, = /8.
Therefore, the upper bound of 4,0, < 7/8. The numerical coefficients a; =
—50.63 and as = 20.13 define a function that fulfills the previous request mak-
ing the parabola passing through the points A = (0,0), B = (7/16,2) and
C = (n/8,0.1), as shown in Fig. 2. When o’s > 7/8 the angles are excessively
spread and the two classes are likely to overlap. For this reason we maintain
~v(o) =0.1.

Summarizing, we select for the next step the set of angles in the O] with
the highest PAC value for each i. Note that the selected rank may be different
for each ©;. This is a new interpretation of the size of the global subspace: we
are not estimating the rank of W, but we are identifying the “most expressive”
dimension for each set ©; in terms of clusterization level. An example of the
PAC function applied to a ©; can be seen in Fig. 3(b).
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Fig. 3. Example of a random subset of the PAs of Oy (largest PAs, 3 rigid independent
motions, hence maximum rank 12). PAs between similar subspaces are represented with
blue squares, PAs between different subspaces are represented with red asterisks. The
affinity functions computed at the rank r = 6,10, 16, appear in black. In Fig. 3(a)
the inflection point of the function is denoted with a magenta cross. In Fig. 3(b) the
magenta dotted line is pupac (which for every r it is also the inflection point of the CbA
function), the green line-dot-line is the value of the PAC function.

2.4 Sum of Clusterization-based Affinity (SCbA)

Another fundamental step of manifold clustering based algorithms is to compare
subspaces through an affinity measure (as a measure of (dis)similarity). In the
literature it is possible to find many affinity measures with different character-
istics. A discussion of different affinity measures can be found in [5].

All affinity measures applied to PAs share a common assumption: the angles
between similar subspaces are always close to zero, and the angles between dif-
ferent subspaces are always close to /2. None of them takes into account that
the recursive definition of the PAs tends to force the angle between two sub-
spaces to increase as we move from @] to O, ,. Moreover, none of them takes
into account that the angles in a given ©; tend to increase when r increases, as
explained in section 2.2.

In the example of Fig. 3(a) we have randomly plotted some PAs of @y of
the sequence 1IR2RCR (Hopkins155 database). In black it is possible to see the
cos? function. The cos? function always has the same shape and the inflection
point (magenta cross) is always in the same position, regardless of the rank to
which it is applied. As a consequence of this rigidity, if the estimated rank is
r = 6 all of the PAs have an affinity value that falls before the inflection point.
Opposite cases are when r = 10 and r = 16, in which most of the PAs have an
affinity value after the inflection point. Therefore, the cos? function, as well as
any other rigid function, is very sensitive to the rank estimation.

The affinity measure that we propose is able to adapt itself to the distribu-
tion of the PAs in O], so that it minimizes the negative effects of a wrong rank
estimation and it emphasizes the difference between similar and different sub-
spaces. We define the not normalized Clustering-based Affinity (CbA) between
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two generic subspaces Sj, S, for j,l = 1,..., P, for a given O] as the function
CbA : @: — ]RWL’
B
CbhA —1/67(S;
THA(! (S;, 81)) = exp (_ﬁﬂ (9z (Sj,sl)> ) “
o

where 6! is the it" principal angle computed at the rank r. a and 3 are the two
positive parameters (a > 0, 8 > 2) that allow the function to change in relation
to the distribution of the PAs. We can now define the normalized Clustering-
based Affinity (CbA) as follows:

“CbA(07(S;,51)) — min(CbA)
max(CbA) — min(CbA)

CbA(0; (S5, 51)) = (9)
The arrangement of the parameters of Eq. (8) has been chosen so that CbA
has a negative first derivative over all its domain, while its second derivative is
negative for 6 < a, positive for § > a and equal to zero for § = a. We propose
to set a = ppac so that the inflexion point occurs at the estimated center of the
distribution. In this way the function is always stretched or compressed in order
to fit the distribution of the PAs. The 8 parameter is used in order to emphasize
the differences between similar and different subspaces in an automatic fashion.
In fact, 8 controls the slope of the function: the higher the (3 the steeper the
slope. We would like an affinity function with a steep slope when the PAs are
well clustered and a more gentle slope when the clusterization is not clear. A
natural candidate for 3 is § = PAC(OY)-F, as the PAC function gives a measure
of how well clustered the two groups are and how far away the two centroids
are. F is a constant, a boosting factor, that we use in order to give more or
less importance to 8. In all of our experiments we have used F = 5 which has
empirically shown to be a suitable factor.

In Fig. 3(b) we plot three CbA functions applied to different ranks r within
the set @),. In this picture it is possible to appreciate that, thanks to the param-
eter a, the inflection point changes so that it always corresponds to the pupac
value, hence minimizing the effect of possible errors in the choice of the rank r.
Moreover, thanks to the parameter § the slope of CbA changes depending on
how well the small angles are separated from the large angles.

The final affinity between two subspaces is defined as the normalized weighted

Sum of CbA (SCbA):

M T T
SObA(S,, 51) Dt CPAI (S5, S)IPAC(E)) 0)
L PAC(O)

M being the minimum size between subspaces S; and S;. In this work we have
not investigated the estimation of the local subspace size which was fixed to
4. Note that by weighting the CbA values by the PAC function we give more
importance to ©) where the angles between similar and different subspaces are
well separated.

SCDbA respects the axioms of an affinity function proposed in [5]:
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— symmetry: from Eq. (10) we see that SCbA(S;, S;) = SCbA(S;, S;);
— orthogonality consistency: given that

SjJ_Sl < Gf(Sj,Sl):w/Q (11)
Vi=1,...,M, from Eq. (9) and (10) it follows that:

SCbA(S;, S) =0 (12)

— inclusion consistency: given that

S; C S <= 6;(S;,5)=0 (13)
Vi=1,...,M, from Eq. (10) it follows that:

SCbA(S;, S)) =1 (14)

2.5 Summary of our proposal

In this section we summarize our proposal: LSA+PAC+SCDbA.

1.

Build a trajectory matrix W;

2. for r = 2 t0 Tyax (in our tests ryax = 8N)

o Gk W

(a) project every trajectory, which can be seen as a vector in R?¥, onto an
R” unit sphere by singular value decomposition (SVD) and truncation
to the first » components of the right singular vectors;

(b) exploiting the fact that in the new space (global subspace) most points
and their closest neighbours lie in the same subspace, compute by SVD
the local subspaces generated by each trajectory and its nearest neigh-
bours (NNs);

(¢) compute PAs between all of the subspaces;

smooth the PAs;

apply PAC to find the best r for each ©; (i =1... M);

apply SCbA to build the affinity matrix A;

cluster A by K-means in order to have the final motion segmentation.

More details can be found in the source code available at: http://eia.udg.es/
~zappella.

3

Experiments

We tested our proposal on the 155 real sequences of the Hopkins155 database
and we compared our performances with: LSA + MS (with & = 10773, best
k value as explained in [12]), ELSA EMS+ (results extracted using available
code [12]), LSA 4N (results taken from [5]), MSC+NSI (results taken from [5]),
ALC (results taken from [5]), and SSC (results taken from [3]).

Table 1 shows the average misclassification rates and the standard deviations

of each method. The misclassification rates are presented for each type of video
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Table 1. State of the art comparison. Misclassification rates on the Hopkinsl155
database. In brackets the number of sequences for each type of video. NA stands for
value not available.

2 Motions Checkboards(78) Articulated(11) Traffic(31) All types(120)
Method % Ave % Std % Avg % Std % Avg % Std % Avg % Std
LSA + MS 5.15 9.61 3.65 4.29 4.95 8.66 4.96 8.96
LSA 4N 2.57 6.79 4.10 6.47 543 11.17 3.45 8.14
ELSA EMS+ 2.20 7.19 2.32 3.87 5.58 10.89 3.08 8.17
ALC 1.49 4.58 10.70  15.00 1.75 1.83 2.40 6.35
MCS + NSI 3.75 7.89 8.05 8.51 1.69 7.00 3.61 7.84
SSC 1.12 NA 0.62 NA 0.02 NA 0.82 NA
Our Proposal 1.00 5.64 1.75 3.13 0.57 1.06 0.96 4.67
3 Motions Checkboards(26)  Articulated(2) Traffic(7) All types(35)

Method % Avg % Std % Avg % Std % Avg % Std % Avg % Std
LSA + MS 19.09 13.02 9.57 13,54 16.06 5.72 1794 1191
LSA 4N 5.70 10.89 7.25 9.30 25.30 19.05 9.71 14.71
ELSA EMS+ 8.76 15.18 6.38 9.03 6.354 12.36 8.15 14.14
ALC 5.00 9.14 21.08 28.87 8.86 13.16 6.69 11.48
MCS+NSI 2.29 5.73 6.38 9.03 1.67 1.51 2.87 5.28
SSC 2.97 NA 1.42 NA 0.58 NA 2.45 NA
Our Proposal 2.41 8.05 3.72 5.26 1.11 1.87 2.22 7.03

sequence (checkboards, articulated and traffic). Firstly, it is possible to see that
our proposal outperforms every LSA-based technique proving that our method
improves the weaknesses of LSA. Also when the other techniques are taken into
account, our proposal has, together with SSC, the lowest misclassification rates
both with 2 and 3 motions (the average misclassification rate of our proposal on
the whole Hopkins155 database is of 1.25%). However, we would like to remark
that for our algorithm the only two free parameters, (P and JF) were fixed for the
whole database whereas it is not clear from [3] whether the results of SSC where
obtained with a fixed set of parameters or each sequence required a different set.

In Fig. 4 the histogram of the misclassification rates of our proposal is pre-
sented. The majority of the sequences, 134, has a misclassification rate smaller
than 1%, and the total number of sequences with a misclassification rate below
5% is 145. The median misclassification of every group is always 0% with the
exception of the articulated with 3 motions group where the median is equal to
the mean (due to the presence in this group of only 2 sequences).

As far as the computational time is concerned, the bottle neck or our method
is the interpolation process of all the PAs. In fact, on the whole Hopkins155
database our proposal required 147600 seconds, of which 143775 were spent for
the interpolation (Matlab implementation on Quad-Core AMD @ 2.4GHz, with
16 GB RAM).
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Fig. 4. Histogram of the misclassification rate of our proposal.

In order to verify how our proposal performs on a different database, we
tested it on synthetic sequences with 2, 3, 4 and 5 rigid and independent motions
(10 different sequences for each number of motions) and an increasing noise
level. Specifically, each sequence is composed of 50 frames, with rigidly rotating
and translating cubes. Each cube has 56 tracked features. Then we created 2
additional databases adding noise with standard deviations of 0.5 and 1 pixel
to the tracked feature positions. In total we used 150 synthetic sequences. The
misclassification rates are shown in table 2. All the misclassification rates are
smaller than 1%. For a given number of motions the misclassification remains
rather stable even when the noise level increases. Moreover, the behaviour of our
proposal even with 4 and 5 motions (more than the motions in the Hopkins155
database) is very satisfactory.

Table 2. Misclassification rates on synthetic sequences with 2, 3, 4 and 5 motions and
increasing noise level. In brackets the number of sequences for each type of video.

Motions 2(10) 3(10) 4(10) 5(10)

Our Proposal % Avg % Std % Avg % Std % Avg % Std % Avg % Std
Onoise = 0 0 0.0 0.24 0.31 0.36 0.35 0.68 0.39
Onoise = 0.5 0.09 0.28 0.12 0.25 0.31 0.22 0.75 0.43
Onoise = 1 0.27 0.60 0.24 0.31 0.31 0.22 0.75 0.36

4 Conclusions and Perspectives

We presented two improvements for motion segmentation based on manifold
clustering. The first improvement is a new way of selecting the global subspace
size based on the analysis of the principal angles clusterization, such that the
selected size is the one where the principal angles between similar and different
subspaces are best separated. The second improvement is a new affinity measure
that is automatically able to adapt itself in order to fit the distribution of the
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principal angles. The major achievement of this measure is that it can deal with
every distribution of principal angles minimizing the effect of an erroneous rank
estimation of W while maximising the distance between similar and different
local subspaces. The results of our experiments show that, even without changing
the value of the only two free parameters that we have, the misclassification rates
of our proposal are among the lowest in the literature.

Future works should aim to reduce the computational time of the algorithm
by adopting other ways for reducing the principal angles oscillations. Moreover,
better segmentations could be achieved by extending our algorithm to the esti-
mation of the local subspaces size.
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