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Abstract. This paper reviews new challenges in the area of long-term navigation, 
and new approaches to environment representation and robots capable of coping 
with dynamic environments. As a result of this review, we propose an appearance-
based simultaneous localization and mapping (SLAM) solution which represents 
the robot environment using an appearance-based topological map. Dynamic 
environment changes are dealt with using human memory and fixed action pattern 
concepts. The former is used to build a histogram to register local feature stability, 
the latter for robot navigation purposes. We take omnidirectional vision and laser 
range data to extract textured 2D scans as global features, and textured-vertical 
edges as local features for map updating and robot localization. From the 
navigational point of view, we consider visual potential field-based behavior to 
adjust high level motion commands. 
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Introduction 

The simultaneous localization and mapping (SLAM) problem has been under 
investigation for two decades. Excellent surveys have been written to keep SLAM 
solutions on-track [1]. Our state-of-the-art review, we have grouped the SLAM 
methods found into: a) simultaneous mapping and localization processes (on-line) [2]-
[13], and b) those with an off-line map learning phase [14]-[21]. SLAM approaches can 
be both geometric and non-geometric, and the latter includes topological maps that, 
merged with geometric information, provide human-readable information about the 
environment. Nowadays, SLAM solutions are combined with high-level environment 
representations such as dense 3D models [9], image qualitative descriptions [3] and 
appearance-based representations. These last represent the environment as a whole, not 
just by using local features (i.e., points or corners), which can easily change or 
disappear, but by using high-level image features with similarity measures for 
localization and place recognition purposes. These environment models are widely 
used in service robots [9], robots for disabled people [8], and autonomous underwater 
vehicles for structure inspection [22]. In general, the latest trends have focused on 
merging geometric information for specific robot navigation issues, and appearance-
based information for human-robot interaction. 

We propose an appearance-based SLAM solution with two main contributions. 
The first is our implementation of human memory models [23] to deal with dynamic 
environment mapping and long-term navigation. This concept has been used from 
mobile robot programming architectures [24] until environment models [13]. In this 



model short-term memory (STM) and long-term memory (LTM) interact to update, 
actively forget or reinforce past observations. Our approach, in contrast to [13], builds 
a histogram which stores stability values about local features and increases (if feature is 
detected) or decreases (if the feature is no longer available) the local feature bin value.  
The second contribution is an adaptation of a human behavioral concept called fixed 
action patterns (FAP) [25], which allows, in a robotics context, the implementation of 
well-defined or optimal motion controllers, but with a final command that is adjusted 
by sensory inputs to deal with dynamic changes in the environment. Using these 
concepts, we propose an appearance-based topological map building technique, in 
which each node stores short- and long-term features, their localization data, the 
environment appearance, and a parameterized robot-heading controller. In contrast to 
other approaches, we believe our proposal is able to cope with changing environments 
and long-term mapping and navigation, and in addition marks a step forward in 
semantic environment representation [21], [26]. 

The remainder of this paper is organized as follows: Section 1 describes the state-
of-the-art, Section 2 presents our proposal, and Section 3 contains our conclusion. 

1. Related Work 

Table 1 shows our SLAM solutions review. The list has been classified, from left to 
right, by the simultaneousness of the mapping and localization process, the SLAM 
approach used, the similarity or matching method employed to modify the robot map, 
and the environment-type of each reference. It can be seen that the simultaneousness of 
the mapping and localization process is a very challenging task [2]-[13]. Even though 
appearance-based solutions are usually implemented in two-phase procedures – map 
learning and navigation [14]-[21] – this task division is not always possible in real 
environments, since appearance-based models often define untraceable image 
similarity conditions to build semantic maps [21], dense 3D representations [9], or 
environmental models with graph clustering properties [19]. SLAM approaches with 
appearance-based environment representation involve probabilistic [11], [12], hybrid 
topological-metric [10], particle filter [5], [6], machine learning [20] and native 
appearance-based approaches [7], [8]. However, they do not focus on dealing with 
dynamic environments due to the simultaneousness of their mapping and localization 
process and the complexity of the environmental features. Besides this, their 
environment representation is not suitable for either long-term navigation or 
representations exploiting details of the environmental structure, except in works such 
as [8], [13].  

The strength of appearance-based models lies in their ability to represent the 
environment through high-level image features, using similarity measures to decide if 
new information can be added to the robot map, which can often limit the Real-Time 
processing [7]. Table 1 also shows the most common approaches in environment 
description, such as color histograms, multidimensional histograms [16], SIFT and 
SURF descriptors [3], [17], eigen-images [15] and specialized descriptors like PHLAC 
[6]. One aspect is highlighted: the features and their descriptors do not exploit either 
details of the environment structure or natural sensor information representation, for 
example, works which consider omnidirectional vision [11][16]-[19]. Another 
important aspect is the robot environment, which defines the application’s scope and 
different kinds of challenges, such as occlusions, partial landmark knowledge, moving 



landmarks, unsuitable environment landmarks, illumination changes, and pedestrians 
[27], [28].  

Appearance-based SLAM solutions often use rich sensorial information. Sensors 
commonly employed are monocular, binocular, and omnidirectional vision, laser range 
finders, or a combination of these. Omnidirectional vision is receiving special attention 
nowadays due its long-term landmark tracking, one-shot environment sense regardless 
of heading, reduced perceptual aliasing, robust to occlusions, can be fused with range 
data, and is less sensitive to noise [12], [15]. Such advantages outweigh its 
disadvantages, such as: not constant vertical/horizontal resolution, low image 
resolution and mirror distortions [15].   
 

Table 1. SLAM solutions review 

Ref. Process Approach Similarity/Matching Method Environment 

[2] On-line Traditional SLAM SP-model features Indoor 

[3] On-line Traditional SLAM SIFT descriptors and cosine distance Outdoor 

[4] On-line Traditional SLAM Object saliency score and ICP Both 

[5] On-line Rao-Blackwellized particle filter SIFT, fastSLAM, Indoor 

[6] On-line Rao-Blackwellized particle filter Polar high-order local auto-correlat Indoor 

[7] On-line Appearance-based top. SLAM SIFT descriptors,L2 distance. Both 

[8] On-line Appearance-based top. SLAM Quad-tree Appearance-based content Indoor 

[9] On-line Appearance-based top. SLAM Vert. edges, DCT, Mahalanobis dist. Both 

[10] On-line Hybrid topological metric SLAM Sensed Space Overlap sim. func. Indoor 

[11] On-line Prob. appearance-based SLAM Features with DCT Indoor 

[12] On-line Prob. appearance-based SLAM Fourier transf. and mix. of Gaussians Indoor 

[13] On-line Adaptive appearance-based 
SLAM 

SURF features and nearest neighbor Outdoor 

[14] Off-line Appearance-base top. map. / nav.  Homographies Indoor 

[15] Off-line Appearance-base top. map. / nav. Eigenspaces, PCA, Hausdorff Fract Indoor 

[16] Off-line Appearance-base top.map. / nav. Color histograms and L2 distance Indoor 

[17] Off-line Appearance-base top.mapping  SIFT features, RANSAC estimator Indoor 

[18] Off-line Hybrid top. metric map Machine learning approach Indoor 

[19] Off-line Hybrid appearance-based SLAM SIFT features and L2 distance Indoor 

[20] Off-line Semantic mapping Machine learning approach Outdoor 

[21] Off-line Semantic mapping ICP based and kd-tree Both 

2. System Description 

With the above state-of-the-art in mind, our system proposal basically consists of four 
modules: perception, image analysis, mapping and localization, and robot navigation 
(see Figure 1). The perceptual module receives the 2D raw range data and the 



omnidirectional images, which are fused once a calibration procedure of both sensors 
has been performed. The image analysis module extracts 2D scan landmarks and local 
vertical edge features as soon as an image is available, and its corresponding textured 
planes, feature descriptors and similarity measures are calculated. These data are used 
to build a robot localization hypothesis, which is afterwards reinforced through the 
SLAM method used [29]. In this module the node’s appearance is initialized. At the 
mapping module, the system updates the map information in accordance with our 
interpretation of STM, LTM and FAP concepts. The last module is navigation, where a 
behavior programming approach is taken [30] with three main behaviors, listed in 
terms of priority from high to low as follows: a reactive visual potential field behavior 
to cope with dynamic environments; a mapping behavior for exploration tasks; and a 
FAP coordinator, which executes one of the heading controllers available. The 
arbitration of these three behaviors is performed through a cooperative coordinator. 
 

 

Figure 1. Process overview: perception, feature extraction, localization, mapping, and navigation modules. 

 

The perceptual module task, where image and depth information are fused, is 
summarized in Figure 2. To carry out this task, a camera model and a laser model must 
be obtained.  This can be done using some popular tools to calibrate these sensors such 
as [31] and [32]. Given a pixel (u, v) in the image plane, the orientation vector, as 
shown in Eq.(1), can then be recovered from the effective viewpoint to the 3D point 
[33].  

 

 

Figure 2. Omnidirectional and 2D range scan data fusion process. 
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where λ is the depth factor;  � � �� � ��	 is the orientation vector; and T is the 
transformation matrix with intrinsic and extrinsic camera parameters. Some 
formulations of T are depicted in [34].  A 3D point λX can be re-projected on the image 
plane using Eq. (2). 
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It is assumed the camera coordinate system coincides with the effective viewpoint. 
In the same way as with the camera model, the laser scanner assumes a previous 
calibration.  The laser and the omnidirectional camera are aligned along the Z axis of 
the camera mirror; but since this alignment is not exact, the corresponding offsets must 
be estimated through the calibration mentioned above. The extrinsic sensor model is 
shown in Eq. (3) 
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where, PINT is the calibration sensor matrix followed by the extrinsic sensor model, 

which assumes a Y axis pointing forward and a Z axis pointing upwards; δi is the i-th 
range reading; θi is the orientation of the i-th measure; dz is the distance between the 
camera effective viewpoint and the 2D scan center; and �� � ��	 are the coordinates 
of each measured point relative to the system frame. 

 

 

Figure 3. Description of plane extraction, vertical line features, their descriptors and scene interpretation. 

 

Figure 3 shows an outline of the image analysis module, where three goals can be 
observed: global and local feature extraction, and node initialization. The first goal 
extracts 2D scans, which are joined to textured planes from the actual scene as global 
features. Given a cloud of observed 2D scan points Po, we need to find out if Po 
matches a stored Pt of 2D scan points. If Po matches, local features are extracted and 



textured planes are built for localization and navigation proposes. If Po does not match, 
node initialization is performed. In order to see if Po and Pt match, the feature pose 
relative to the robot’s zo pose must be estimated as  shown in Eq. (4) [32]. 
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where xo, yo and θo are the estimated 2D scan positions; xt, yt and θt are the stored 
2D scan positions; and xr, yr and θr are the actual robot positions. zo is an initial guess 
based on the middle point of the current 2D scan. The actual 2D scan and the zo are 
used for alignment via an iterative closest point (ICP) algorithm [4], with Pt, and its 
covariance matrix estimation obtained using a saliency score measure [4]. If the 
saliency score of the 2D scan is larger than a given threshold, local features are used to 
refine the robot localization. Otherwise node initialization begins.  

The second goal extracts the local features and their descriptors to define a 
similarity measure. When an image is taken, two sets of features are found: the current 
image feature set and the node feature set. First, their similarity must be defined using 
the Mahalanobis distance as shown in Eq. (5), with the number of corresponding 
features greater than a given threshold. A similarity score is then defined as shown in 
Eq. (6) [13]. 

 

2�3 � 4∑ 6789�7:9;<=9<>    (5) 

?@A � BCD�C E 100  (6) 

 
where dij is the Mahalanobis distance between the i-th graph node and the actual 

image j; fik and fjk are the corresponding features descriptors elements; σi is the node 
standard deviation; Spq is the number of features between the images with a distance 
greater than a threshold; and Np is the number of node features. This is a simple and 
fast way to estimate how close the actual image is to the node image, thereby helping 
the robot localization process. We consider vertical edges directly extracted from the 
omnidirectional image to be local features, so the extracting process is fast and the 
relative 3D position can be calculated by using the omnidirectional camera calibration 
parameters. Next, the vertical edges are used as an axis around which to build a small 
textured window, and then compute the local feature descriptors. To speed up the 
matching process, a kd-tree is built with the node’s feature descriptors [8].  

The third goal is graph node initialization, which is launched when the robot visits 
a new place. An appearance-based environment representation at the map node is then 
built using textured planes, the local feature descriptors are initialized as LTM 



descriptors, local features are mapped on the textured planes, and the similarity 
measures are added. The textured plane representation is built using the 2D scan with a 
saliency score higher than a given threshold [35]. The scene texture is obtained from 
the original image. 

 

 

Figure 4. Appearance-based environment model and node content. 

 

We consider topological maps since they are compact, consume less computer 
memory, can be stored in efficient data structures, and speed up the navigation process 
[1]. The appearance-based mapping module adds other node information: feature 
localization, the local feature stability histogram, and our FAP approach. Two main 
goals are shown in Figure 4: robot localization and map updating. Robot localization 
uses global and local similarity measures to search the topological map. The result is a 
hypothesis about the robot’s position, which could be refined using Monte Carlo [6], 
Markov Models [1], particle filters [5], EKF, and Bayesian [28] approaches, but we 
prefer a relative submap method [29] since we want to avoid linearization issues arising 
from large pose uncertainties [27]. The motion model is given by the robot’s kinematic 
constraints. The observation model is based on the similarity measure given by Eq. (6) 
and the epipolar geometry estimation for omnidirectional images of LTM node features 
[34]. Localization information and the histogram of local feature stability are then 
updated.  

Map updating is requested once a new node is found, with the decision criteria 
being based on its similarity measure. The histogram values assigned to each feature 
descriptor are initialized in 1.0, and decrease if the feature descriptor is not present 
when the robot re-visits the place. Figure 4 shows the local feature stability histogram 
and a threshold, which shows whether the feature descriptor is an STM descriptor 
(values less than the threshold) or an LTM descriptor. The free navigation space, which 
is estimated using geometric robot constraints and the range data between the robot and 
obstacles around it, is valuable information to keep at each map node. This space is 
centered in the same submap frame used for robot localization [29]. Here, new graph 
connections are created to every other node if a similarity relationship exists. Our FAP 
concept approach adds a set of defined robot heading controllers between the actual 
node and linked ones, using the node position information and the robot’s free space. 
The parameters of each heading controller include lineal and rotational robot velocities 
in order to assure safe, smooth movement and reference heading.  

A robot’s environment can change dynamically, and safe movement must be 
guaranteed in most cases. Common methods used are occupancy grid-based navigation 
[1], motion planning [8], behavioral approaches [30], and potential field [1]. We take a 
behavioral approach using potential field-based methods, since we need fast responses 



in dynamic environments, and to avoid grid resolution and high dimensional work-
space problems. With regard to the navigation module, we consider two states: when 
the robot does not have a map, and when it has one.  

As a special case, there is a third state for dynamic change of environment 
occurring when the robot is in one of the two states above. This module takes a 
behavioral programming approach [30], in which three behaviors are cited from high to 
low priority as follows: a potential visual field, mapping, and FAP coordinator 
behavior. This last behavior is activated when the robot has a map; each time it 
achieves a node, it executes the associated controller, so that other nodes or a goal 
position can be attractors in the navigation task. The mapping behavior is activated 
when the robot finds new nodes to add, thereby allowing exploration tasks based on the 
free space available. Finally, the potential visual field behavior is a fast obstacle 
avoidance approach, which uses the information given by the perceptual module to 
adjust mapping and FAP behavior according to the environment sensed. 

3. Conclusion 

A review of SLAM and appearance-based solutions has been presented with desirable 
characteristics such as new environment representations, long-term navigation, dealing 
with dynamic environments, suitable environment-dependent features, and fewer 
occlusion problems. As a result of this state-of-the-art analysis, we propose a novel 
approach for appearance-based SLAM based on human memory and behavioral 
concepts. We think the manner in which the STM, LTM and FAP concepts have been 
proposed will allow appearance-based map building, dealing with changing 
environments, and long-term navigation. The STM and LTM concepts will allow local 
feature stability to register in the environment through histograms, and local feature 
epipolar geometry will be calculated using features classified as LTM in order to 
ensure optimum localization and mapping results, and smooth movements. The 
histogram values can be interpreted as a probability density function, such that each 
value represents the local feature likelihood at each map node. Global and local 
features, according to environment structure details, are considered: textured planes can 
be extracted from 2D scans and omnidirectional vision, and textured vertical edges can 
be extracted directly from an omnidirectional image, with both taking advantage of 
man-made structures to represent environment appearance. The FAP concept is used at 
the navigation stage, where sudden obstacles are safely avoided by adjusting FAP 
behavior through a visual potential field. We believe this work is a step towards the 
semantic representation of environments, which will make it possible for computational 
intelligence approaches to be applied to robots’ learning of places. 
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