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Registration of surfaces minimizing error propagation for a one-shot
multi-slit hand-held scanner�
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Abstract

We propose an algorithm for the on-line automatic registration of multiple 3D surfaces acquired in a sequence by a new hand-held laser
scanner. The laser emitter is coupled with an optical lens that spreads the light forming 19 parallel slits that are projected to the scene and
acquired with subpixel accuracy by a camera. Splines are used to interpolate the acquired profiles to increase the sample of points and Delaunay
triangulation is used to obtain the normal vectors at every point. A point-to-plane pair-wise registration method is proposed to align the surfaces
in pairs while they are acquired, conforming paths and eventually cycles that are minimized once detected. The algorithm is specially designed
for on-line applications and can be classified as a closing-the-loop technique, where there are not that many competing methods, though it has
been compared to the literature. Experiments providing qualitative and quantitative evaluation are shown by means of synthetic and real data
and we demonstrated the reliability of our technique.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The complete 3D acquisition of a given object, surface or
even scene has many research challenges and it is definitely in
the research interests of the computer vision community. Be-
sides, there are several applications which may benefit by such
complete acquisition such as reverse engineering, modeling,
metrology, visual inspection and even robot navigation.

Overall, there are diverse 3D acquisition systems which are
basically based on laser triangulation [1,2] and pattern projec-
tion [3], especially when dense images are required. These sys-
tems gather range images from which 3D information can be
extracted. Besides, other acquisition systems are based on pro-
cessing one or many 2D images captured by cameras. One of
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these techniques is Shape from Silhouettes, in which several im-
ages of the measuring object are acquired and the complete 3D
model of the object is computed by means of its silhouette at
every image. Although some authors tend to use this technique
without knowing the camera poses from where images were ac-
quired [4], such positions are usually required and only a rough
accuracy is obtained. Other techniques are based on directly
processing the set of images by means of solving the matching
problem [5]. In this case, features such as points/lines/regions
of interest must be determined within the images reducing dras-
tically the resolution and hence obtaining a sparse acquisition.
In conclusion, laser triangulation is considered one of the most
reliable techniques of acquiring 3D data, so that data is dense
and accurate and the correspondence problem alleviated.

In general, laser triangulation techniques are based on the use
of a laser emitter coupled to a cylindrical lens that spreads the
light forming a plane that is projected to the measured surface.
The projection of a laser plane only lets us acquire a profile of
the measuring surface. Hence, in most cases a mechanical sys-
tem is added to permit the scanning, so that: (a) the laser plane
is projected onto a rotating mirror and reflected towards the
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surface; (b) the laser beam is attached to a moving worm gear;
(c) the laser beam keeps motionless while the object is placed
on a rotating table, obtaining dense acquisitions. However, the
accuracy of the 3D acquisition depends on the mechanical sys-
tem as potential vibrations are likely to produce misalignments.
Furthermore, the sequence of images that are captured in the
scanning process forces the object to be motion controlled re-
ducing the number of potential applications. Finally, an un-
completed acquisition of the object is usually obtained due to
object occlusions and the limited field of view of the sensor.

Summarizing, laser triangulation is a reliable technique to
acquire dense and accurate 3D data. However, existing com-
mercial sensors usually only acquire a partial view of the object,
others are constraint to mechanical structures such as rotating
tables and moving gears. There are few sensors that can com-
pute their ego-pose in a free space. For instance, the ZScan-
ner700 of ZCorporation [6] can compute such ego-pose, but a
set of reflective targets must be stuck on the measuring surface.
The set of views are directly aligned once the ego-pose is com-
puted. Registration is a technique that can permit to perform
such alignment without adding markers or any other reference
to the object or to the measuring scenario.

Pair-wise registration is a well-studied problem in the litera-
ture. It is known that the published techniques can be classified
in coarse and fine registration techniques depending on the way
of solving the registration: (a) in a closed-form solution from a
reduced set of points of interest obtained from surface features
and solving a global matching; (b) in an iterative minimiza-
tion solution using a sample of points and solving the match-
ing locally. Multi-view registration is a more difficult problem
and there are two strategies to solve the alignment: local (se-
quential) and global (multi-view). The sequential registration
of views does not give an optimal solution due to the accumula-
tion and propagation of errors. Besides, global registration tries
to distribute the registration errors evenly among all the views
but it is not suitable for on-line registration since all the views
are first required to initiate the registration. In this paper, we
propose a closing-the-loop technique for the on-line registra-
tion of sequence of views in which cycles are minimized once
detected preserving an optimal solution. The pair-wise registra-
tion is solved by using a variant of the point-to-plane technique
and cycles are minimized considering only the views involved
constricting the computing time.

The remaining of the paper is structured as follows. First, a
brief overview of registration techniques is presented in Section
2, discussing the pros and cons of the existing methods with
the aim of justifying our proposal. Then, Section 3 presents
our proposal including pair-wise registration, cycle detection
and cycle minimization. Experimental results provided by both
synthetic and real data are presented in Section 4. The article
ends with conclusions.

2. Overview of range image registration techniques

According to a recent study of the state-of-art concerning
surface registration techniques [7], all the existing methods
are classified in two main groups of techniques: (a) Coarse

Registration and (b) Fine Registration. In the following part,
pros and cons of these techniques are described and every tech-
nique is summarized.

Coarse registration techniques obtain a rough alignment by
means of finding correspondences between two surfaces. Most
coarse registration techniques are based on searching for points
(curves) in the second surface that are similar to points (curves)
in the first surface. Overall, there are only two different methods
to choose the interest points: (a) feature-to-points and (b) point-
to-features. The first selects points in the first surface that are
similar to a predefined feature [8,9]. In the second, some points
in the first surface are arbitrarily selected and characterized
considering the position of its neighbors and searched in the
second surface [10–12]. In both techniques, all points in the
second surface must be compared with the selected points to
establish correspondences. Once the correspondence problem
is solved, the Euclidean motion that aligns both surfaces is
computed in a closed-form solution.

Coarse registration techniques have two main drawbacks.
The long time required to solve the matching among points and
the poor quality of the registration. Hence, a fine registration
technique is usually applied a posteriori to improve the results
by minimization.

Fine registration techniques search for an accurate alignment
of two acquired surfaces by minimizing the distance between
both surfaces iteratively. Such distance is computed in each
iteration by means of temporal matching among points from
both surfaces. Overall, the existing techniques solve the tem-
poral matching using one of the following three approaches:
(1) point-to-point, in which correspondences are established by
searching for the points in the second surface that are closest
to a set of points in the first [13]; (2) point-to-plane, in which
the points in the second surface are computed at every step by
the intersection of a plane and a line. The line is defined by a
point and a vector, so that the point is a given point in the first
surface; and the vector is orthogonal to the surface defined by
a neighborhood around the given point. The plane is located
where that line intersects with the second surface and it is ori-
ented in such a way that the plane is tangent to that surface
[14]; and finally (3) point-to-projection, in which correspon-
dences are established between points in the first surface and
the points obtained by projecting the first points onto the sec-
ond surface using the point of view of the second surface [15].

Although point-to-projection is the fastest technique because
searching is avoided, results obtained are not very satisfactory.
Besides, point-to-plane provides the best results because it is
not influenced by local minima [12,16]. Despite the difficulty
in determining the intersection of a line with a cloud of points
in 3D, several authors have presented proposals to facilitate this
computation [17,18].

One-to-one alignment of views in a sequence causes a drift
that is propagated throughout the sequence. Hence, some tech-
niques have been proposed to reduce the propagating error ben-
efiting from the existence of cycles and re-visited regions and
considering the uncertainty in the alignment.

In order to minimize the propagating error, some authors have
improved their algorithms by adding a final step that aligns all
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the acquired views at the same time. This approach spreads one-
to-one pair-wise registration errors throughout the sequence of
views, known as multi-view registration [19].

Early approaches proposed the aggregation of subsequent
views in a single metaview which is progressively enlarged each
time another view is registered [14]. Here, the main constraint
is the lack of flexibility to re-register views already merged in
the metaview due to the greedy approach of the technique. In
1999, Pulli proposed an ICP1 relaxation method based on the
previous metaview approach but considering all the potential
alignments between views before proceeding with the multi-
view registration. In addition this method takes into account the
information of all the overlapping areas and the already regis-
tered regions can be analyzed again for further transformations
[20]. Later on, Nüchter proposed a global relaxation method
based on Pulli’s approach with the main difference that no iter-
ative pair-wise alignment is required. However the success of
this method drastically depends on the disposal of an accurate
initial estimation of the pose [21].

A different approach was proposed by Bergevin [22], who
presented a multi-view registration technique based on the
graph theory: views are associated to nodes and transforma-
tions to edges. Authors consider all views as a whole and
align all of them simultaneously. The same idea was proposed
later on by Silva [23], Huber [24] and Krishnan [25]. Besides,
Masuda presented a multi-view registration algorithm based
on the Matching Signed Distance Fields in which outliers are
automatically removed obtaining a more robust method [26].
Lu’s technique is based on cycle minimization, though the
relationship (edges) among views (nodes) are established prior
to minimization [27]. Overall, multi-view techniques suffer
two main drawbacks: (a) the whole set of 3D views has to be
acquired before the algorithm starts; (b) an accurate estima-
tion of the motion between views is needed as initial guesses
to ensure convergence. Thus, multi-view techniques are not
considered for on-line applications.

Few authors have faced the challenge of registering 3D views
in a sequence while they are acquired avoiding or at least con-
trolling error propagation. For instance, Sharp [28] proposed
the registration of pairs of consecutive views until a cycle is
found. Since only pair-wise registration is required, the method
becomes very fast. Here, the interest is in the way of distribut-
ing the motion (and hence the propagation error) among the
different views. The author proposed to use weights directly
related to the residue obtained in the pair-wise registration.
Actually, this is not very accurate especially in the pres-
ence of misalignments between end views in the cycle as a
matter of noise and object occlusions. In this case, the whole
motion of such a cycle is also distributed to all the views
increasing the error in the registration.

Finally, in the last few years, a photogrammetric technique
called Bundle Adjustment has increased popularity in the
computer vision community and it is growing in interest in
robotics. Bundle adjustment is the problem of refining a visual
reconstruction to produce jointly optimal 3D structures and

1 Iterative closest point.

viewing parameter (camera pose and/or calibration) estimates
[29]. Therefore, bundle adjustment techniques can be used in
both robot/camera localization and 3D mapping in many fields
such as camera calibration, robot navigation, and scene recon-
struction. Since bundle adjustment is a non-linear minimization
problem, it is solved by means of iterative non-linear least
squares or total squares methods such as Levenberg–Marquardt
or M-estimator techniques [7,30]. Although bundle adjust-
ment is commonly classified as a multi-view technique, some
authors have used it in consecutive pair-wise alignment as a
technique to reduce error propagation [31].

In summary, we conclude that methods based on the
metaview approaches present good results when initial guesses
are accurate and the surface to be registered does not have a
large scale. Otherwise, the method suffers a large propagation
error producing drift and misalignments and its greedy ap-
proach usually falls in local minima. The use of methods based
on graphs has the advantage of minimizing the error in all
the views simultaneously but these techniques usually require
a previous pair-wise registration step, whose accuracy can
be determinant in the global minimization process. Besides,
closing the loop strategies provide trustworthy constraints for
error minimization but require a huge amount of memory and
usually involve a high computational cost. Bundle adjustment
techniques provide good results in the presence of outliers, but
need a good enough initial guess and it is hardly used in large
robot missions or large scale objects.

All these pros and cons of the existing methods have been
considered to present a new surface registration technique
which is presented and discussed in the rest of the paper.

3. Registering a sequence of surfaces

This section describes the proposing method for continuously
registering a sequence of 3D views while they are acquired. The
method first aligns the consecutive views by means of point-to-
plane pair-wise registration. When a cycle is detected, a multi-
view technique is applied only in the views conforming to the
cycle leading to fast and accurate results and preserving the on-
line registration for many and varied applications (see Fig. 1).

3.1. Pair-wise registration

Pair-wise registration is divided into a first coarse registra-
tion to estimate an initial alignment, followed by a fine regis-
tration computed by means of minimization techniques. In our
case, views are acquired consecutively and a slight movement
between views is assumed. Slight movement is defined like the
movement that guarantees at least a 60% of overlapping with
consecutive views. We initialize fine registration considering
motionless views, avoiding the expensive computation required
to compute initial guesses and preserving a high accuracy, as
demonstrated in the following paragraphs and shown in the ex-
perimental results.

Point-to-plane has been chosen as the most suitable fine reg-
istration technique as discussed in the previous section. The
technique we propose is based on the fast variant proposed
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Fig. 1. Flow diagram of the proposed method.

by Park [18] from the original point-to-plane registration pro-
posed by Chen [14], although some modifications have been
implemented to increase accuracy, which are explained in the
following paragraph.

First, we remove the non-overlapping area of the present view
before this view is registered with the former. In theory, this area
is unknown because the movement is also unknown. However,
as the views are taken in a sequence with slight movements
between them, we can assume that points located in the center
of the view are good candidates for the matching. Besides,
most of the points located in the boundary of the surface might
be hardly matched. In consequence, the boundary area of the
present view is not considered in the fine registration step.
In fact, the bounding area coincides with the boundary in the
image formed by projecting the present view to the XY plane
of the camera (orthogonal to the focal axis), so the selection of

points to remove becomes very easy. In the image plane, the
bounding box is computed. A rectangle whose dimensions are
80% of the bounding box is centered to the image projection
and all points out of this rectangle are not taken into account
in the registration step.

Second, only a sample of the remaining points of the present
view is preserved for the fine registration. There are several
types of sampling: uniform sampling [26,32], random sampling
[33], and normal sampling [16], among others. Although sam-
pling is normally used to speed up the algorithm by selecting a
reduced set of points, sampling can be also used to increase ac-
curacy by selecting also the most appropriate points. Note that,
in smooth surfaces with even shape registration becomes dif-
ficult. In this situation, only a small percentage of points give
useful shape information. For instance, consider a flat surface
with two perpendicular cuts. If all the points are considered in
the registration, results are not accurate because of the low in-
fluence of points in cuts with respect to the rest of the points.
However, if the registration is done with a high percentage of
points on the uneven area, accuracy increases (see Fig. 2).

The goal of normal sampling is to select the most represen-
tative points to increase the quality of the registration. Hence,
all points are first transformed to a 2D normal space defined
by � and � as follows:

� = a tan 2
(
nx,

√
n2

z + n2
y

)
,

� = a tan 2(ny, nz), (1)

where � and � are the coordinates in the normal space, and nx ,
ny and nz are the three components of the normal vector of
each point. Then, every point is placed in a 2D grid. Finally
only one point from every grid cell is randomly selected, so that
a single point is chosen among all points with similar normal
vectors. These selected points actually conform to the reduced
set of points used to register the present surface. The percentage
of points that remains after the sampling step depends a lot on
the unevenness of such surface but tends to be between a 20%
and a 30% of the total points.

As stated before, the fine registration technique we propose is
based on the fast variant proposed by Park [18] from the original
point-to-plane registration proposed by Chen [14]. Here we use
a recursive method to compute the intersection between lines
and surfaces which is actually the main difficulty of the method.
Hence, initially the selected points of the previous view are
projected orthographically onto the XY plane of the camera.
A grid composed of 50 × 50 square cells is scaled so that it
contains the projection of all points. Second, a point p0 of the
current view is projected to such a grid, in whose cell we search
for the closest point obtaining the point qp0 in the previous
surface. The projection of point qp0 to the normal vector of
p0 defines a new point p1, which is actually an approximation
of the intersection. This approximation is refined recursively
by projecting new points pi until norm(pi − qpi

) is smaller
than a threshold (see Fig. 3). Finally, the process is repeated
for all the points conforming to the current view and a set of
correspondences is obtained.
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Fig. 2. Effects of sampling: (a) Original surface; (b) Random sampling; (c) Normal sampling.

Fig. 3. Strategy used to compute the intersection between the tangent plane
and the surface Sq along the orthogonal vector p̂. See Park [18] for a extended
review.

Once correspondences are established, minimization is ap-
plied to compute the motion between both surfaces (the previ-
ous and the current) as defined by Eq. (2).

f = 1

Np

Np∑
i=1

‖mi − Rpi − t‖2, (2)

where Np is the number of correspondences; mi is the set of
points selected in the former view that have a correspondence in
the present view; pi are the correspondences of mi in the present
view; and R and t are the rotation matrix and the translation
vector that aligns both views, respectively.

Eq. (2) is minimized by means of quaternions [13] so that
R and t are refined iteratively. In each iteration, the correspon-
dences must be recomputed because initial correspondences are
not usually correct. The algorithm stops when: the mean of the
square errors (distances between correspondences) is smaller
than a given threshold; or the mean of the square errors does
not decrease.

Note that the views are registered consecutively, so that ev-
ery registered view is referenced with respect to the first by

means of the product of all the consecutive Euclidean motions
defined by the sequence of views. Hence, registration inaccu-
racies are propagated through the sequence. In the following
sections, we aim to minimize the propagation error by detect-
ing cycles and minimizing the views conforming the cycle all
together.

3.2. Cycle detection

Now the interest is to detect every time the scanner re-visits
the same object surface obtaining cycles of views that are used
to reduce the propagation error significantly.

Cycle detection complexity varies depending on whether
views are unorganized or views are acquired sequentially. In
the former, the relationship among views is unknown and each
view has to be registered to all the others to detect potential
links [34]. The problem is simplified when such relationship
is previously known [27]. However, in the latter, error propa-
gation requires a robust cycle detection method. Nüchter pro-
posed the registration of the last view to some of the already
acquired views to detect such cycles [35], in which such views
are selected based on some hypotheses concerning the laser
range and the sensor pose.

Note that once any two views are registered, the Euclidean
transformation between them is known and a link established.
These links form paths through the views in which the motion of
the scanner can be estimated from the product of the consecutive
Euclidean transformations. Hence, the translation vector of such
movement is considered, so that if this vector is smaller than
a threshold and the views are not neighbors, a potential cycle
is considered. The given threshold is computed dynamically
considering the object scale and the number of views forming
the potential cycle, so that the threshold increases proportional
to the propagation error.

However, a sequence of views with an overall slight trans-
lation does not always conform a cycle, especially when ro-
tation is relevant. Hence, the total rotation within the path is
computed, so that such rotation has to be close to identity to
consider the path like a cycle.

Finally, a cycle is detected if both end views also share a
common surface, that is a significant overlapping area.
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Fig. 4. Example of the projection of the bounding boxes of two different
views in the XY, XZ and YZ planes. The grey area represents the overlapping.

The accurate computation of the percentage of overlapping
would imply the fine registration between both end views and
the computation of corresponding points. In order to avoid this
expensive step, a fast technique is proposed based on the over-
lapping of bounding boxes, which is just an approximation of
the convex hull of both surfaces, but accurate enough to detect
cycles.

The bounding box of a given surface is defined as the mini-
mum parallelepiped that contains all the points of the surface.
The intersection of 3D bounding boxes is complex so that it is
alleviated by projecting such boxes to the planes XY, XZ and
YZ (see Fig. 4), defining two 2D bounding boxes in every plane
and thus computing three overlapping areas. If the maximum
of the three overlapping areas exceeds a given threshold of the
total area and the distance between both bounding box centers
is small enough, a cycle is considered.

The reason to choose the maximum overlapping value among
the three planes instead of the product of overlapping values
is in virtue of preserving the detection of potential cycles in
the presence of almost flat surfaces. In this case, the bounding
boxes in some of the three planes are usually not relevant.

3.3. Cycle minimization

Cycle minimization consists of a simultaneous minimization
of all the correspondences between points of all the views that
conform the cycle. In cycle minimization we assume that the
overall motion in the cycle is null and hence the position of
both end views coincides. This is actually impossible and that
is the reason why a virtual view is added between both end
views. This virtual view is nothing other than the first view of
the cycle registered to the last one. We can assume that the
overall motion in the cycle is null which means that the motion
between both end views must be zero.

The significant points for every view are used to search for
correspondences among all the other views in the cycle by us-
ing again our variant of the point-to-plane registration tech-
nique. This technique is based on the iterative minimization of
the distances between temporal correspondences. However, at
last iteration, temporal correspondences can be assumed to be
accurate correspondences.

A threshold in the relative motion between views is used to
ensure a significant overlapping area between views and hence
many point correspondences. Obviously, this decision leads
to a quite fast method without losing robustness. Otherwise,
the algorithm wasted a lot of time searching for correspon-
dences where it was known they are either not available or not
significant.

Finally, a Levenberg–Marquardt minimization is applied to
determine a more accurate registration among views in the cy-
cle. The minimizing parameters are the rotation matrices (rep-
resented as quaternion vectors) and translation vectors of the
Euclidean transformations between consecutive views. The
minimizing function is the sum of distances between point
correspondences because the distance between point corre-
spondences should be minimized, and hopefully may reach
zero, as shown in the following equation:

min

⎧⎨
⎩

N−1∑
i=1

N∑
j=i+1

Np∑
k=1

‖Pi(k) − T i
j × Pj (k)‖

+‖T j
i × Pi(k) − Pj (k)‖

⎫⎬
⎭ , (3)

where Pi(k) and Pj (k) are the points that configure the k cor-
respondence between views i and j; Np is the number of points

correspondences; N is the number of views; and T
j
i and T i

j

are the Euclidean motions that transform points from i to j and
from j to i, respectively, computed as follows:

T i
j =

j∏
k=i+1

T k−1
k , (4)

and

T
j
i =

⎛
⎝N−1∏

k=j

T k
k+1

⎞
⎠ T N

1

(
i∏

k=2

T k−1
k

)
, (5)

where j > i.
The closing-the-loop constraint �cr is added to the optimiza-

tion function in Eq. (3), where

�cr = �R + sf �T , (6)

where �R is the rotation constraint; �T is the translation
constraint; and sf is the scale factor that weights the trans-
lation constraint to be adequately compared to the rotation
constraint.
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The rotation constraint �R is

�R = sum(abs(Raccum − I3×3)), (7)

where Raccum is the product of all the rotation matrices con-
forming the cycle, and I3×3 is the identity matrix.

The translation constraint �T is

�T = norm(t), (8)

where t is the translation vector between both initial and end
views of the cycle, computed as follows:

[
R t

0 1

]
= Tcycle =

(
n∏

i=2

T i−1
i

)
· T 1

n . (9)

The whole process leads to quite accurate results, but if they
are not good enough, they can be repeatedly refined by select-
ing new significant point correspondences at the end of every
refinement.

4. Experimental results

The proposed method has been implemented and compared
to one of the most similar methods present in the literature, the
method proposed by Sharp et al. in 2004 [28]. Both methods
have been tested under the same conditions in order to evaluate
their advantages and constraints. So, we have used the same
point-to-plane method to determine the motion between con-
secutive views.

A low-cost multi-slit laser acquisition system has been used.
The set-up is composed of an off-the-self camera, a 635 nm
laser emitter and an optical lens that spreads the laser beam
conforming 19 parallel planes. The depth field of the system
is in the range of 100 to 300 mm in the Z-axis of the cam-
era, which is limited due to system baseline, laser power, and
camera focus. The camera and the laser emitter conform the
one-shot hand-held 3D acquisition system especially developed
to test our proposal. The 19 parallel planes are projected onto
the measuring surface obtaining 19 profiles with subpixel ac-
curacy. 3D profiles are obtained by triangulation and finally
splines are used to interpolate a surface, increasing the sample
of points used in the registration process. Once the 3D sur-
face is acquired, the Delaunay triangulation is applied to obtain
triangles and hence estimate the normal vector at every sur-
face point which is used further on in the pair-wise alignment.
Fig. 5 shows an acquired image and the process of spline in-
terpolation. The reader is pointed to Matabosch [36] for more
details about the acquisition sensor.

The performance of our method has been compared to the
method of Sharp [28] both quantitatively and qualitatively. Our
cycle detection method has been used in both methods, so
they are tested in the presence of the same number of cycles.
Note that in the method of Sharp cycles are detected manu-
ally. Experiments and results are presented in the following
paragraphs.

4.1. Quantitative evaluation

Quantitative evaluation is analyzed from both synthetic and
real data. Synthetic data is obtained from the 3D synthetic
models courtesy of INRIA.2 A synthetic scanner has been
programmed to simulate the acquisition of a set of consecutive
views acquired by the one-shot hand-held scanner (see Fig. 6).
Here, the pose of the scanner for every acquisition is obviously
given by the simulator. So, the accuracy of the registration can
be precisely evaluated. The experiment is repeated adding some
Gaussian noise to the 3D points. In addition, a real object has
been placed on a motion-controlled table in which our one-shot
hand-held scanner has been attached (see Fig. 7). The object
is moved in three degrees of freedom (X, Y and Z) so that 29
consecutive views are acquired. In this case, the position of the
sensor is given by the mechanics of the table.

Parameters and thresholds used during this experiment are
reported in Table 1. Their value differs depending on the size
of the measuring object. NSSgrids specifies the number of cells
used in the normal space sampling grid. Intersectionerror is the
threshold used in the point-to-plane registration and it corre-
sponds to the maximum value of norm(pi −qi), so that a small
value increases registration accuracy but decreases the number
of correspondences, specially in case of important misalign-
ments. Concerning cycle detection, the first parameter fixes the
minimum number of views to consider a potential cycle. Trans-
lation error specifies in millimeters the maximum distance be-
tween both end-views in a cycle to be considered a potential
cycle. Overlapping area specifies the minimum overlapping re-
quired between both end-views of a potential cycle. Finally,
a scale factor is introduced in the cycle minimization step to
normalize translation and rotation errors.

In order to provide quantitative evaluation, the motion esti-
mated by registration has to be compared to the real motion
provided by the simulator or the 3D table in terms of both
translation and rotation. Rotation is represented as a directional
vector which can be easily extracted from any rotation matrix.
Then, the estimated rotation is compared to the known one. So,
the error is determined as the norm of the difference between
both axes of rotation. The translation error is defined as the
distance between the origin of the coordinate system estimated
by registration with respect to the known origin, which is the
norm of the difference between both translation vectors.

Additionally, the MSE (mean squared error) is computed.
For each point of the registered acquisition, the nearest point
in the set composed by the rest of acquisitions is found, deter-
mining a correspondence. The mean of all distances give us the
estimation of the discrepancy between registered views.

Finally, our proposed method and Sharp’s method are both
compared to the precise alignment in terms of accuracy so
that quantitative results are reported in Table 2 and Fig. 8. In
Table 2 we have also included a fast variant of our approach.
This fast variant differs only in the cycle minimization step, so
that the minimization uses the correspondences previously ob-
tained by the pair-wise registration avoiding the search for new

2 http://www-c.inria.fr/gamma/download/download.php

http://www-c.inria.fr/gamma/download/download.php
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Fig. 5. Acquisition examples: (a) Acquired cloud of points from the 19 slits; (b) Spline curve computation (in blue the acquired profiles, in red and black two
samples of splines); (c) Cloud of points obtained after spline sampling (in blue the original points, in red the new points computed).

matching among all the views in the cycle. Actually, matching
is one of the most expensive steps. So, the fast variant approach
consumes a computing time similar to Sharp’s approach but
preserves a good accuracy, as shown in Table 2.

Table 2 shows for every experiment the mean and the stan-
dard deviation computed from the set of rotation and translation
errors. Note that both methods obtain similar results when ac-
quisition noise is unimportant. When the acquisition noise be-
comes significant, pair-wise registration is not accurate enough
and hence Sharp’s approach distributes a large error in the cy-
cle. Besides, it is shown that our proposal obtains better results
in both synthetic and real data. A special attention requires the
results obtained when noise was 1.25% and 3.75%. In both
cases, pair wise registrations between both end-views of cycles

were not accurate enough. Such inaccuracies produce signifi-
cant errors in the method of Sharp that are minimized by our
method thanks to the multi-view registration performed inside
every cycle.

Fig. 8 presents the MSEs after register all views with our
robust method and Sharp’s method. Cycle detection algorithm
determines a cycle between views 1 and 23. Our robust method
obtained better results on these views. Sharp’s method obtains
good results results in the last view of the cycle, due to the
closing-the-loop constrain. However, inside the cycle, propaga-
tion error is not always correctly distributed through the views.
After view 23, all methods obtain the same results, because
there is no cycle, and results are directly obtained from the
pair-wise registration.
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Fig. 6. Left: Path described by the simulator to scan a synthetic object (Beethoven). Right: Some of the acquired synthetic images.

Fig. 7. Accurate motion-controlled table used in the quantitative evaluation.

Table 1
Quantitative experiment settings

Steps Parameter Beethoven Sun/moon

Pair-wise NSSgrids 2500 2500
Intersectionerror 0.3 6.0

Cycle detection Minimum number views 8.0 8.0
Translation error 7.0 15.0
Overlapping area 50% 50%

Cycle minimization Sf 1.0 0.1

4.2. Qualitative evaluation

In order to evaluate the performance of the methods, it is
also useful to observe the registration of a real object and
analyze it from a qualitative point of view. In this experiment,

the one-shot hand-held scanner is coupled to a FANUC
industrial manipulator. The manipulator describes a trajectory
so that a given object is scanned obtaining a sequence of views.
As the kinematics of the manipulator is known, the views can
be aligned without applying any registration and hence such
raw alignment is provided for comparison.

Note that the kinematics of the manipulator provides the
position of the robot hand H with respect to the coordinate
frame of the robot base R (see Fig. 9). Besides, registra-
tion is referenced with respect to the frame S of the camera
of the one-shot hand-held scanner. The rigid transforma-
tion between H and S is unknown and hence has to be first
estimated.

The computation of H TS is known as the eye-to-hand prob-
lem in the robotics community and it is based on solving equa-
tion AX = XB, where X is the matrix we are looking for. So,
X transforms points from the coordinate frame of the scanner
S to the coordinate frame of the hand H, A is the motion of the
hand between two different positions of the robot given by the
robot control system, and B is the motion computed by means
of triangulating the movement in the image of the one-shot
hand-held scanner.

There are several papers addressing the computation of AX=
XB [37,38]. In our case, we have acquired 10 views of a cal-
ibrating pattern and the X matrix is estimated by using the al-
gorithm of Shiu [38]. First, the algorithm determines a set of A
and B matrices from every view. Then, a system of equations
with the form AX − XB = 0 is defined and solved. Theoret-
ically X can be computed with only three views, though it is
more accurate to solve the equation of an over-determined sys-
tem by using singular value decomposition.

Once X is known, all views can be represented in the same
reference using the following equation:

WTS = WTR × RTH × X, (10)
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Table 2
Quantitative results

Scene Our method Fast variant Sharp’s method

errorR errorT MSE errorR errorT MSE errorR errorT MSE

� = 0 0.516 0.008 0.003 0.339 0.079 0.001 0.511 0.074 0.002
1.120 0.004 0.003 0.867 0.191 0.006 1.006 0.034 0.002

� = 1.25% 0.675 0.154 0.004 1.177 0.459 0.006 2.225 4.403 0.026
1.115 0.305 0.005 1.388 0.265 0.006 1.385 1.196 0.051

� = 2.5% 1.1286 0.4698 0.005 1.202 0.316 0.002 1.472 1.367 0.001
1.1905 0.2149 0.005 1.410 0.217 0.006 1.202 0.704 0.002

� = 3.75% 0.246 0.056 0.003 1.552 0.875 0.007 2.601 3.485 0.026
0.732 0.024 0.002 1.169 0.425 0.006 1.134 2.106 0.046

� = 5.0% 1.570 0.890 0.005 1.533 0.828 0.007 2.753 3.126 0.017
1.284 0.682 0.005 1.144 0.497 0.006 1.212 2.225 0.020

1.2804 5.063 0.334 1.3485 5.4103 0.389 1.3863 4.640 0.432
0.303 2.459 0.335 0.285 2.425 0.529 0.291 2.308 0.380

Both our original method and its fast variant are compared to the method of Sharp: errorR is the norm of the difference between both axes of rotation; errorT

is the norm of the difference between both translation vectors (distance between the points of origin of both coordinate systems); MSE is the mean squared
error. Every table cell indicates the mean (up) and standard deviation (down) of the error for a set of synthetic experiments varying the Gaussian noise (�)

and one experiment with real data. The synthetic object (Beethoven) consists in 48 views composed of about 5000 points per view and with the presence of 6
detected cycles. The real object (sun/moon) consists in 27 views composed of about 8000 points per view and with the presence of 1 detected cycle between
views 1 and 23.
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Fig. 8. Evolution of the MSE registration errors in the registration of the
real object (sun/moon). Scale of the measured object: 180 mm (width) ×
200 mm (height) × 56 mm (depth).

where WTS is the Euclidean motion that transforms points in S
to the world coordinate system W (used by the one-shot hand-
held scanner to refer 3D points), WTR is the Euclidean motion
that relates the world coordinate system W to the robot base R,
RTH is the motion given by the kinematics of the robot arm,
and X is the Euclidean transformation between the camera of
the one-shot hand-held scanner and the robot hand.

Fig. 9. Industrial manipulator used in experiments. The four coordinate frames
are represented: W (world), R (robot), H (Hand) and S (Scanner).

Now we can proceed with the experiment. The parameters of
that experiment are presented in Table 3. The manipulator has
been programmed so that an 8-shape trajectory is done over a
ceramic object acquiring up to 41 images and hence 41 3D par-
tial views of the object. Note that the trajectory ensures cycles
which will be used in the registration. First, all the views are
referenced with respect to the same frame by means of the X



C. Matabosch et al. / Pattern Recognition 41 (2008) 2055–2067 2065

Table 3
Qualitative experiment settings

Steps Parameter Value

Pair-wise NSSgrids 2500
Intersectionerror 6.0

Cycle detection Minimum number views 8.0
Translation error 15.0
Overlapping area 50%

Cycle minimization Sf 0.1

matrix. Second, a volumetric integration algorithm is applied to
get a continuous surface [39]. Third, the sequence of views are
aligned according to: (a) the registration algorithm proposed
in this article; (b) the multi-view algorithm proposed by Sharp
[28]; and (c) the kinematics of the robot. Finally, any surface
smooth technique is applied to enhance the visualization. Qual-
itative results are shown in Fig. 10. Registration really improves
the alignment provided by the kinematics of the robot. Note
that the alignment directly obtained from the kinematics of the
robot suffers not only from inaccuracies given by the mechanics
but especially inaccuracies in the computation of X. Besides,
the experiment also shows that our approach provides a surface
with more details and less artefacts compared to the method
proposed by Sharp. Registration time is presented in Table 4.
These experiments are performed using Matlab 6.5 in a pentium
IV 2.6 GHz.

The acquisition system obtains the structure of the surface
with a single-shot and hence vibrations produced by a human
operator do not affect the acquisition. Actually, there is no dif-
ference in the obtained results performing the experiments by
a manipulator or by a human operator.

Fig. 10. Results of the registration: (a) Our method; (b) Sharp’s method; (c) Mechanical alignment; (d) Real object.

Table 4
Registration time

Method Time (s)

Robust 1192.47
Fast 900.69
Sharp 642.66

5. Conclusions

There are several techniques to register a set of views, though
most of them are based on the multi-view approach. In gen-
eral, multi-view techniques are constrained by the following
drawbacks: (a) all the views must be first acquired before the
aligning algorithm starts leading to off-line applications; (b)
guesses to roughly align the views are needed to initialize the
algorithm so that an expensive coarse registration technique is
needed; and (c) matching is searched among all the views with-
out considering neighborhood which is inefficient and comput-
ing intensive, especially in large data sets. Besides, multi-view
techniques are not suitable for registering views that form se-
quences and loops because of the error propagation problem.

This paper presents a new multi-view registration technique
which includes cycle minimization and it is updated in the
measure that new views are acquired. Although the technique
can be applied in short sequences of views, it is designed to
deal with large data sets and with the presence of multiple cy-
cles. First, a fast point-to-plane with normal space sampling
and non-overlapping area removal is applied between consec-
utive views to obtain an accurate alignment. Second, in the
measure that new views are acquired, the method searches for
cycles considering neighborhood and overlapping percentage.
Finally, once a cycle is detected it is minimized by means of
a Levenberg–Marquardt approach, so that the system always
ensures the most accurate global registration.
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Experiments with both synthetic and real data have been
overcome. Synthetic data has been downloaded from well-
known databases. A one-shot hand-held scanner composed of a
camera and a multi-slit laser emitter has been developed to ac-
quire real data. The scanner has been coupled to a commercial
manipulator to acquire sequences of views. Our approach has
been compared to: (a) the mechanical alignment provided by
the kinematics of the manipulator; and (b) the multi-view align-
ment method proposed by Sharp [28], which from our point
of view is one of the most similar. Results show from both a
quantitative and a qualitative point of view that our approach
provides a more accurate alignment.
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