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Abstract— This paper presents a sonar-based localization ap-
proach for an autonomous underwater vehicle, in structured and
unstructured environments. The system is based on a particle
filter approach to represent the vehicle state and it uses a
mechanically scanned profiling sonar, acquiring range profiles. A
modification to the standard particle filter algorithm is proposed,
in order to explore the state space in a more effective way and
to reduce computational complexity. The proposed system was
validated both in simulation and in trials involving a real vehicle,
showing a high robustness and real-time capabilities.

I. INTRODUCTION

A. Motivation

Underwater technology has experienced a significant growth
over the last few years. Remotely Operated Vehicles (ROVs)
are nowadays a well-established technology routinely used
in the off-shore industry. Although the use of Autonomous
Underwater Vehicles (AUVs) looks very promising and cost
efficient, as they do not need the vessel support needed by
the ROVs, there are still many open problems before they
can be widely commercialized. One of the main problem is
the vehicle localization: it consists in determining vehicle’s
position and orientation in the operating environment. This is
one of the key areas for autonomous mobile robots. It is a
necessary task for map building and for motion planning. In
most cases, it is not just important, but critical for a robot to
be able to keep track of its current state (position, orientation,
speed), in order to safeguard the vehicle and its environment.
Many approaches have been developed for autonomous robots,
see e.g. [1], [2], [3]. However, the constraints and peculiarities
of the underwater environment prevent the simple transposition
of available techniques for land or aerial vehicles, requiring
a careful study of the implications of each approach for
underwater system performance [4]. The primary navigation
system is in many applications the Inertial Measurement Unit
(IMU) . However, in addition to be highly expensive, for most
applications these systems suffer from small drift errors and
must be supported by some external system to correct the
errors. In land and aerial robotics, this can be done by incor-
porating GPS measurements. In an underwater environment
the absence of GPS signal leads to investigation on other
techniques in order to solve this problem. Additionally, an

IMU is not able to give an absolute localization, but only an
estimation of the inertial movement, as the name tells. In case
of unknown starting position, the IMU, as the only sensor
providing localization, fails in this task. The same happens
after a mislocalization, because it is not able to recover. Similar
consideration are valid for Doppler Velocity Log (DVL), which
provide an estimation of the velocity vector.

Absence of GPS and sensing characteristics of the environ-
ment make underwater localization a complex problem. Lack
of visibility and scattering make the use of cameras difficult,
whilst water does not allow the use of precise laser range
finders, widely exploited for land robots. As a consequence,
the most widely used sensor in underwater scenarios is sonar,
which is slower and noisier.

Localization techniques are required for many underwa-
ter applications involving autonomous and semi-autonomous
robots. They are required, for example, to perform docking
tasks, in order to determine the relative state of the vehicle with
respect to a panel or to navigate around underwater structures
for inspection.

B. Related Work

Several techinques have been developed using IMU, acous-
tic or optical sensors. Carreras proposed a vision-based local-
ization technique [5], using a coded pattern placed on the bot-
tom of a water tank and an onboard downward looking camera.
This approach, although working well in the experimental
setup, is difficult to be translated into real world missions,
for the difficulty to reproduce a coded pattern on the seabed
and for the problems in using cameras in the underwater
environment, as described above.

Caiti developed an acoustic localization technique, using
freely floating acoustic buoys, equipped with GPS connection
[6]. This system requires the buoys to emit, at regular time in-
tervals, a ping with the coded information of its GPS position,
such that the vehicle, using time-of-flight measurements of
acoustic pings from each buoy can locate itself. However, the
limitations of this approach are the necessity to deploy enough
floating buoys in the mission area, the need to collect them
after the end of the mission and a non efficient communication,
as the buoys periodically send acoustic messages. Limits for
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deep water missions are also evident. Erol proposed to use a
GPS-aided localization [7]. The problem in this approach is
that GPS signal does not propagate in the water [8] so the AUV
is forced to acquire the signal at the surface. This approach
is not very reliable, because during the submerged period the
vehicle has no access to GPS signal and, therefore, it has to
estimate its state, with other sensors. To handle this problem,
the vehicle was told to dive to a fixed depth and to follow a
predefined trajectory.

Other acoustic-based localization techniques include the so-
called long base-line (LBL) and short or ultra short base-
line (SBL) systems. In both cases, the vehicle position is
determined on the basis of the acoustic returns detected by
a set of receivers. For LBL, there is the need to deploy
a set of acoustic transponders around the underwater area
of operation. The vehicle is then able to locate itself with
respect to the transponders (or, in the opposite way, the
transponders are able to track the vehicle) [9]. For SBL, a
proposed approach is to use a support ship equipped with a
high-frequency directional emitter able to accurately determine
the AUV position with respect to the mother ship [10]. This
approach is not cost effective, as it requires the support of
a ship. Furthermore, it cannot be used in many situations,
as it requires short range distance between the ship and the
vehicle, and it is therefore not suitable for navigation around
deep off-shore structures. Particle filter techniques, as model
estimation techniques used to estimate Bayesian models, have
been used in AUV technology, although not so widely as
in land and aerial robots. Karlsson proposed a particle filter
approach for AUV navigation, but the focus was more on the
mapping part than on the localization [11]. Silver presented
particle filter merged with scan matching techniques. Used
with an approximation of the likelihood of sensor readings,
based on nearest neighbor distances, particle filters are able to
approximate the probability distribution over possible poses. A
recent work [12] addresses the use of particle filters for visual
tracking of underwater elongated structures such as cables or
pipes. Models for probabilistic tracking are obtained directly
from real underwater image sequences.

C. Contribution

The novel approach proposed in this paper is a particle
filter approach to localize the vehicle in a a-priori known
environment. No assumptions are made on the initial position
and orientation, neither on the trajectory. Most of the tech-
niques presented in the last paragraph do not allow dynamical
situations, while we want the AUV capable of dynamical
path planning and mission replanning. Our proposed solution
is more general, as it is not tight to a specific problem
and can be used at any depth. We propose a modification
to the standard particle filter algorithm in order to have a
better computational efficiency and to explore in a more
effective way the state space. There are many applications of
this solution, such as navigation among off-shore underwater
structures and localization with respect to a docking station.

The paper is structured as follows:

Section II presents the standard particle filter algorithm and
the proposed modification;
Section III presents the simulated system, used to validate our
approach;
Section IV describes the experimental setup and tests per-
formed in a real scenario.
Finally, conclusions and future work are detailed.

II. PARTICLE FILTER FOR LOCALIZATION

Introduced by Gordon in [13], a particle filter is a Bayes
filter that works by representing a probability distribution p(x)
as a set of samples.

p(x) ≈ 1
N

∑
i

δx(i)(x) (1)

This is described in Eq. 1, where N represents the number
of samples, x(i) is the state of the sample i, δx(i)(x) is
the impulse function centered in x(i). The more dense the
samples x(i) in a region, the higher is the probability that the
current state falls within that region. In principle, in order to
maintain a sample (particle) representation of the system state
distribution over the time t, the samples x(i)

t should be created
from the probability distribution of the current state, given the
observation history z0:t: p(xt|z0:t). Such a distribution is in
general not available in a form suitable for sampling. However,
the importance sampling principle [14] ensures that if:
• we are able to evaluate pointwise and to draw samples

from an arbitrarily chosen importance function π(xt|z0:t),
such that p(xt|z0:t) > 0)⇒ π(xt|z0:t) > 0, and

• we are able to evaluate pointwise p(xt|z0:t),
then it is possible to recover a sampled approximation of
p(xt|z0:t) as outlined in Eq. 2

p̂(xt|z0:t) ∝
∑
i

w(i)δ
x
(i)
t

(xt) (2)

x
(i)
t are samples drawn from π(xt|z0:t) and

w
(i)
t = p(x

(i)
t |z0:t)

π(x
(i)
t |z0:t)

is the importance weight related to

the ith sample that takes into account the mismatch among
the target distribution p(xt|z0:t) and the importance function.
Observe that, in case we are able of drawing samples from
the target distribution, such that p(x(i)

t |z0:t) ∝ π(x(i)
t |z0:t)

then all of the weights are the same, and the variance of w(i)

is 0.
One of the most common particle filtering algorithms is

the Sampling Importance Resampling (SIR) filter [15]. A
SIR filter incrementally processes the observations zt and the
commands ut (process evolution), by updating a set of samples
representing the estimated distribution p(xt|z1:t, u0:t). This is
done by performing the following three steps:
• Sampling: The next generation of particles x(i)

t is ob-
tained by the previous generation x(i)

t−1, by sampling from
a proposal distribution π(xt|z1:t, u0:t).

• Importance Weighting: An individual importance weight
w(i) is assigned to each particle, according to Eq. 3



(a) settings for the trajectory (b) 3D map

Fig. 1. In the left figure it is possible to change the depth of the vheicle and to define a trajectory given by interpolation of points. In the right figure, we
can see the trajectory in the 3D scenario.

w(i) =
p(x(i)

t |z1:t, u0:t)

π(x(i)
t |z1:t, u0:t)

(3)

The weights w(i) account for the fact that the proposal
distribution in general is not equal to the true distribution
of the successor states.

• Resampling: Particles with a low importance weight w are
typically replaced by samples with a high weight. This
step is necessary since only a finite number of particles
are used to approximate a continuous distribution. Fur-
thermore, resampling allows to apply a particle filter in
situations in which the true distribution differs from the
proposed one.

The particle filter approach was chosen for multiple reasons.
Firstly, it can handle estimation of non Gaussian and non linear
processes. This is very important because nonlinearities are
very frequent in AUVs, both in model specification and in the
observation process. Additionally, noise cannot be modeled as
Guassian in many situations. The second advantage in using
particle filter is that it does not require any assumption on the
initial position and orientation of the vehicle.

However, the standard approach presents two main prob-
lems. The first one is the high number of particles required, in
order to explore the state space, resulting in an increase of the
computational power needed. The other major issue in particle
filter approaches is the sample impoverishment problem, i.e.
the loss of diversity for the particles to adequately represent
the solution space [16]. In our approach, we address both
these problems. With the proposed modification to the standard
algorithm, it is possible to instantiate very few particles
and, at the same time, assuring convergence to the correct
state estimation, effectively exploring the solution space. The
modification we propose in this paper is to instantiate during
each step a portion of random particles. Thus, the resampling
algorithm is now built with two modules. The first one is a
standard SIR module, returning N − k particles. The second
module returns k particles, created randomly. The combination

of these two modules constitute our proposal for the resam-
pling step. In this way, after some time, the algorithm is able
to recover in case of a wrong convergence, as shown in the
following section. The standard particle filter algorithm is not
able to do that, as the posterior is only dependent on the prior.
The benefits on the computational point of view are relevant.
There is no need anymore to instantiate the particles in order
to cover all the state space. Even if in the initial step there are
no particles near the real position of the vehicle, the proposed
solution is still able to find the right state, after some time.
A significant issue is to determine the optimal value of k.
We have chosen an empirical approach, considering both map
complexity and initial distribution of the particles. We found
that a good system is to add at each step 1/5 of new particles,
with 30% probability.

III. SIMULATED SETUP

The first step in the validation of the proposed approach
is by simulation. Our system can model a vehicle with six
degrees of freedom (DOF), plus a DOF for the mounting
of the sensor on the sway axis. In this particular setup we
have assumed that pitch and roll of the vehicle are neglected.
Additionally, at this point, the sensor orientation in relation
to the vehicle is fixed. A simulated gyroscope is used to
have a noisy estimation of the orientation of the vehicle
(yaw). A simulated depth sensor provides a noisy estimation
of the distance between the vehicle and the seabed. Finally, a
simulated profiling sonar is modelled to acquire range profiles.
It is assumed that an a-priori map of the vehicle’s surroundings
is known. No assumptions are made on the initial position of
the vehicle within the map. The particle state is represented
by six variables, three for orientation and three for position of
the vehicle, plus an additional variable representing the weight
of the particle.

A synthetic environment was created to validate the ap-
proach. Different types of scenarios were considered, in order
to analyze the algorithm performances.



Fig. 2. A 2D plot of the environment, with real trajectory (blue) and expected
trajectories, given by particle analysis. The green (light gray) dot trajectory
is given by the mean of the particles, while the red (dark gray) dash one is
given by the best particle. The real trajectory starts at the beginning of the
blue (black) line, on the top right of the figure. The particles in their last
configuration are also shown, at the end of the trajectories, on the bottom
center of the figure.

After defining an underwater scenario, a non linear trajec-
tory is defined around the scenario, as shown in Fig. 1.

To determine the expected position of the vehicle and,
therefore, the expected trajectory, we consider two different
possibilities: the weighted average of the particles and the
best particle. Each solution has advantages and disadvantages.
Choosing the average results in a smoother trajectory, but
usually noisier. The best particle trajectory is much more
dynamical, as it can jump from one particle to another one,
in the first phase of the algorithm. As soon as a convergence
is reached, the best particle trajectory presents a better over-
lapping of the real trajectory.

In Fig. 2, the results of the simulation are presented in a
2D projection for more clarity, as all the trajectories tested are
3D. The contour of the environment is added to understand the
trajectory according the environmenet at the vehicle position.

The real trajectory is plotted in blue (black). The expected
trajectories, given by particle analysis are plotted in green
(light gray) and in red (dark gray). The green dot trajectory is
given by the mean of the particles and the red dash trajectory
is given by the best particle. As the figure shows, at the
beginning, the inferred trajectories are not close to the real
trajectory, because no assumptions are made on the initial
position of the vehicle within the map. After a short time,
the particles converge near the real position and they do not
lose it. The figure shows the particles distribution at the last
step, plotted according to their weight. Particles near the real
trajectory are bigger than particle with a low weight.

Fig. 3 shows the error between the real trajectory and the
trajectories inferred by the particles. The green (light gray)
dot error line is referred to the trajectory given by the mean
of the particles, whilst the red (dark gray) dash error line is

Fig. 3. Simulated results: error between real trajectory and expected
trajectories, inferred by the particles. The red (dark gray) dash error line
is given by the best particle trajectory, while the green (light gray) dot error
line is given by the mean trajectory.

referred to the trajectory given by the best particle. Before
the convergence, the red (dark gray) dash line error is much
more variable than the green (light gray) dot line error. That
is because the trajectory given by the weighted average of the
particle is much smoother, in this phase, than the trajectory
given by the best particle, which is much more dynamical. In
this situation, the red (dark gray) dash line error is usually
greater than the green (light gray) dot line error. As soon as
there is the convergence to the right position, the red (dark
gray) dash line error is closer to zero than the green (light
gray) dot line error is, providing a better estimation. After the
convergence, the total red (dark gray) line error, represented
by the integral of the error, is always lower than the green line
error and, if we consider the actual error at any fixed time after
the convergence, in more than 90% of cases. Evaluation on
convergence shows that in 100% of tests, the red (dark gray)
dash line error goes close to zero faster than the green (light
gray) dot line error. This is expected, because the green (light
gray) dot trajectory is affected by all the particles and needs
some more resampling steps in order to discard the particles
not representing a good estimation of the state and to converge
to the real position.

Fig. 4 shows an example of recovering from wrong con-
vergence. At the beginning there is a convergence on the
bottom of the map, as the structure is perceived by the vehicle
similar to the sensor data from the sonar. However, as soon as
the process evolves, it is able to recognize that the expected
sensor measure is too far from the real one. Spreading k new
random particles helps the vehicle to exit from local minima.
In Fig. 5 the error graph is plotted. As explained before, the
first trajectory to go close to the real one is given by the best
particle trajectory. It is possible to see it in Fig. 4 (b), in which
the expected position given by the best particle is very close
to the real position, while the expected position given by the
weighted average is far away, as it is influenced by the other
particles not yet converged.



(a) (b) (c)

Fig. 4. 2D plot. Real trajectory is a solid blue (black) line, trajectory given by the best particle is a dash red (dark gray) line and trajectory given by the
mean is a dot green (light gray) line; (a) Wrong particle convergence on the bottom of the figure. The real position is the blue circle on the blue trajectory
on the top right of the figure; (b) recovering from the wrong convergence: the best particle expected position is very near the real position, while the mean
expected position is still far, at about the center of the figure; (c) after the recovering, the particles are keeping the right position.

Fig. 5. Simulated results, recovery from wrong convergence: error between
real trajectory and expected trajectories, inferred by the particles. The error
is high and costant when the particles converge to a wrong position, but it
goes close to zero as soon as the algorithm recovers. The red (dark gray) dash
error line is given by the best particle trajectory, while the green (light gray)
dot error line is given by the mean trajectory.

IV. EXPERIMENTAL RESULTS

The robotic platform used for the experiments is a hover
capable AUV such as the one in Fig. 6. The results presented
in this section show the robustness of the proposed algorithm
and its capability to be used in real missions.

The trials were performed in a cylinder tank, 8 metres tall,
with a diameter of 14 metres. The first part of our validation
process was to test the localization algorithm in the empty
tank, using the wall as a reference. After validating this first
step, we added a cylindric metallic object in the center of the
tank in order to analyze the performances of the algorithm
adding some complexity to the environment.

The assumptions for the real scenario are the same as for the
synthetic one. An a-priori map of the vehicle surroundings is
known. The vehicle is equipped with a fiber optical gyroscope,
DVL and depth sensor, as proprioceptive sensors. A Tritech
Seaking mechanically scanned profiling sonar is the main

Fig. 6. The autonomous underwater vehicle RAUVER

exteroceptive sensor which acquires range profiles of the
environment.

In order to use our particle filter approach, we created a
simulation of the sensor’s view as if the vehicle were located
at each of the particle’s position. According to the particular
geometrical situation of our test facility, we implemented
a mathematical approach, in order to simulate the sensor
data, possible because both the tank and the inner object are
cylinders. Other approaches, such as ray tracing, are of course
possible, but more computational expensive.

In Fig. 7, a 2D plot with the initial particle distribution is
presented.

In Fig. 8, the expected trajectories are plotted, as well as
the final configuration of the particles. The green (light gray)
trajectory is given by the mean of the particles and the red
(dark gray) trajectory is given by the best particle.

The general behavior of the algorithm is the same both with
real experiments and in simulation. There is some uncertainty
at the beginning, but the particles converge to the right position
quite quickly. The mission was to track the cylinder object,



Fig. 7. Initial distribution of particles

Fig. 8. A 2D plot of the environment, with the particles, in their last
configuration and with the expected trajectories, given by particle analysis.
The green (light gray) dot trajectory is given by the mean of the particles,
while the red (dark gray) dash one is given by the best particle.

keeping a fixed distance from it, for about a quarter of a
complete turn and then come back on the same trajectory. As
shown in Fig. 8, the proposed algorithm succesfully returns
the expected trajectory for the described mission.

Figure 9 shows the error between the real trajectory and the
trajectories inferred by the particles. The green (light gray)
dot error line is referred to the trajectory given by the mean
of the particles, whilst the red (dark gray) dash error line is
referred to the trajectory given by the best particle. The results
are really good, even better than expected. In all our tests, the
error is less than 40 cm, after the convergence. If we compare
these results with the simulated data, they appear to be better.
In reality, two factors have an impact on these results. As first,
the complexity of the map has to be taken into account. The
synthetic environment was much more complex and bigger
than the real one, presenting similar profiles, which could lead
more easily to a wrong convergence. Additionally, because of
our efficient geometrical approach in analyzing the real data,
it is possible to run multiple times the localization algorithm,

Fig. 9. Trials with real vehicle: error between real trajectory and expected
trajectories, inferred by the particles. The red (dark gray) dash error line is
given by the best particle trajectory, while the green (light gray) dot error line
is given by the mean trajectory.

before a new sonar picture is available. Using 40 particles,
there is enough time for at least 5 steps, before adding the
process evolution and starting analyzing the new sensor data.
This results in a more accurate and precise localization.

V. CONCLUSION

This paper has presented a particle filter approach for local-
ization of autonomous underwater vehicles both in structured
and unstructured environments. The paper has detailed the lo-
calization algorithm, as well as simulation and real experimen-
tal setup. Experimental results show the high performances of
this algorithm, which is robust to noisy measurements. Future
work is to integrate this algorithm in a docking mission. The
proposed approach will be used as the module to localize
the AUV position with respect to the docking station and to
navigate to it. Extensions for the proposed approach include
the assumption of a partially known map, with the integration
of scan matching techniques.
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