
E. Corchado, A. Abraham, and W. Pedrycz (Eds.): HAIS 2008, LNAI 5271, pp. 70–77, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Design Patterns for Combining Social and Individual
Intelligences on Modular-Based Agents

Bianca Innocenti1, Beatriz López1, and Joaquim Salvi2

1 Control Engineering and Intelligent Systems Group
2 Computer Vision and Robotics Research Group

Universitat de Girona, Campus Montilivi, edifice P4, 17071 Girona, Spain
{bianca.innocenti,beatriz.lopez,joaquim.salvi}@udg.edu

Abstract. Design patterns have been recently concerned in the multi-agent
community for the design of systems with decentralized coordination. In this
paper we present a design pattern for dealing with the complexity of developing
a decentralized coordination multi-agent system for controlling a single robot.
In our pattern, we combine different intelligences: an individual intelligence
that enables agents to achieve their own goals, and a social intelligence that
makes agents understand and manage with other agents in the community. The
design pattern facilitates the implementation of modular-based agents inside the
multi-agent architecture and its use helps developers when incorporating new
agents in the architecture. The multi-agent architecture is used to control a Pio-
neer 2DX mobile robot.

Keywords: agent design pattern, multi-agent system, integrated intelligence,
mobile robotics.

1 Introduction

A design pattern provides a reusable solution to a recurrent problem in a specific
domain [1]. A pattern does not describe an actual design, but an abstract model of the
solution using specific entities of the paradigm in use. Patterns make designs more
flexible, elegant, and ultimately reusable. They help designers to build new solutions
without having to start from scratch [2].

Recently, design patterns have concerned the multi-agent community [1, 3], to
which our research have to do with. We have developed ARMADiCo, a multi-agent
architecture for a single robot and with a distributed coordination approach to share
the system resources [4]. As any other kind of robot architecture, different cognitive
abilities are integrated in the multi-agent approach, each requiring different artificial
intelligence techniques. However, being a distributed coordination mechanism, the
global system behavior emerges from individual agents (micro level behaviors). For
such kind of systems, design is still an open issue [5]. One of the current proposals
consist in the use of agent patterns designs [6], and we have followed such approach
in the design of ARMADiCo. The agents design pattern captures common features of
the agents and facilitates the incorporation of agents in the architecture.

 Design Patterns for Combining Social and Individual Intelligences 71

Particularly, in a decentralized coordination mechanism, each agent has to deal
with, at least, two kinds of intelligences: individual and social. On one hand, individ-
ual intelligence enables an agent to achieve its assigned goals (as for example, plan-
ning a trajectory for achieving a target point). On the other hand, social intelligence
enables an agent to understand and manage with other agents. Consistently, any de-
veloper that wants to incorporate a new agent into the architecture has to follow the
same recurrent design: define the intelligence methods to deal with individual goals,
and define the methods to deal with the global robot behavior.

In this paper we present how design patterns are used in our architecture, AR-
MADiCo, in order to organize the different intelligences required in the agents. We
describe our general agent pattern design and several instantiation corresponding to
different behavioral agents. Moreover, we show how the incorporation of new agents
is simple by the use of these patterns.

This paper is organized as follows. First, in section 2 the design pattern is de-
scribed, together with several highlights of the ARMADiCo agents. We continue by
giving some details on the behavioral agents according to the pattern. Next, the ex-
perimental set up and results are described in sections 4 and 5 correspondingly. Some
related work is summarized in section 6 and we end with some conclusions.

2 Design Pattern

The proposed multi-agent architecture, called ARMADiCo –Autonomous Robot
Multi-agent Architecture with Distributed Coordination-, can be described according
to the main components required in classical Hybrid Deliberative/Reactive Architec-
tures [7]. First, an interface agent is defined to interact with humans or other external
agents. Second, to reason about how to achieve high level goals, we propose the mis-
sion planning, the task planning, the path planning, the battery charger and the local-
ization agents. Third, to deal with the environment, we implement what we called
behavioral agents with the following goals: go to a point, avoid obstacles and go
through narrow spaces. Four, to deal with the physical world (perception and actua-
tors), an agent is designed for each available sensor (encoder, sonar, battery sensor)
and a single actuator agent has been defined (robot), due to limitations of the hard-
ware. Finally, there are also a set of back agents that deal with other functionalities
required to give support to the overall multi-agent system (e.g. Directory Facilitator).

In order to design the agents, an agent pattern has been defined. It captures common
features of the agents and facilitates the incorporation of agents in the architecture.
Each component of the agent pattern is designed as a module. As a consequence, our
agents follow a module-based approach inside the multi-agent architecture. The current
pattern is shown in Table 1. Note that each agent is different, but the pattern design
offers a way to capture the different components that an agent on the architecture must
have. Thus, Table 2 shows the main differences among the agents, which corresponds
to the particular instantiations of their goal and coordination components (i.e. their
individual and social intelligence).

72 B. Innocenti, B. López, and J. Salvi

Table 1. Agent pattern design

Internal State: Mechanism used by the agent in order to know about the progress of its
goals, and to update the information of the environment.

Goal: Goal configuration: Agent goals.
Goal methods: Methods that implements agent goals

Competition: List of possible conflicting agents due to resource sharing, and list of
shared resources.

Collaboration: List of agents from/to exchange messages (request, inform).
Coordination: Utility Computation: Method (with the required parameters) used to

compute the utility value for achieving a coordination agreement
 Resource exchange: Method used to exchange resources from one agent

to another.
Helper methods: All supporting methods that help the agent in registering in the system,

communicating, starting up, etc. They are the same for all the agents.

Table 2. AI techniques for individual and social intelligence in ARMADiCo agents

 agent individual (goal) social (coordination)
 goto fuzzy fuzzy
behavioral avoid pid fuzzy
 gothrough pid fuzzy
 mission planning PRS trajectory merging
deliberative path planning search -
 localization probabilistic MonteCarlo -
 battery charger model based trajectory merging
 sonar probabilistic -
perception encoder mathematical -
 battery sensor model based -
 actuator robot - -

Regarding individual intelligence, that is, the method employed by the agent in or-
der to fulfill its goal is specified in the goal slot of the design pattern. Table 2 (column
"individual") shows the techniques implemented in the current implementation of
ARMADiCo.

On the other hand, social intelligence in an agent is related to the interaction with
other agents to resolve the resource usage. When a resource is shared by more than
one agent, a conflict can arise. In order to coordinate them, ARMADiCo uses a dis-
tributed coordination mechanism, in which the agents in conflict decide which is the
winner agent that takes the resource control. No central arbiter decides upon the re-
source usage. Since robots concerns physically grounded resources, this coordination
should take into account possible disruptions in the robot behavior. For this reason
the coordination process is split into two different parts: the winner determination
method (utility computation slot of the agent pattern) and resource exchange method.
Regarding the former, it consists of a process to assign the shared resource to the
agent with the highest utility. That is, all of the agents compute an utility function for
the actions they require that represents the benefit the system will receive if it carries

 Design Patterns for Combining Social and Individual Intelligences 73

Agent Pattern Design Goto Agent
Internal State Maintain motion progress information

Configuration Drive the robot to the goal position with the desired heading Goal
Methods Fuzzy Collaborative Control System

Competition Avoid, gothrough agents for the robot agent
Collaboration Encoder, mission planning, battery charger agents

Utility Computation Based on distance to goal position Coordination
Resource Exchange Fuzzy-based smoothing method

Helper Methods -

Fig. 1. Pattern Design of Goto Agent

Agent Pattern Design Gothrough Agent
Internal State Maintain motion into narrow places progress information

Configuration Detect narrow places and drive the robot through them Goal
Methods Model based motion

Competition Avoid and goto agents for the robot agent
Collaboration Encoder, mission planning, battery charger and sonar agents

Utility Computation Based on distance to side obstacles Coordination
Resource Exchange Fuzzy-based smoothing method

Helper Methods -

Fig. 2. Pattern Design of Gothrough Agent

out the proposed action from the point of view of the agent (so their utility functions
measures a gain in wealth for the whole society). The utility function is defined in the
interval [0,1] for all the agents, being their values comparable. Concerning the latter,
Table 2 (column "social") shows the resource exchange methods employed when the
agent which wins the resource is different to the agent that has been currently using
the resource up to now. Thus, robot behavior disruptions are avoided.

3 Behavioral Agents

In this section we illustrate the pattern design instances for the behavioral agents. As
stated in section 2, there are three behavioral agents, the goto, the avoid and the
gothrough agents. Fig. 1, 2 and 3 show the instances of our design pattern for the
three behavioral agents. All of them have their individual intelligence methods (goal
component of the agent pattern). The goto agent uses a fuzzy collaborative control
system to move the robot to a target position, the avoid agent a PID control system to
avoid obstacles and the gothrough agent a model based system to pass through narrow
places.

Regarding coordination, all of them share the robot agent (resource), so conflicts
could arise among them. Thus, they all have a utility computation method to deter-
mine who obtains the control over the conflicting resource (winner determination
method). As stated above, the utility value varies in the interval [0, 1], 1 being the
maximum value. Therefore, the agent who is controlling the resource sends to the
other conflicting agents its utility value.

74 B. Innocenti, B. López, and J. Salvi

Agent Pattern Design Avoid Agent
Internal State Maintain dodging obstacles progress information

Configuration Avoid obstacles, guaranteeing save motion Goal
Methods PID control system

Competition Goto and gothrough agents for the robot
Collaboration Sonar,encoder, mission planning, battery charger ,

robot agents
Utility Computation Based on time to collision Coordination
Resource Exchange Fuzzy-based smoothing method

Helper Methods -

Fig. 3. Pattern Design of Avoid Agent

If this value is still the highest one, the agent will continue to control the resource.
Otherwise, the agent who wins the resource obtains the opportunity to use the robot
agent, but it should proceed on the resource usage taking into account its impact on
the physical world in a similar manner than control fusion (resource exchange
method). For doing so, we propose a fuzzy method based on the information used in
the coordination process that is the same for all the behavioral agents (see [8] for
additional details).

4 Experimental Set-Up

We have implemented ARMADiCo in C++ on Linux. The robot used for experimen-
tation is a Pioneer 2DX of ActivMedia Robotics.

To test the use of the design pattern two ARMADiCo configurations have been set
up, according to two different development phases:

− GA (Goto + Avoid): only the goto and the avoid agents are controlling the robot
− GAT (GA + GoThrough): the gothrough agent has been added to test the difficulty

to add a new agent in the system as well as to verify that the emergent behavior of
the whole system continues to be coherent and the desired one.

Next we present the defined scenario. The robot must go from Room A to Room B
avoiding obstacles, as shown in Fig. 4-a).

Scenario
Parameters GA GAT

TD 11.64±0.14 m 11.84±0.10 m
FO 2.57±0.60º 1.56 ±0.90º
TT 71.84±6.85 s 60.17 ±3.45 s
P 99.37±0.12 % 99.31±0.21%

TG 68.64±3.14 % 99.31±0.21%

a) Defined Scenario b) Results of the two tested situations

Fig. 4. Scenario to test and results of the emergent behavior of the robot

 Design Patterns for Combining Social and Individual Intelligences 75

5 Results

Fig. 4-a) shows the trajectories described by the robot in grey when the GA configura-
tion is used and in dotted when the gothrough is added (GAT). Maybe the most im-
portant issue is the fact that introducing the gothrough agent is quite simple since the
agent pattern helps to determine the important aspects to consider: following it no
modifications on the existing agents must be carried out.

Since our hypothesis is that the addition of the gothrough agent implies should im-
prove the whole robot behavior, we need also to test how this happens. For this purpose,
we have considered the following measures: travelled distance (TD), the distance trav-
elled by the robot to reach the goal; final orientation (FO), the heading of the robot at
the goal position; total time (TT), the total amount of time the robot needs to achieve the
goal; precision (P), how closed to the goal position is the center of mass of the robot;
and time goto (TG), the total time the goto agent has the robot control.

Fig. 4-b) shows the average and standard deviation of each evaluation measure af-
ter five runnings. Comparing the results, we can see that they are very similar, except
for the total time (TT) needed to arrive at the destination. With the gothrough agent,
this time is decreased, meaning that the average speed is higher than when there is
only the goto and the avoid agents.

6 Related Work

The application of multi-agent system to robotics has been mainly concerned to mul-
tiple robot system. For example, in [9] several soccer robots coordinate their activities
based on case-based retrieval. Regarding the development of multi-agent architectures
for a single robot, there are fewer works (see, for example, [10] and [11]). The main
different with our architecture is that we follow a distributed coordination approach,
so there is no central arbiter solving conflicts in the use of shared resources. As a
consequence, we are following an emergence approach: the global system behavior
emerge (macro level) from individual agents (micro level behaviors).

Regarding design issues, centralized coordination approaches use to follow a
top-down traditional methodology. For distributed coordination multi-agent develop-
ment, design is still an open issue. The use of design pattern has recently concerning the
multi-agent community to deal with engineering emergence in decentralized autonomic
system, like ours. For example, in [3] an agent pattern is proposed to encapsulate a
business specific class in an AgentSpace framework and other web-based environments.
In [1] the authors propose the use of agent patterns combined with workflows as a
methodology for developing such emergence systems. Our design pattern is simpler
than the one proposed in [1], but accomplishes the design problems we have: to state
clearly the requirements of each agent, that is, an individual intelligence and a social
intelligence methods. However, we should contemplate the inclusion of workflows in a
future work.

Regarding the use of design patterns in robotics, there are several previous
works out of the scope of the multi-agent paradigm. For example, [12] three behav-
ioral-based are proposed to deal with three different ways of dealing with human
interaction in robot control: traded, shared and supervised. In traded control, the re-
sponsibilities for producing behavior are traded between man and machine; in shared

76 B. Innocenti, B. López, and J. Salvi

control, an operator is guiding the robot to target, and in supervisory control the con-
troller performs the entire task. In [13], a single design pattern is proposed to deal
with the complexity of developing a robot control, according to three main layers:
strategic, tactical and execution. All of these previous approaches focus on the devel-
opment of a single system for controlling a robot (mainly based on object oriented
methodologies) and agent patterns helps in the complex process of dealing either with
real-time complexity or with human-robot interaction [14]. However, our proposal
focuses on the development of a control architecture composed by a collection of
agents (or autonomous systems). So although internally each agent follows a modu-
lar-architecture based on object oriented programming as well, the pattern focuses on
the cooperation of the different agents in the architecture while maintaining its indi-
vidual goals. Table 3 shows a comparative view of all the approaches.

Table 3. Different design patterns for robotics

Authors Focus Pattern(s) Number
patterns

Graves and Czarnecki
[12]

human-robot interaction traded, shared, supervised 3

Nelson [13] real-time Strategic+tactical+ execution 1
This paper agent cooperation individual+social 1

7 Conclusions and Discussion

Agents in a multi-agent architecture with distributed coordination are complex; need
to deal with, at least, two kinds of intelligence (individual and social). In addition, the
design of such agents is a recurrent process in which the same pattern is repeated,
considering these two intelligence and design patterns offers a tool to facilitate this
process.

In this paper we have described the design pattern we have employed to define the
agents of the ARMADiCo robot architecture. This pattern explicitly describes the
combination of different kinds of intelligences (and so techniques) at the agent level.
Thus, techniques as fuzzy logic, search are used to fulfill the individual intelligence of
the agent; while utility computation or fuzzy logic are used to deploy the agent social
abilities. The design pattern is then implemented as a module-based architecture that
conforms the agent, which in turn interacts to other similar agents in the multi-agent
architecture. We have experimentally shown how the use of design patterns facilitates
the inclusion of new agents in the architecture, when applying it to control a mobile
robot.

As a future work, we are thinking on dealing with other methodological issues, as
the ones proposed in [15], in order to deal with the emergence of the overall AR-
MADiCo architecture.

Acknowledgments. This work was partially supported by the Spanish MEC Project
DPI2006-09370 and by the DURSI AGAUR SGR 00296: Automation Engineering
and Distributed Systems Group (AEDS).

 Design Patterns for Combining Social and Individual Intelligences 77

References

1. Gardelli, L., Viroli, M., Omicini, A.: Design patterns for self-organizing multiagent sys-
tems. In: Proceedings of EEDAS (2007)

2. Gamma, E., Helm, R., Johnson, R., Vlissides, J.M.: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley Professional, Reading

3. Silva, A., Delgado, J.: The agent pattern: A design pattern for dynamic and distributed ap-
plications. In: Proceedings of EuroPLoP 1998 (1998)

4. Innocenti, B., López, B., Salvi, J.: A multi-agent architecture with cooperative fuzzy con-
trol for a mobile robot. Robotics and Autonomous Systems 55, 881–891 (2007)

5. De Wolf, T., Holvoet, T.: Towards a methodology for engineering self-organizing emer-
gent systems. Self-Organization and Autonomic Informatics (I), Frontiers in Artificial In-
telligence and Applications 135, 52–61 (2007)

6. Tahara, Y., Ohsuga, A., Honiden, S.: Agent system development method based on agent
patterns. In: Proceedings of the 21st ICSE 1999, pp. 356–367 (1999)

7. Murphy, R.R.: Introduction to AI Robotics. MIT Press, Cambridge (2000)
8. Innocenti, B., López, B., Salvi, J.: Resource coordination deployment for physical agents.

In: From Agent Theory to Agent Implementation, 6th Int. Workshop AAMAS (2008)
9. Ros Espinosa, R., Veloso, M.: Executing multi-robot cases through a single coordinator.

In: Proceedings of AAMAS 2007 (2007)
10. Neves, M.C., Oliveira, E.: A multi-agent approach for a mobile robot control system. In:

Proceedings of MASTA 1997 - EPPIA 1997, pp. 1–14 (1997)
11. Busquets, D., Sierra, López de Màntaras, R.: A multiagent approach to qualitative land-

mark-based navigation. Autonomous Robots 15, 129–154 (2003)
12. Graves, A., Czarnecki, C.: Design patterns for behavior-based robotics. IEEE Trans. on

Systems, Man & Cybernetics, Part A (Systems & Humans) 30(1), 36–41 (2000)
13. Nelson, M.L.: A design pattern for autonomous vehicle software control architectures. In:

Proceedings of 23rd COMPSAC, pp. 172–177 (1999)
14. Zalewski, J.: Real-time software design patterns. In: 9th Conf. on Real-Time Systems, Ul-

stron, Poland (2002),
http://citeseer.ist.psu.edu/zalewski02realtime.html

15. De Wolf, T., Holvoet, T.: Using UML 2 activity diagrams to design information flows and
feedback-loops in self-organizing emergent systems. In: Proceedings of EEDAS, pp. 52–
61 (2007)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

