
Robotics and Autonomous Systems 55 (2007) 881–891
www.elsevier.com/locate/robot
A multi-agent architecture with cooperative fuzzy control for a
mobile robotI

Bianca Innocenti∗, Beatriz López, Joaquim Salvi

The Institute of Informatics and Applications, University of Girona, Campus Montilivi, 17071-Girona, Spain

Available online 14 September 2007

Abstract

The challenges of robotics have led the researchers to develop control architectures composed of distributed, independent and asynchronous
behaviors. One way to approach decentralization is through cooperative control, since it allows the development of complex behavior based on
several controllers combined to achieve the desired result. Robots, however, require high-level cognitive capacities, and multi-agent architectures
provide the appropriate level of abstraction to define them. This article describes a multi-agent architecture combined with cooperative control
developed within the agent. The experiments were carried out on an ActivMedia Pioneer 2DX mobile robot.
c© 2007 Elsevier B.V. All rights reserved.

Keywords: Multi-agent architectures; Mobile robotics; Fuzzy logic; Distributed coordination
1. Introduction

One of the current challenges in the development
of robot control systems is making them capable of
intelligent and suitable responses to changing environments.
Learning and adaptation methods, as well as decision-making
techniques, help to achieve these objectives. Nevertheless, it
is technologically difficult and potentially dangerous to build
complex systems that are only centrally controlled [16], since
the system will fail if the control system does not work. With
decentralized control, it is possible for the system to continue
working even when a part of it fails. Although centralized
control allows multiple goals and constraints to be coordinated
in a coherent manner, decentralization provides flexibility and
robustness [12,25].

One of the first efforts to consider architectures as
being composed of different distributed, independent and
asynchronous behaviors coordinated by a central arbiter
I This work was partially supported by the Spanish MEC Project TIN2004-
06354-C02-02 and by the DURSI Automation Engineering and Distributed
Systems Group, 00296.

∗ Corresponding address: The Institute of Informatics and Applications,
University of Girona, Edifici P-IV-Escola Politecnica SupeCampus Montilivi,
17071-Girona, Spain. Tel.: +34 972 41 88 84; fax: +34 972 41 89 76.

E-mail address: bianca.innocenti@udg.edu (B. Innocenti).

0921-8890/$ - see front matter c© 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.robot.2007.07.007
was DAMN [23]. The global behavior of Rosenblatt’s
architecture was rational, coherent, and goal-directed while
preserving real-time responsiveness to its immediate physical
environment. Since then, other architectures have been
developed, such as, O2CA2 [21] which uses a voting
scheme mechanism to coordinate different behaviors. Bryson,
in [1], analyzed different architectures and emphasized the
hierarchical organization of behaviors as one of the most
advantageous ways of organizing them, since the combinatorial
complexity of control is reduced (when a particular strategy is
being executed, actions associated with alternative strategies
should not interfere with actual behaviors). In these types of
architectures, each behavior has been modeled as a module that
can communicate with others.

On the other hand, recent work with multi-agent systems
(MAS) has encouraged researchers to take another step
forward in the design of control architectures and to replace
modules with agents. Agents are independent, situated, self-
contained systems with reflective and reflexive capacities
(self-awareness) [15]. In [14], a multi-agent architecture
for mobile robot control is presented and compared to
other classical architectures (control-loop, layered, and task-
trees) according to various measures: coordinability (the
degree to which a system can coordinate by respecting
interdependencies between agent actions, meeting global

http://www.elsevier.com/locate/robot
mailto:bianca.innocenti@udg.edu
http://dx.doi.org/10.1016/j.robot.2007.07.007

882 B. Innocenti et al. / Robotics and Autonomous Systems 55 (2007) 881–891
constraints and optimizing its operations), predictability,
reliability-tolerance, and adaptability. In their case study,
the authors show that multi-agent architectures based on
organizational principles (resulting from a design process, not
from emergence) fit robot applications that require open and
cooperative components better. [19] also emphasizes the use of
a multi-agent architecture in order to build easily expandable
and portable mobile robotic control programs. Different
developers can implement agents to perform a specific task
in different programming languages, and integrate them into
the architecture, provided there is a common communication
ontology.

In this kind of architecture, agents can be complex entities
at the same time. For example, a goto agent in an obstacle-
free path has to consider if the destination point is near to
or far from the current position of the robot, and depending
on this information, the robot must move slowly or quickly.
One approach to agent design is to take advantage of the
work already carried out in cooperative control to develop
complex behavior at the agent level. Cooperative control
consists of combinations of different controllers to obtain
desired behaviors. Integrating these two lines of research, the
multi-agent systems and the cooperative control approaches,
results in a multi-agent architecture of cooperative controls,
which we call a multiple cooperative control approach in a
robot.

The entire architecture of the robot is based on a multi-agent
system, while cooperative control is used to design and develop
a single agent. The combination of the different controllers is
achieved by using fuzzy logic concepts.

The advantages of our approach are two-fold, on account
of the convergence of the benefits of both technologies: agents
and collaborative control. First, using a multi-agent approach,
the robot’s architecture can be decomposed into flexible
autonomous subsystems (agents). The architecture can then be
described at a higher level, defining the agents that have to be
in the system, the role of each of them, the interactions among
them, the actions each of them performs, and the resources they
need. Since the multi-agent system is inherently multi-threaded,
each agent has its own thread of control; each agent decides
whether or not to perform an action on request from another
agent (autonomy); and each agent exhibits a reactive, pro-
active and social behavior (flexibility) [28]. In addition, in our
proposal, no centralized arbiter is defined, but the coordination
of all the agents achieving a common goal (robot goals) is peer-
to-peer based. Agents related to high cognitive capabilities like
planning can be easily integrated with agents providing basic
behaviors such as moving to a point, all running concurrently,
sharing the robot resources and negotiating when conflicts arise.

Second, at the agent level, collaborative control allows
the design and combination of simple controllers to achieve
complex behaviors more easily than other approaches, such as
predictive or adaptive control, in which a more accurate model
of the robot is needed in order to implement the control laws. In
addition, a fuzzy logic approach to combine controls allows the
management of uncertainties involved in the decision-making
process of choosing one or another controller.
Nevertheless, this approach also has some drawbacks
too. Agents require interaction to get information and share
resources, resulting in some communication overhead. This
issue can be a problem when dealing with real physical systems,
but in [26] Soh has demonstrated the capacity of multi-agent
systems to respond in real time to changes in the environment.
Nevertheless, keeping the number of communication needs to a
minimum is good when dealing with real time systems. Along
this line, the use of collaborative control at the agent level helps
to achieve complex behaviors while keeping the number of
agents to a certain amount, thereby reducing communication
among them.

This article briefly describes the proposed multi-agent
architecture [11] and provides a detailed explanation of an agent
implemented with cooperative control based on fuzzy logic
[13]. The aim of the article is to present the cooperative control
carried out in a multi-agent architecture agent and to analyze
the global behavior when an agent with cooperative control
interacts with other agents of the architecture.

The remainder of the article is structured as follows. First
the state-of-the-art of multi-agent and cooperative control
architectures is detailed in Section 2. Section 3 presents
our multiple cooperative control architecture and Section 4
introduces the cooperative control of the goto agent. Section 5
shows the implementation and experimental results. The article
ends with conclusions.

2. Related work

It has already been established that multiple cooperative
control in a single robot involves cooperative control and multi-
agent systems. Cooperative control has a very general meaning
and every time control algorithms are defined in a complex task,
the idea of cooperation is implicitly introduced into the control.
Therefore, any complex system developed with multi-agent
architectures may be thought of as a cooperative approach.

2.1. Multi-agent robot system architectures

The majority of multi-agent robot system architectures,
rather than being built to control single robot systems, are
meant for multi-robot systems [10,27,4,3]. The mapping from
a robot to an agent seems straightforward, as long as each
robot represents a physical entity with a specific task. Such
mapping, however, can also be extended inside a robot, carrying
out different activities in order to respond in time to the
environment. For example some activities might require input
from a variety of sensors, to control the motion of its wheels,
and plan paths. In addition the robot should avoid obstacles
and deal with uncertainty due to sensor constraints, power
levels and other events that it may encounter. Such activities
should be organized to achieve the robot’s goals, and multi-
agent methodologies offer an appropriate background.

For example, the multi-agent architecture proposed for the
reactive level by [17] has two types of agents: elemental, with
basic skills, and high-level, responsible for integrating and
coordinating various elemental agents. In [2], a multi-agent

B. Innocenti et al. / Robotics and Autonomous Systems 55 (2007) 881–891 883
system is proposed for the navigation system, in which five
agents (map manager, target tracker, risk manager, rescuer,
and communicator) are coordinated by means of a bidding
mechanism to determine the action to be carried out. In [14],
two MAS control system architectures are defined based
on organization theory and strategic alliances: structure-in-5
and joint venture. In the former, five subsystems are placed
following a start structure, where the navigator is in the middle
as the central intermediate agent coordinating the movements
of the robot to assume reliability-tolerance and adaptability
management. In the latter, the robot architecture is organized
around a joint manager assuming coordination. Our approach
differs from [14] in which we have no central arbiter; according
to the organizational terminology introduced by the authors,
we are using an arm’s-length style, in which competitive and
independent agents establish agreements between themselves,
while keeping their autonomy and acting and putting their
knowledge together to accomplish specific common goals.

Ref. [22] proposes a multi-agent system that improves
autonomous robot navigation in unknown, semi-structured
environments. The novelty of this work is the use of case-
based reasoning (CBR) techniques to deal with problematic
situations, such as dead ends or the location of obstacles
the robot cannot avoid. In [19], a multi-agent architecture
is also proposed to deploy an intelligent wheelchair. The
agents considered in this architecture are the sensor handler,
the collision detector, the corridor recognizer and the
drive controller. The behaviors implemented in the system
are obstacle avoidance, door passage and wall following.
Specifically, the collision detector, responsible for the safety of
the robot, is fuzzy-based. The input of the agent is the linear
distance, and the velocity and turn-angle are the outputs. Note
however, that in this case fuzzy logic is not used to combine
controllers in a collaborative way, as we are proposing.

2.2. [Non-multi-agent] cooperative control

Cooperative control is applied to three types of systems:
sensor fusion, where knowledge is obtained by processing
information gathered from many sources; control of multiple
processes, in which various controllers share control of the
system; and multiple human operators, in which various
operators share and negotiate the control. Our research is
focused on the branch of multiple process control.

Various researchers have worked with mobile robots in this
line of research. In [9], various sources control each wheel
of the robot. The controllers are modeled as finite automata
whose inputs are the location of the robot. The desired increase
in movement is based on the average of the total vote of the
outputs of the automata. In [6], high-level knowledge is used
to select the appropriate controller to carry out the desired
action. The controller is selected by choosing, from a case-base
of controllers, the one that has similar specifications to those
sent by the high-level subsystem. Other approaches, like that of
[8], show how cooperative control (called concurrent control)
presents several desirable properties for the control of mobile
robots like fault tolerance, distribution and scalability. This
approach is based on alternating orders coming from different
controllers in the motors. The resulting movement is achieved
by overlapping various control signals.

In [24] a high-level decision-making procedure, instead of
four overlapping signals, is proposed to coordinate the various
controllers. In particular, the authors use fuzzy logic to model
the control actions coming from the heterogeneous controllers
and to decide, in accordance with the dynamic model of the
robot, what combination of control actions should be carried out
at any given moment. The main difference between our work
and that of Saffiotti is that a fuzzy controller is not implemented
by fuzzy rules; rather, fuzzy sets are used to model the relevance
of the different controllers in the aggregation procedure and in
this way expand on the work presented by [8]. In addition,
in our approach the result of the cooperative controller is
the output of a single behavior, instead of being the direct
command of the actuators. The output of each behavior (agent)
is coordinated in the multi-agent architecture to decide on the
next actions of the robot.

As far as we know, no previous work has proved the
validity of the integration of both approaches, multi-agent and
collaborative control, in a mobile robot control architecture.

3. Multiple cooperative control architecture

The multi-agent system proposed as the robot control
architecture can be divided into four subsystems of agents:
perception, behavior, deliberative and actuator (see Fig. 1).
In addition to these agents, there are the client agent that is
the user interface (through which goals are specified) and the
platform agents that are in charge of providing all the services
necessary to guarantee the correct operation of the multi-agent
platform.

Fig. 1 also depicts the flow of information among different
agents. Solid lines represent no message flow restrictions while
dashed lines indicate that only one agent communicates with
the robot agent or the path planning agent at a time (after
coordination).

The perception subsystem agents obtain information about
the environment and about the internal conditions of the robot
(for example the level of the battery charge). They collect data
from the sensors and adapt them to provide the information
requested by the other agents of the system. There are as
many perception agents as there are sensors or groups of them
in the robot. The encoder agent is in charge of obtaining
the coordinates (x, y) of the robot and its orientation, with
reference to a fixed axis. The sonar agent, collects all the
sonar readings of the robot and creates a local map of obstacles.
And the battery sensor agent monitors the battery, to prevent
it from discharging too much and remaining permanently
damaged.

The behavior subsystem carries out specific actions, such
as avoiding obstacles, going to a point, etc. The information
coming from the perception agents is used to react or respond to
the changes produced in the robot itself or in the environment.
The following agents have been defined: the goto agent, which
is in charge of taking the robot from the initial to the final

884 B. Innocenti et al. / Robotics and Autonomous Systems 55 (2007) 881–891
Fig. 1. Multiple cooperative control architecture: the deliberative, behavioral, perception and actuator subsystems and the relationships among the different agents.
coordinates without considering obstacles; the avoid agent,
which must go around the obstacles when they are found in
the path of the robot; and the battery charger agent which
requests path replanning to take the robot to the charging area
when the battery is close to the lowest allowed limit.

The deliberative subsystem is composed of agents in charge
of carrying out high-level complex tasks which require a
certain amount of time. As for deliberative agents, there is
the localization agent, which locates the robot on the global
map, the path planning agent, which must search for obstacle-
free paths, and the task planning agent, which is in charge of
breaking down the missions into tasks.

The actuator subsystem is responsible for directly using
the robot’s various performance motion systems. There can
be as many agents as there are actuators or sets of them in
the robot. In our case, only one actuator agent is defined: the
robot agent which functions as an interface between the control
architecture and the microprocessor of the robot. This is due
to the limitations of the Pioneer 2DX operating system, which
only allows one connection at a time with the microprocessor.
Through this link the sensors must be read and the actuators
written. In addition, the robot carries linear and angular velocity
controllers recommended by the manufacturer, and their use
impedes the commands from being sent directly to the motors.

Finally, the service agents, who have been designed
following the Foundation for Intelligent Physical Agents (FIPA-
IEEE) standards [7], are accountable for providing the basic
services of the multi-agent platform that include the way agents
communicate among themselves. In our proposal, we consider
the directory facilitator agent (DFA), which keeps track of the
agents currently active in the architecture, their location in the
net (host name and port name), the services they provide and the
resources they need. Each time an agent joins the community, it
has to register with the DFA which then informs the rest of the
community about the new agent, the services that it offers and
the resources that it uses. Thus, this agent is a key element of
the platform regarding interoperating issues such as the use of
various software programs from different providers.
Once all the agents of the control architecture are running,
the user or other external agent can request a task through the
client agent which sends the new robot goal to the path planning
agent. This agent decomposes the task into a trajectory and
sends the first target position to the goto agent. Based on this
information and the actual position (obtained from the encoder
agent), the goto agent calculates the best linear and angular
speeds to reach the target. On the other hand, based on the
information provided by the encoder and sonar agents, the
avoid agent calculates the linear and angular speeds needed to
dodge the obstacle. At this point both agents (goto and avoid)
negotiate in order to decide who uses the motors. The one that
wins sends the desired speeds to the robot agent who sends the
values to the robot micro-processor. The latter agent obtains the
sonar and the encoder readings and sends them to the sonar
agent and the encoder agent, correspondingly. With this new
information all the agents update their internal state and new
decisions can be taken. If the target position sent by the path
planning agent is reached, it sends another target position to the
goto agent. In the other case, the goto and avoid agents calculate
new speeds to send to the robot agent, and so on.

3.1. Cooperation between agents

Given that all the agents compete for the available resources
of the robot, a minimum of coordination is required between
them. Generally, this problem comes up in the robot control
architectures when various behaviors want to access a certain
resource at the same time. Coordination between them is
therefore necessary to achieve suitable global behavior. To
coordinate behaviors, different alternative mechanisms are
studied. These can be divided into two large groups [20]:
arbitration and command fusion. Those of the first group
choose a behavior from among those that are competing for the
resource, and they give it control until the next selection cycle.
Those of the second group combine the recommendations
from the different behaviors to form a single control action

B. Innocenti et al. / Robotics and Autonomous Systems 55 (2007) 881–891 885
representing their consensus (all the behaviors contribute
simultaneously to the resource control).

The majority of the robot control architectures use these
coordination mechanisms in a centralized way. That is, there
is a central module that knows what actions are in conflict and
imposes a decision.

Centralizing the decision can be a problem when there
are many behaviors in the architecture, and a distributed
coordination approach might be more suitable. We propose
a peer-to-peer coordination mechanism between the agents
in conflict. In our architecture, conflicts can appear between
the avoid and goto behavior agents when they try to send
contradictory actions to the robot agent and between the battery
charger and the task planning agents when they request from
the path planning agent a specific path, as depicted in Fig. 1.
The present work, however, is focused only on the conflicts
between the goto and the avoid agents. However, if new agents
are added, they can know other conflicting agents when they
register with the directory facilitator agent.

Negotiations to obtain control over the conflicting resource
are based on the value calculation of the utility of the action
required by each agent.

3.1.1. Utility function
The utility of an agent is a function that represents the benefit

the system will receive if it carries out the proposed action from
the point of view of the agent. The value of the utility varies in
the interval [0, 1], 1 being the maximum value.

Both the goto agent and the avoid agent have defined utility
functions, whose value they use to negotiate the sending of
linear and angular velocities to the robot agent.

Hence, the goto agent calculates its utility as a function of
the distance that remains to reach the destination location as:

pGoto = α ∗ dl + β (1)

being:

α =
pmax − pmin

uL − u H
β =

uL ∗ pmin − u H ∗ pmax

uL − u H
(2)

where pmax and pmin are the maximum and minimum values,
respectively, of pGoto (pmin ≤ pGoto ≤ pmax); and uL and
u H represent distance thresholds, which are found empirically.

Fig. 2(a) shows the generic utility function of the goto agent,
while Fig. 2(b) shows the utility function with the numerical
values of the different parameters used in the experiments.

For its part, the avoid agent calculates its utility as a function
of the distance that remains before a collision with the obstacle
(do) and the orientation of the robot with respect to the obstacle
(ho) (see Fig. 3), as:

pAvoid = ph · pd (3)

with:

ph = α1 ∗ ho + β1

pd = α2 ∗ do + β2 (4)
Fig. 2. Utility function of the goto agent: (a) the generic function definition and
(b) utility function with numeric values.

Fig. 3. Parameters involved in the calculation of the utility of the avoid agent.

Fig. 4. Utility function corresponding to the orientation in the avoid agent.

and αi and βi defined by (2), in this case pmax and pmin being
the maximum and minimum values of ph (ph min ≤ ph ≤

ph max) and those of pd (pd min ≤ pd ≤ pd max), respectively.
Fig. 4(a) shows the generic function corresponding to the

orientation while Fig. 4(b) shows the numerical parameters
used in the experiments. In the case of pd (distance to the
obstacle), there are two generic parameters dmin and dmax that
change over time. We have made them proportional to the
velocity in such a way that the value of pd actually reflects
the time that would remain before the robot collided with the
obstacle if it were going directly toward it. Applying Eq. (3), the
time until collision, assuming that the robot is headed directly
to the obstacle, is taken into account, as is the orientation.

Once the values of the utility are calculated, the agent
controlling the robot sends a message to the other agent in
conflict to inform it of the value of its utility. If this value is
greater than that calculated by the receiving agent, the second
agent does not respond to the message, and the initial agent
continues controlling the robot. If, on the other hand, the utility
of the receiving agent is greater, it then answers the message

886 B. Innocenti et al. / Robotics and Autonomous Systems 55 (2007) 881–891
Fig. 5. Block diagram of the cooperative control of the goto agent.

assuring itself that the other agent knows that it will take control
of the robot. This last agent will have control until its utility is
smaller than that of the other agent.

The way to select the behavior that takes control is contained
in the arbitration methods defined by [20], but the decision
about which agent takes control is made by the agent itself, to
prevent only one agent from centralizing the entire architecture.

4. Cooperative control of the goto agent

This section presents the cooperative control method, based
on fuzzy logic, used to combine multiple controllers in the
behavior of the goto agent. Instead of developing only one
very elaborate controller, we have designed several simple
controllers aimed at treating different aspects of the control
separately and unifying their actions to obtain a final complex
behavior. The Sugeno fuzzy inference methodology provides
the adequate way of modelling the relevance of the various
controllers.

The control loop of cooperative control proposed for the goto
agent is shown in Fig. 5. The fuzzy collaborative controller
block is in charge of the mix of the desired controller velocities
to convert progressively from one controller to another.

4.1. Fuzzy collaborative controller

The starting point is the equation proposed by [8], which is
extended by adding the weights corresponding to the relevance
of each controller, in accordance with the current context. Thus,
the calculation of the desired velocity is defined as a weighted
average of the commands provided by the simpler controllers,
according to the following formulae:

v =

n∑
i=1

vi · µi

n∑
i=1

µi

ω =

n∑
i=1

ωi · µi

n∑
i=1

µi

(5)

where vi is the linear velocity and ωi is the angular velocity
desired for the robot by the i th controller at any given moment
of time, v the real linear velocity of the robot, ω the real angular
Fig. 6. Fuzzy sets.

velocity of the robot, n the number of controllers and µi the
weights of each controller. These weights satisfy the condition∑n

i=1 µi = 1.
It is possible, with the weights, to give more or less

importance to all of the controllers. In order to introduce
this adjustment of velocities expressed by equation Eq. (5), a
Sugeno functional fuzzy system is proposed [5], since its output
can be a linear function and the implementation of equation Eq.
(5) is straightforward.

In a Sugeno approach, rules have the following structure:

IF d IS dlabel1 AND C1 IS C1label1 AND... CN IS
CNlabeln

THEN v IS vlabel1 AND ω IS ωlabel1

where d, C1, . . . , CN are the input variables and v and ω are
the output variables.

4.2. Input variables

According to Fig. 5 the inputs of the collaborative block are
the distance (d) and the linear (v) and the angular (ω) speeds
of the different controllers. For each input variable several
labels are defined (for example, dlabel1), and are modeled
by membership functions. Inputs are fuzzified by applying the
membership functions to their current values.

d is defined as a function of the distance that the robot has
already covered drec and the distance from the initial position
of the robot to the destination point dmax, i.e. d = dmax − drec.
In this case, two possible values for d have been defined: near
and far. The terms near and far are modeled with fuzzy sets
and defined as:

µnear(d) =

1 d ≤ min
(−d + max)

(max − min)
min < d < max

0 d ≥ max

µfar(d) = 1 − µnear(d)

(6)

where min and max are parameters that have been empirically
tuned. Fig. 6 shows these parameters for the current
implementation.

According to this definition, the distance to the destination
point can vary in a nonlinear way in time, depending on
the movement of the robot, causing the fuzzy weights also

B. Innocenti et al. / Robotics and Autonomous Systems 55 (2007) 881–891 887
Fig. 7. Fuzzy weights resulting after applying the near fuzzy set.

to be nonlinear. Fig. 7 shows different results for the fuzzy
weights described by (6) over time. In Fig. 7(a) a linear case is
presented, while Fig. 7(b) and (c) reveal the nonlinearity of the
equation, which also depends on the min and max parameters.

The controller’s inputs (linear and angular speeds) have
not been fuzzified. Currently we have designed two different
controllers to setup the collaborative controller. One of them is
very fast (but rough) and the other is precise (but slow); so the
total amount of input variables is currently 5.

4.3. Output variables

As output variables (conclusion of the rule) we have the final
linear and angular velocities. The values of the output variables
are determined as linear combinations of the inputs (Sugeno’s
system with n + 1 variables). In other words, each value x of
the output variable s is computed as follows:

ux (s) = an+1 · vn+1 + · · · + a1 · v1 + a0

= (an+1, . . . , a1, a0) (7)

where ai is the coefficient of the input variable vi and a0 is
a constant. The final output of the system is the sum of the
individual outputs averaged by the inputs (that is, using the
average function as the defuzzification method).

The following output vectors have been defined: uslow(v) =

(0, 0, 1, 0) and uslow(ω) = (0, 0, 1, 0) and ufast(v) =

(0, 1, 0, 0) and ufast(ω) = (0, 1, 0, 0) where variable n + 1 = 3
corresponds to the coefficient of the distance d to the objective,
n = 2 to the fast controller (v2, ω2) and n − 1 = 1 to the slow
controller (v1, ω1). For the constant a0, 0 has been chosen.

4.4. Rules

The rules that describe the fuzzy system are:

If d is near then v is slow and ω is slow
If d is far then v is fast and ω is fast.
The function chosen for evidence propagation (from
premises to conclusions) is the product. As a consequence,
if the first rule is activated, µnear(d) · v2 and µnear(d) · ω2
are obtained as results for the linear and the angular speeds
respectively. If the second rule is activated, it gives µfar(d) · v1
and µfar(d) · ω1. The combination of both rules is the result
expressed in Eq. (5).

5. Implementation and results

To test the new method, a multi-agent architecture has been
developed on an ad hoc multi-agent platform, programmed in
C++ on Linux because the majority of commercial platforms
are not capable of responding in real time and normally have an
agent that centralizes the entire platform. The experiments are
carried out in an ActivMedia Pioneer 2DX robot. Included in
the architecture are the perception, actuator and behavior agents
and a very simple path planning agent. Note that the battery
charger agent does not intervene in the experiments because,
without no conflicts with the goto and avoid agents, it does not
act directly on the velocities but rather asks the path planning
agent to search for the fastest path to reach the battery charging
point.

For the goto agent, it was decided to implement two different
controllers and to mix the two resulting control vectors using
fuzzy weight factors, as explained in Section 4.1. There is a PID
to control the distance (for v) and another one for the orientation
(for ω) of the robot. The controllers are independent thanks to a
trajectory calculation module (see Fig. 5) which calculates the
distance and the orientation the robot has to follow to arrive at
the destination point, based on the information the goto agent
receives from other agents of the architecture (path planning,
client and encoder agents). This block computes the orientation
and the distance the robot has to follow, instant-by-instant,
to arrive at the goal. The distance and orientation values this
module provides are passed on to the PID controllers.

One particular aspect of these controllers is that they use
S-approximation to obtain physically possible control vectors
u(t) instead of using T-approximation, as explained in [18].
These approximations have to be used when one or more of
the components of the velocity vector go beyond the limit
imposed by the actuator. The first proportionally modifies the
two components, while the second only modifies the affected
component (reducing its maximum value). As a result, with S-
approximation, the final velocity is smaller than desired, but
the orientation continues to be what is required, in this way
avoiding the errors produced in the T-approximation.

In the case of the fast controller, the linear velocity is
limited to v = 1000 mm/s and the angular velocity to ω =

100◦/s, while in the precise controller, the limitations are v

= 200 mm/s and ω = 45◦/s.

5.1. Experimental results

The main objective is to obtain a robot control architecture
that provides coherent and rational conduct aimed at achieving
the goal that was set and, at the same time, preserving the real-
time response to the immediate physical environment [23]. In

888 B. Innocenti et al. / Robotics and Autonomous Systems 55 (2007) 881–891
Fig. 8. Scenarios with an example of the trajectory for the three goto agent implementations: (a) Scenario 1, (b) Scenario 2, (c) Scenario 3 and (d) Scenario 4.
this sense, multi-agent systems provide the basic architecture,
while cooperative control makes the goto agent, which is in
charge of leading the robot to the desired position with the
required orientation, fast and precise in all situations.

This section presents four scenarios used to test the
performance of the multi-agent architecture with collaborative
control.
Scenario 1 (Sc1): In this scenario, the robot must go from the
initial position (x0, y0, θ0) = (0.0, 0.0, 0.0) to a target position
(x f , y f , θ f) = (1.5, 1.0, 0.0), the position being expressed in
meters and the orientation in degrees, as can be seen in Fig. 8(a).
In this scenario there are no obstacles present in the path of the
robot, so the avoid agent does not intervene.
Scenario 2 (Sc2): In this setting, an obstacle is introduced into
the path of the robot. So, the avoid agent intervenes in the robot
guidance. The initial position is (x0, y0, θ0) = (0.0, 0.0, 0.0)

and the final is (x f , y f , θ f) = (10.0, 0.0, 0.0) as can be seen in
Fig. 8(b). There is a wall with a length of 2.56 m located 5 m
from the robot.
Scenario 3 (Sc3): In this example, the robot moves through a
corridor with a column in the middle. The initial position of
the robot is (x0, y0, θ0) = (1.0, 0.5, 0.0), the final position is
at (x f , y f , θ f) = (5.0, 0.6, 0.0), as can be seen in Fig. 8(c).
Again, the avoid agent intervenes in the robot guidance.
Scenario 4 (Sc4): In this scenario, the robot must go from room
A to room B. In this case, the path planning agent intervenes in
the calculation of the trajectory, giving the goto agent the points
that are necessary to pass through the doors, as can be seen in
Fig. 8(d).

To carry out the experiments, three different versions have
been implemented for the goto agent: the first uses only the
fast controller, the second uses the precise controller and the
third version uses fuzzy cooperative control. The experiments
are carried out separately for each implementation of the goto
agent and the results of each of them are compared according
to the following measures:

• Travelled distance (TD): the distance travelled by the robot
to reach the goal.

• Final orientation (FO): the heading of the robot at the goal
position.

• Total time (TT): the total amount of time the robot needs to
achieve the goal.

• Precision (P): how closed to the goal position is the center
of mass of the robot.

B. Innocenti et al. / Robotics and Autonomous Systems 55 (2007) 881–891 889
Fig. 9. Interaction of the goto and avoid agents.
• Time goto (TG): the total time the goto agent has the robot
control.

The experiments consisted of five executions in each sce-
nario for each implementation of the goto agent. Table 1 shows
the average and standard deviation of each evaluation measure
and scenario. Regarding the statistical significance of the ob-
tained results, the p values (with t0.05) are the expected ones.

The travelled distance (TD) has the lower value for the fuzzy
collaborative controller except for scenario 4. To explain this
behavior, we can look at the particular trajectories described by
the robot shown in Fig. 8. In Fig. 8(a) it can be observed that
the cooperative control behavior follows the fast controller at
the beginning and the precise one at the end, obtaining a curve
which comes closer to the ideal (which would be a straight line
between the initial and the final points). This happens in the
other scenarios too, but the interaction with the avoid agent
hides it. In Scenario 4, the path planning agent gives several
points between the initial position and the desired goal. These
points, marked with an x in Fig. 8(d), are situated near the
doors. In this case, the collaborative controller follows both
controllers several times during the execution of the trajectory.

The total time (TT) consumed by the precise controller
to reach the goal position is the highest. The collaborative
controller times are similar to those of the fast controller, so
getting the benefits of it.

Even though the precision (P) of all the controllers is above
90%, the travelled distance (TD) approximates more to the
minimum distance (i.e. a straight line to the goal position) in
all the scenarios with the collaborative controller. On the other
hand, the final orientation (FO) of the collaborative controller
(as well as for the precise controller) approximates the desired
orientation better.

Regarding the time goto (TG), its value is higher with
the precise controller because, as it is slow, the avoid agent
does not need to take control of the robot very often, only
when the obstacle is very near the robot. This is not true for
scenario 2 where the obstacle is so long that the avoid agent
needs more time to dodge it. With the fast controller it is just
the contrary: the avoid agent needs to intervene more often.
The exception is again scenario 2; as this controller is very
fast, both agents interacting dodge the obstacle faster, so the
goto agent has the control more often. For the collaborative
controller this measurement is between both values, the TG
of the fast controller and the TG of the precise controller,
as expected. Fig. 9 shows the interaction between the goto
and avoid agents for the scenarios 2 and 3 with the fuzzy
collaborative controller. When it has control, the goto agent
is represented by a continuous line, while the avoid agent is
represented by a dotted one.

Summarizing, we can conclude that the goto agent with the
fuzzy collaborative controller is capable of reaching the goal
precisely, with the desired heading and in a reasonable time.
On the other hand the interaction with the path planning agent
and coordination with the avoid agent let the robot perform
complex trajectories with obstacles on them, using a distributed
coordination mechanism.

6. Conclusions

The challenges of robotics have led researchers to develop
control architectures composed of distributed, independent and
asynchronous behaviors. The appearance and evolution of
multi-agent systems have allowed modules to be transformed
into agents and the properties of this kind of system to be taken
advantage of in robot control architectures. But the majority of
these architectures centralize the coordination of the behaviors
in a single module or agent, which represents a problem when
there is more than one behavior competing for the available
resources.

On the other hand, some previous work has taken advantage
of the progress made in the field of cooperative control to
develop complex behaviors, in which various controllers share
control of the system.

This work presents a robot with an architecture based on the
integration of both research lines, multi-agent systems and co-
operative control. To the best of our knowledge, this paper is

890 B. Innocenti et al. / Robotics and Autonomous Systems 55 (2007) 881–891
Table 1
Comparison of the goto agents for the three different controllers

Controller Parameters Sc1 Sc2 Sc3 Sc4

Fast

TD 5.55 ± 0.43 m 13.37 ± 0.40 m 6.10 ± 1.38 m 15.71 ± 2.85 m
FO 7.58 ± 4.71◦ 49.18 ± 44.56◦ 25.96 ± 29.76◦ 56.75±67.98◦

TT 14.28 ±1.29 s 27.78±3.80 s 28.20 ± 6.67 s 64.66 ± 13.5 s
P 99.46 ± 0.56% 99.36 ± 0.25% 97.83 ± 0.49% 94.40 ± 5.78%
TG 100 ± 0% 90.19 ± 2.82% 50.07 ± 5.23% 50.22 ± 4.89%

Precise

TD 5.17 ± 0.05 m 17.92 ± 2.84 m 5.78 ± 0.38 m 12.26 ± 0.10 m
FO 1.37 ± 1.13◦ 1.77 ± 2.93◦ 2.58 ± 0.90◦ 2.97 ± 2.93◦

TT 34.50 ± 6.25 s 164.40 ± 20.91 s 40.62 ± 4.48 s 79.00 ± 2.77 s
P 99.81 ± 0.16% 99.85 ± 0.07% 99.83 ± 0.10% 99.79 ± 0.11%
TG 100 ± 0% 80.82 ± 5.06% 81.95 ± 3.20% 85.99 ± 1.53%

Collaborative

TD 5.11 ± 0.01 m 12.46 ± 0.66 m 5.08 ± 0.30 m 12.55 ± 0.44 m
FO 1.95 ± 0.71◦ 1.76 ± 0.84◦ 1.97 ± 1.01◦ 1.77 ± 1.63◦

TT 16.56 ± 0.44 s 27.76 ± 1.22 s 27.90 ± 1.35 s 66.06 ± 8.79 s
P 99.41 ± 0.22% 99.67 ± 0.06% 99.55 ± 0.16% 99.78 ± 0.13%
TG 100 ± 0% 88.40 ± 2.29% 58.68 ± 4.27% 66.79 ± 2.31%
the first integrating multi-agent and cooperative control archi-
tectures. In particular, attention has been focused on the design
of the goto agent, which uses fuzzy tuning of two different po-
sition controllers, and on using the utility functions in the goto
and avoid agents to negotiate the control of the robot.

The multi-agent control architecture with cooperative con-
trol in the agents presents several desirable features such as
flexibility, adaptability and easy design, since complex behav-
iors can be achieved using simple controllers and the whole ar-
chitecture can be described at a higher level. As a consequence
of having multi-agent systems, communication overhead has to
be considered in order to ensure real-time response of the sys-
tem so, a distributed coordination mechanisms with minimum
communication requirements has been defined.

In order to test the method, a multi-agent architecture
has been implemented with three different goto agents. Two
different basic controllers, one fast and the other precise, and
a fuzzy cooperative controller combining the control actions
were developed to set up the different implementations of the
goto agent. Afterwards, various experiments were carried out
to compare the efficiency of the simple controllers with that
of the cooperative controller, especially in situations in which
negotiation with the avoid agent and interaction with the path
planning agent are required to perform complex trajectories.

With the cooperative fuzzy control, better results have been
obtained with respect to the time necessary to reach the goal and
to the precision with which it is achieved, in terms of position
as well as orientation.

As for future work, it is expected that the proposed solution
will be extended to the case of n controllers. Also, new
behavioral agents will be included in the architecture to analyze
the scalability of our approach.

References

[1] J. Bryson, Intelligence by design: Principles of modularity and
coordination for engineering complex adaptive agents, Ph.D. Thesis,
Massachusetts Institute of Technology, 2001.

[2] D. Busquets, C. Sierra, R. López de Màntaras, A multi-agent approach
to qualitative landmark-based navigation, Autonomous Robots 15 (2003)
129–154.
[3] J.L. de la Rosa, et al., Rogi team real: Research on physical agents, in:
Veloso, Pagello, Kitano (Eds.), RoboCup-99: Robot Soccer World Cup
III, 1999, pp. 434–438.

[4] M. Dorigo, et al., Evolving self-organizing behaviors for a swarm-bot,
Autonomous Robots 17 (2004) 223–245.

[5] D. Driankov, H. Hellnoorn, M. Reinfrank, An Introduction to Fuzzy
Control, Springer, 1991.

[6] A. Figueras, J. Colomer, J. de la Rosa, Supervision of heterogeneous
controllers for a mobile robot, in: The XV World Congress IFAC, 2002.

[7] FIPA: Foundation for Intelligent Physical Agents. On-line:
http://www.fipa.org/.

[8] B. Gerkey, M. Mataric, G. Sukhatme, Exploiting physical dynamics for
concurrent control of a mobile robot, in: Proceedings ICRA ’02. IEEE
International Conference on Robotics and Automation, vol. 4, 2002, pp.
3467–3472.

[9] K. Goldberg, B. Chen, Collaborative control of robot motion: Robustness
to error, in: Proceedings of the 2001 IEEE/RSJ International Conference
on Intelligent Robots and Systems, 2001, pp. 655–660.

[10] H. Hu, D. Gu, A multi-agent system for cooperative quadruped walking
robots, in: Proceedings of the IASTED International Conference Robotics
and Applications, 2000, pp. 1–5.

[11] B. Innocenti, B. López, J. Salvi, How MAS support distributed robot
control, in: International Symposium of Robotics, ISR, 2006. Conf./Page:
1956/0020 Archive Number: 330319560020.

[12] N. Jennings, S. Bussmann, Agent-based control systems: Why are they
suited to engineering complex systems? IEEE Control Systems Magazine
23 (3) (2003) 61–73.

[13] G.J. Klir, T.A. Folger, Fuzzy Sets, Uncertainty and Information, Prentice
Hall, 1992.

[14] M. Kolp, P. Giorgini, J. Mylopoulos, Multi-agent architectures as
organizational structures, Autonomous Agents and Multi-Agent Systems
13 (2006) 3–25.

[15] R.R. Murphy, Introduction to AI Robotics, The MIT Press, 2000.
[16] R. Murray, K. Åström, S. Boyd, R. Brockett, G. Stein, Future directions

in control in an information-rich world, IEEE Control Systems Magazine
23 (2) (2003) 20–33.

[17] M.C. Neves, E. Oliveira, A multi-agent approach for a mobile robot
control system, in: Proceedings of Workshop on Multi-Agent Systems:
Theory and Applications (MASTA’97 - EPPIA’97), Coimbra, Portugal,
1997, pp. 1–14.

[18] D. Omerdic, G. Roberts, Thruster fault diagnosis and accommodation
for open-frame underwater vehicles, Engineering Practice 12 (2004)
1575–1598.

[19] Y. Ono, H. Uchiyama, W. Potter, A mobile robot for corridor navigation:
A multi-agent approach, in: ACMSE’04: ACM Southeast Regional
Conference, ACM Press, 2004, pp. 379–384.

http://www.fipa.org/

B. Innocenti et al. / Robotics and Autonomous Systems 55 (2007) 881–891 891
[20] P. Pirjanian, Behavior coordination mechanisms — state-of-the-art, Tech.
Rep. IRIS-99-375, Institute of Robotics and Intelligent Systems, School
of Engineering, University of Southern California, 1999.

[21] P. Ridao, M. Carreras, J. Batlle, O2CA2, a new object oriented control
architecture for autonomy: The reactive layer, Control Engineering
Practice 10 (8) (2002) 857–873.

[22] R. Ros, R. López de Màntaras, C. Sierra, J.L. Arcos, A CBR system for
autonomous robot navigation, in: Frontiers in Artificial Intelligence and
Applications, vol. 131, IOS Press, 2005, pp. 299–306.

[23] J.K. Rosenblatt, DAMN: A distributed architecture for mobile navigation,
Ph.D. Thesis, Robotics Institute at Carnegie Mellon University, 1997.

[24] A. Saffiotti, The uses of fuzzy logic in autonomous robot navigation, Soft
Computing 1 (4) (1997) 180–197.

[25] O. Sauer, G. Sutschet, Agent-based control, IET Computing & Control
Engineering (2006) 32–37.

[26] L.-K. Soh, C. Tsatsoulis, A real-time negotiation model and a multi-agent
sensor network implementation, Autonomous Agents and Multi-Agent
Systems (November) (2005) 215–271.

[27] W. Spears, D. Spears, J. Hamann, R. Heil, Distributed, physics-based
control of swarms of vehicles, Autonomous Robots 17 (2004) 137–162.

[28] M. Wooldridge, Intelligent agents, in: Gerhard Weiss (Ed.), Multi-agent
Systems: A Modern Approach to Distributed Artificial Intelligence, The
MIT Press, 1999, pp. 27–78.

Bianca Innocenti graduated in Electronic Engineering
from the National University of San Juan (Rep.
Argentina) in 1997 and graduated in Automation
and Industrial Electronic Engineering at the Technical
University of Catalonia (Spain) in 2005. She joined the
Control Engineering and Intelligent Systems Group in
the University of Girona (Spain), where she obtained
the DEA degree in the Ph.D. program Industrial
Informatics and Advanced Control Technologies in
October 2000. At present, she is an assistant professor
in the Department of Electronics, Computer Science and Systems Engineering
at the University of Girona. Her current research interests are in the field of
mobile robotics and multi-agent systems.

Beatriz López graduated in Computer Science from
the Autonomous University of Barcelona (UAB,
Barcelona, Spain) in 1986. Two years later she
joined the Artificial Intelligence Research Institute
of the Spanish Scientific Research Council (CSIC,
then located at the Centre of Advanced Studies of
Blanes, CEAB) where she received the Ph.D. degree
in Computer Science from the Technical University of
Catalonia (UPC, Barcelona, Spain) in 1993. She was
associate professor from 1992–1995 and 1998–2000

at the Rovira Virgili University. She has also served as a Computer Science
Engineer in several private companies. Currently, she is an associate professor
at the Department of Electronics, Computer Science and Systems Engineering
in the University of Girona, Spain. Her research interests include multi-agent
systems, planning and scheduling, and case-based reasoning. She is a member
of the Catalan Association for Artificial Intelligence which belongs to the
European Coordination Committee on Artificial Intelligence (ECCAI).

Joaquim Salvi graduated in Computer Science from
the Technical University of Catalonia, Catalonia, Spain
in 1993, and received the D.E.A. degree in computer
science in July 1996, and the Ph.D. degree in industrial
engineering in 1998, from the Computer Vision
and Robotics Group, University of Girona, Girona,
Spain. He is currently an associate professor at the
Electronics, Computer Engineering and Automation
Department, University of Girona. He is involved in
some governmental projects and technology transfer to

industrial environments. His current interests are in the field of computer vision
and mobile robotics, focused on structured light, stereovision, and camera
calibration. He is the leader of the 3D Perception Lab. Dr. Salvi received the
Best Thesis Award in engineering for his Ph.D. Dissertation.

	A multi-agent architecture with cooperative fuzzy control for a mobile robot
	Introduction
	Related work
	Multi-agent robot system architectures
	[Non-multi-agent] cooperative control

	Multiple cooperative control architecture
	Cooperation between agents
	Utility function

	Cooperative control of the goto agent
	Fuzzy collaborative controller
	Input variables
	Output variables
	Rules

	Implementation and results
	Experimental results

	Conclusions
	References

