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Abstract: The paper focuses on combining the advantages of both omnidirectional vision and
structured light in order to obtain panoramic depth information for generating a complete 3D
visual model of the surroundings of a mobile robot. The model is completed by mapping the
imaged texture onto the objects through the central view point. This process is called single-shot
scene reconstruction because a visual model of the scene is obtained from a single omnidirectional
image. Several such reconstructions are then registered to build a 3D map of the scene while the
robot is moving. The authors call this process range scan registration modelling. A mobile platform
provided with a catadioptric camera coupled with an omnidirectional structured light projector was
used for this purpose. Sensor calibration, image processing and experimental results are included.
1 Introduction

Omnidirectional vision enlarges the field of view (FOV) of
traditional cameras by means of special optics and combi-
nations of lenses and mirrors, obtaining a panoramic and
complete view (3608) of the surroundings of the camera.
Many researchers have explored the advantages of using
omnidirectional cameras. If the scene is observed from a
single point in space, the sensor has a single projection
centre, that is, a single view point (SVP). The SVP is one
of the most used classification criteria for the cameras
with wide FOV [1, 2].
One of the first groups to use omnidirectional sensors for

robot navigation and 3D perception was Yagi and Yachida
[3], who used the conical mirror-based sensor COPIS.
They obtained the depth by triangulation, using dead-
reckoning information. If a 3D scene model is available,
the panoramic image can be mapped onto the model to
obtain a virtual 3D environment. Researchers from the
University of Alberta [4] used a similar method for pipe
inspection, using a catadioptric camera with a conical
mirror. The omnidirectional image provided by the cata-
dioptric camera is mapped onto a 3D surface defined by a
previously available model of the real surface or onto a
complex developable surface formed by basic building
blocks. Svoboda et al. [5] explored the epipolar geometry
of panoramic cameras and used this property for extracting
point correspondences between images, a key feature for
stereo vision. Bunschoten and Kröse [6] used the theory
of the epipolar geometry between two panoramic images
and performed range estimation from a mobile platform in
a synthetic environment. Recently, Fleck et al. [7] obtained
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a 3D model of the environment using a mobile robot that is
equipped with a panoramic camera and a laser scanner used
for odometry. The scene reconstruction is completed using
graph-cut methods, are close to optimal but computationally
very intensive. Besides, other authors used catadioptric
cameras and time-of-flight laser-range finders for ego-
motion estimation and map generation by integrating the
depth maps provided by the two systems, see Miura and col-
leagues [8, 9].
Stereo catadioptric sensors are special structures of

mirrors and lenses designed to obtain depth from images
with a wide FOV. In order to obtain different points of
view of a scene with a single camera, several researchers
used structures of convex mirrors [10–12] or planar
mirrors [13–15]. For instance, Southwell et al. [12] used
a non-SVP catadioptric sensor provided with a two-lobbed
spherical mirror to obtain two images with separated view
points that allow panoramic 3D perception. Later, Fiala
and Basu [10] used a similar sensor to obtain a stereo
panoramic view in which horizontal and vertical lines
were detected using the panoramic Hough transform,
which is an extension of the Hough transform adapted for
catadioptric images. Depth is retrieved by matching the
lines imaged by both spherical mirrors through radial sym-
metry. Kawanishi et al. [15] developed a high-resolution
SVP omnidirectional sensor built with six cameras and a
hexagonal pyramidal mirror. Stereo views are obtained by
connecting two such sensors placed in a back-to-back con-
figuration. Nene and Nayar [11] studied the epipolar geome-
try of stereo catadioptric images obtained by several SVP
devices built using a camera pointed at pairs of planar, ellip-
tic, hyperbolic and parabolic mirrors. Formal mathematical
models were obtained and the FOV of each catadioptric
combination was deduced. The epipolar geometry was
also used by Gluckman et al. [16], who obtained stereo
panoramic views using either two paracatadioptric
cameras aligned vertically [16] or two planar mirrors with
a perspective camera [13]. Lin and Bajcksy [17] described
an omnidirectional sensor that provides depth information
by using two cameras, a beam splitter and a conical
mirror. Recently, a similar sensor has been proposed by
Spacek [18], which uses an omnidirectional stereo setup
built with two coaxial conical mirrors.
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Stereo techniques are based on the assumption that the
feature correspondences between images are found accu-
rately. In the case of catadioptric sensors, the matching
process is deteriorated because the resolution of the omni-
directional cameras is usually very poor compared with con-
ventional cameras because of the different FOVs. This
shortcoming affects matching since it becomes more diffi-
cult to find details in the images even when taking into
account the epipolar constraints [5]. This problem can be
alleviated by using structured light-based techniques that
are a particular case of stereo vision in which one of the
cameras is replaced by a pattern projector [19, 20]. Using
this method is similar to placing visible landmarks in the
scene so that image points can be identified and matched
faster and more accurately. For instance, Mei and Rives
[21] addressed the SLAM problem using a laser-range
finder emitting a laser trace in the scene and an SVP omni-
directional camera. The main problem of this approach is
that the laser pattern is projected by rotating a laser spot
which deteriorates both the correspondence problem and
the real-time behaviour. In our case, we have chosen a
circle pattern obtained by diffracting the light emitted by
a laser diode. The advantage of such a laser scanner is the
high resolution and accuracy obtained compared with
other structured light scanners. The energy pattern of a
laser beam has a Gaussian profile, which enables it to be
detected in the image with sub-pixel accuracy.

2 Sensor design and geometry

Because of their optical properties, catadioptric sensors with
SVP were chosen to build the omnidirectional camera of the
proposed sensor. Usually, the central projection constraint is
fulfilled by using a parabolic mirror in conjunction with an
orthographic camera or a hyperbolic mirror with a perspec-
tive camera. We finally chose to use the first configuration,
which preserves the SVP independently from the translation
between the mirror and the camera because of its simplicity
in focusing the image.
The third dimension of the scene is perceived by crossing

the light rays emitted by the laser with the ones observed by
the camera or, in other words, by performing a triangu-
lation. The laser should project a pattern that covers the
whole scene and should be easily identifiable. We chose
to use the circle as the pattern. The light of the projected
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laser pattern is reflected by the conical mirror and spread
onto the scene along an imaginary conical shape. The para-
bolic mirror reflects the whole scene into the camera and all
the spots illuminated by the laser can be immediately ident-
ified (Fig. 1). With the models for both components of the
sensor, a precise triangulation can be carried out. In this
section, we give an overview of the modelling process
and the parameter estimation (calibration) of the sensor.
For a more in-depth understanding of the calibration
process, the reader can consult our previous publications
[22, 23].

2.1 Omnidirectional camera

Assuming that the camera–mirror pair possesses SVP, the
omnidirectional camera can be modelled as a projection
onto a sphere followed by a projection onto a plane, as
stated by Geyer and Daniilidis [24, 25]. Another way of
approaching camera calibration is by considering the
mirror surface as a known revolution shape and modelling
it explicitly, for instance, considering that the reflecting
surface is a paraboloid and the camera is orthographic.
Both models were tested and the comparative results were
reported in [26]. The omni camera used for this work has
an SVP but contains two reflecting surfaces, so the first
method mentioned (shape independent) was preferred.
The calibration is performed using a set of known 3D

points, Pw ¼ [xw, yw, zw], distributed on the four walls of a
cube placed around the sensor. Considering Ps ¼ [xs, ys, zs]
to be the intersection of the light ray emitted by the point
Pw with the sphere of radius R, then the perspective projec-
tion of Ps on the image plane from a point C ¼ [0, j]
produces a point Pi ¼ [x, y] as shown in Fig. 2.
Adding the intrinsic camera parameters (au, ay , u0, y0),

the pixel coordinates of the image points (u, y ) are com-
puted by (1)

u ¼
au(jþ w)xw

j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2w þ y2w þ z2w � zw

p þ u0

y ¼
ay(jþ w)yw

j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2w þ y2w þ z2w � zw

p þ y0

(1)

The 12 parameters of the model are j, which controls the
eccentricity; w, which is a function of both the eccentricity
Fig. 1 Proposed sensor

a Catadioptric omnidirectional camera with an embedded structured light projector
b Laboratory prototype
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and the scale; au, ay , u0, y0, the intrinsic camera
parameters; rX(a), rY(b), rZ(g), the orientation angles and
tx, ty, tz, the translation between the world and the camera
coordinate systems [27].

2.2 Omnidirectional laser projector

The omnidirectional light projector is formed by a laser that
emits a circle and is pointed at a conical mirror so that the
projected light covers the entire FOV of the catadioptric
camera. The proposed projector can be considered a
reversed omni-camera, where the light flows in the opposite
direction. Therefore the projector takes the advantage of the
attributes revealed by previous studies of catadioptric
cameras based on the conical mirror shape. Lin and
Bajcsy [28] pointed out that the conical mirror can be
used for building true SVP configurations with the advan-
tage that it preserves image point brightness better than
other mirrors since it does not distort the image in longitudi-
nal directions. Yagi [2] highlighted the fact that the conical
mirror on vertical section behaves like a planar mirror and
consequently provides much better resolution than any
other omni-mirror shape. Baker and Nayar [29] proved
that curved mirrors (such as parabolic, hyperbolic, etc.)
increase defocus blur because of their bend.
Consequently, the cone is the ideal mirror shape for build-
ing the structured light projector.
The bright spots on the scene are observed by the pre-

viously calibrated omni-directional camera, which has a
single projection centre. This property allows the direction
of the light source to be calculated for each image point.
Since the location of the calibration planes is known, the
3D coordinates of the laser stripe lying on those planes
can be determined. A set of such points can be used for cali-
brating the laser-conic mirror pair. Ideally, when the laser is
perfectly aligned with the conic mirror, the 3D shape
formed by the reflected laser pattern can be imagined as a
circular cone. Unfortunately, the precision to obtain the
coordinates of the bright spots is limited by the catadioptric
camera calibration accuracy and by its resolution.
Moreover, a perfect alignment of the laser and the conic
mirror is difficult to guarantee, so a more general shape
than the circular cone should be considered. The general
quadratic surface was chosen for modelling the laser projec-
tion. The general quadratic shape is expressed by the para-
metric equation (2), in which x, y and z are the coordinates
of a point in the 3D space.

x y z
� �

�
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a21 a22 a23
a31 a32 a33
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3
5þ x y z
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b3

2
4

3
5þ f ¼0 (2)

The parameters of the equation are aij, with i ¼ 1;3,
j ¼ 1;3, bi, with i ¼ 1;3, and the coefficient f. The shape

Fig. 2 Image formation using the projective equivalence of an
SVP catadioptric projection, with the projection on the sphere
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representing the projection of the circular laser pattern
into the conic mirror was fitted to the 3D points and the par-
ameters were found by a minimisation algorithm.
In a general case, the light hitting a conic mirror (Fig. 3a)

produces a conical shape. If there is a special configuration
between the vertical angle of the mirror plane and the inci-
dent light angle, the projected pattern becomes a plane as
illustrated in Fig. 3b.

3 Image processing and map building

Generally, a 3D scene model can be represented either as a
cloud of points or as a parametric model [30]. The first tech-
nique is generally used for object visualisation by means of
polygonal mesh surfaces generated from the point cloud.
The resulting models have limited accuracy for describing
the object and require a large amount of computing time
and memory space. The alternative to the point cloud
model is the parametric model that provides useful infor-
mation such as the size, shape, position and rotation of
the objects. Moreover, the parametric model describes the
object in a compact form alleviating the computation and
storage issues. Because of the specific data acquisition of
the proposed sensor, the parametric model representation
is an appropriate choice when using the sensor in structured
human-made environments. For these reasons, the para-
metric model was selected for reconstructing the scene.
The image processing flowchart from image capture to

building the map is presented in Fig. 4.

3.1 Automatic laser stripe detection with sub-pixel
accuracy

Once the sensor has been calibrated, the image acquisition
process is initiated. In each shot, the laser stripe in the
image is automatically detected. In the omnidirectional
image, the laser stripe is affected by the superposition of a
certain amount of undesired lighting peaks. This fact is
because of noise produced by four main sources: electrical
noise, quantisation noise, speckle and image blur. The first
two noise sources are associated with the image sensor
whereas the speckle is related to the reduced wavelength
of light compared with the surface roughness and the mono-
chromatism of the laser light. The image blur is inherent in
catadioptric cameras because of the mirror curvature. An
accurate reconstruction needs precise laser detection, there-
fore we used the peak detection method described by Forest
et al. [31] in order to automatically extract the peak of the
laser with sub-pixel accuracy. In the original paper, Forest
used perspective images containing vertical laser lines. In
our case, the omnidirectional image provided by the sensor

Fig. 3 Omnidirectional-structured light projector

a Projection of a conical shaped pattern
b Projection of a planar pattern
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is scanned radially in order to find the light peaks along the
circular laser profile projected on the scene (Fig. 5).

3.2 Range scan computation and registration

The detected laser peaks are back-projected through the
camera model and the 3D range scan is computed by tri-
angulation. Fig. 6 shows four range scans calculated at
different positions in a scene. It can be found that each
range scan contains different details and even the surfaces
that are seen in more than one range scan are detected
with different accuracy.

Fig. 4 Image-processing flowchart
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The single-shot scene model provides a rich represen-
tation but has two inherent drawbacks: there are occluded
parts of the scene that are obviously not modelled and the
lower resolution of objects in the distance. These shortcom-
ings can be alleviated if several points of view of the scene
are used, that is by reconstructing a larger scene using
different range scans with overlapping regions. In addition,
using a wide FOV is very useful for finding correspon-
dences between parts of different images because the
points are in the sensor’s sight for longer. The process of
aligning several lines or surfaces in the same coordinate
system is called registration. The most common method
for registration is the iterative closest point (ICP) algorithm,
introduced by Besl and McKay [32]. This algorithm finds
the motion between two clouds of points by minimising
the distance between them. Consider that the coordinates
of the Np pairs of points that belong to the two clouds are
stored in the mi and pi vectors. The distance between the
pairs of points in the two clouds can be expressed by the
function f, described by (3). The rotation R and the trans-
lation t, known as the motion parameters, between the two
clouds of points, are found by minimising this function.

f ¼
1

Np

XNp

i¼1

kmi � Rpi � tk
2 (3)

Although good results are obtained with free-form shapes,
the main shortcoming of this algorithm is that it can only
be used in surface-to-model registrations. However, in real
applications, surfaces usually contain non-overlapping
regions. A different version of the ICP algorithm was also
proposed by Chen and Medioni [33]. The main difference
between the two algorithms is the method used for finding
the correspondences: Chen and Medioni used the
point-to-plane distance while Besl and McKay used the
point-to-point distance. Generally, the point-to-plane dis-
tance solves the problem of local minima better since it over-
comes the difficulty of finding correspondence between the
points of the two clouds. These techniques, known as fine
registration techniques, converge fast enough but require a
good initial solution. When the initial solution is not avail-
able, the coarse registration techniques can be used to esti-
mate it. We refer the reader to a more in-depth comparison
on surface registration recently published in [34]. In our

Fig. 5 Peak detection of a laser stripe in the omnidirectional
image

a Laser profile corresponding to a real scene. In the original image, the
bright laser stripe contrasts with the dark background. For printing
convenience, the image is presented in negative
b Detecting the laser profile. Laser peaks are marked with dots and the
outliers are marked with small circles. The image centre is shown
with a star. The two concentric circles are the bounds of the stereo
FOV and therefore the limits of the automatic search of the laser in
the image
IET Comput. Vis., Vol. 1, No. 2, June 2007



Fig. 6 Four range scans calculated at different positions in a scene
case, the motion between two consecutive positions is small
and the wide FOV offers large overlapping areas which help
the ICP algorithm converge even when the initial solution is
the identity matrix. Therefore we chose the ICP algorithm
proposed by Chen and Medioni.
A preliminary step for registration is transforming the

coordinates of the 3D points of each range scan from
the sensor to the laser plane reference system. Therefore
the third coordinate can be ignored and the registration is
performed in the 2D space of the laser plane. Consider the
laser plane described by the equation axþ byþ cz ¼ d
and a range scan point in the sensor reference coordinate
system Pc(xc, yc, zc). The transformation of the point Pc

into the point PL(xL, yL, zL) expressed in the laser plane
reference frame is carried out using (4). The transformation
matrix RL and the translation vector tL are described in (5).

PL ¼ RLPc þ tL

RL ¼ X Y Z
� �

(4)

where

X ¼

1� 0

1� 0
d � a� b

c
�
d

c

2
664

3
775 ¼

1

1

�
aþ b

c

2
664

3
775

Z 0
¼ a b c

� �
Y ¼ Z � X

t0L ¼ 0 0 zL
� �

¼ 0 0 �
d

c

� �

(5)
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Subsequently, the range scan points transformed in the 2D
space are filtered through a normal space sampling algor-
ithm [35]. The algorithm consists in transforming the (xL,
yL) space into a grid of (nx � ny) cells and it selects only
one element in each cell. Therefore the new space is
formed by the sampled points Ps(nxi, nyi) and thus the
weight of the points becomes inversely proportional to
their density.
The distances from the sampled points of the current view

i to the planes (or lines in the 2D space) obtained from the
unsampled points of the previous view i–1 are calculated
and the point-to-plane correspondences are established for
all the points of the view i. Considering a point in the
current view, its pair in the previous view is the nearest
point in the corresponding plane.
Finally, the 2D registration is performed by minimising

the distance between the two clouds of points using (3).
The result of the registration of the range scans presented
in Fig. 6 is shown in Fig. 7. The base line can be seen in
Fig. 7b, in which the distance between the camera focal
point and the laser plane is visible.

3.3 Line tracking and segment detection

Most of the indoor scenes are formed by human-made
shapes, and the majority of these shapes contain vertical
planes. Therefore a mobile robot that carries the sensor
and inspects an indoor scene should take advantage of the
inherent particularity of this environment. A line-tracking
algorithm is used to extract the planes in the cloud of
points obtained from the range scan registration. Then the
extracted lines are divided into segments representing the
projections of the vertical planes onto the laser plane.
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Fig. 7 Cloud of points obtained by the registration of several partial range scans obtained by placing the sensor at different locations in
the scene

Camera view point is represented by the black sphere
a Projection on the XY plane
b 3D view
One or several registered panoramic range scans provided
by the sensor can be transformed into a 2D binary matrix,
which is analysed using a recursive Hough algorithm with
a variable threshold adapted for the detection of the
maximum number of lines.
All the lines identified in the image are bounded and the

segments corresponding to planar surfaces in the scene are
detected. The incorrect segments are filtered and removed.
The 2D map obtained from the registered cloud of points
is shown in Fig. 8.

3.4 Best pose evaluation

During the registration process, the transformation between
the range scans taken at different locations is evaluated.
Since the points of the range scans obtained in each shot
are represented in the sensor coordinate system, the differ-
ent poses of the sensor relative to each segment can be cal-
culated. Therefore the best view pose of each segment is
determined as being the sensor position from which the
scene plane corresponding to the segment is observed at
the most favourable angle. The image taken from the best

Fig. 8 Best view for each segment in the scene

Segments in the scene are labelled with numbers from 1 to 12
Positions of the robot are marked with dots, and the positions selected
for mapping the texture on objects are marked with stars
Under each selected position, the labels of the segments that were
observed best from that position are displayed
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pose is subsequently used for mapping the texture onto
the scene objects.
The registration process provides the transformation

matrix between the different range scans and thus the
robot’s position can be calculated with respect to any coor-
dinate system. Fig. 8 shows the locations through which the
mobile platform moved and that were retrieved by regis-
tration. The transformation between two locations is com-
puted by (6), in which RL and tL are the rotation and the
translation matrices, respectively, between the sensor coor-
dinate system and the laser plane coordinate system, and
tn(3x1) is the translation between the nth sensor position
and the reference one.

xpos
ypos
zpos
1

2
664

3
775 ¼

R
0
L(3x3) (�R

0
LtL)(3x1)

0(3x3) 1

� �
tn(3x1)
1

� �
(6)

Therefore the sensor location and the segments detected in
the scene map can be represented with respect to the same
reference. The optimal position for observing the texture
of a given segment (i.e. planar object in the real scene) is
the corner of an equilateral triangle containing the
segment in one of its sides. The nearest robot location to
the optimal position is chosen as the best pose (Fig. 8).

3.5 Texture mapping

Assuming that the analysed scene is composed mostly of
vertical planar shapes placed on a flat floor surface, model-
ling the 3D scene is performed by generating the elevation
map. The elevation map is obtained directly from the pos-
itions of the 2D segments by considering the vertical FOV
of the omnidirectional camera (Fig. 9). In the following,
the term ‘maximum vertical FOV’ will be used for describ-
ing the maximum height, hence on the vertical direction,
visible by the catadioptric device. Although the lower
bound of the scene objects is clearly given by the floor,
the upper bound depends on the vertical FOV and is a func-
tion of the position of the robot with respect to the object.
However, it is worth to remark that in practice, because of
the low resolution of the catadioptric cameras, the robot
has to get close to the target plane in order to obtain an accu-
rate depth measurement and a clear texture image.
Therefore the upper bound of the planes is implicitly
limited.
IET Comput. Vis., Vol. 1, No. 2, June 2007



Fig. 9 3D reconstruction of a plane in the scene

Height of the reconstructed plane depends on the distance from the
sensor and on the vertical FOV
IET Comput. Vis., Vol. 1, No. 2, June 2007
The easiest way to build the scene is to use a single refer-
ence point and the maximum vertical FOV for each plane in
the scene, as shown in Fig. 10a. Naturally, in the resulting
3D model, the planes nearby the sensor will be lower than
the far planes. This model ensures an intuitive spatial
view of the scene since high planes are immediately ident-
ified as being far from the robot. However, the large FOV of
the parabolic mirror may create high planes artificially. A
natural idea is to set the lower bound of the walls
(Fig. 10b) since the robot is assumed to move on a flat
surface.
Even though a single reference point can be used for the

map elevation, the texture of the resulting models cannot be
fully retrieved since there are planes that are not visible
from the reference position. Fig. 10c shows the reconstruc-
tion of a scene from different points of view using the
maximum vertical FOV at each position. This configuration
ensures the best available texture for each object in the
scene and an intuitive scene geometry. The final choice
was to bound the vertical FOV only for the planes that are
Fig. 10 Different scene models

a Scene from an SVP with maximum vertical FOV
b Scene from an SVP with constant vertical FOV
c Scene from multiple view points with maximum vertical FOV
d Scene from multiple view points with thresholded vertical FOV
49



‘crossing the floor’. The resulting model is presented in
Fig. 10d.
Finally, the texture is mapped on each plane of the 3D

model using the information provided by the omnidirec-
tional camera. The image taken from the location that
ensures the best view of a plane is selected from among
all the available images and is used for extracting the
texture of the object. The texture patch is then stuck on
the 3D model of the map.

4 Experimental results

The sensor was built using off-the-shelf components. The
optics and the mirror used for the omnidirectional camera
were provided by remote reality. The camera used was a
Sony SSC-DC198P with a 1/3 in. CCD and a resolution
of 768 � 576 pixels. The laser and its optics are produced
by Lasiris, the diode power is 3 mW and produces red
light with a wavelength of 635 nm.
The calibrated parameters of the camera model are listed

in Table 1.
The height of the conic mirror used to build the labora-

tory prototype is h ¼ 4.4 cm and the cone aperture angle
is b ¼ 528. The laser projects a circular cone with a fan
angle a ¼ 11.48. Since the relation between the two
angles is b ’ 0.5(aþ p/2), the laser is reflected along a
very flat surface that can be approximated to a plane: axþ
byþ czþ d ¼ 0. The laser parameters obtained by cali-
bration are a ¼ 20.0212, b ¼ 0.0019, c ¼ 1 and
d ¼ 91.7291.
Depth is perceived because of the disparity generated by

the two components of the sensor placed along a baseline, as
explained in the previous sections. At the design stage, the
baseline was implicitly chosen because the laser stripe had
to be visible in the central part of the omnidirectional image.
After calibration, the length of the baseline was calculated
to be 95.26 mm. Note that, because of the SVP property
of the catadioptric camera, the baseline is constant and
does not depend on the elevation of the observed scene
point, which is not the case for non-SVP stereo catadioptric
systems.
The calibrated sensor was located on a mobile platform

and placed in a man-made scene. The structured light
projector produces the light stripe in the scene, which is
automatically detected with sub-pixel accuracy. A detail
of the laser stripe is shown in Fig. 11a, in which the
effects of the noise on the laser stripe are visible. The
peaks detected are represented by dots in Fig. 11b, which
are subsequently approximated to an ellipse in order to
improve the process of detecting straight lines at the cali-
bration stage.
In order to evaluate the sensor accuracy, we placed a

planar surface at different known positions and its location
was calculated (Fig. 12). The plane was placed at different
distances from the sensor within a range from 40.64 cm
(16 in.) to 78.74 cm (31 in.) and the error was calculated
for each position.
Table 2 presents the sensor accuracy extracted from the

ground truth evaluation.
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The range scan provided by the sensor was analysed
using a recursive Hough algorithm and the vertical planes
in the scene were detected. Since the FOV of the camera
is known, the elevation map illustrated in Fig. 13a can be
generated. The maximum vertical FOV was used because
of the fact that all the scene objects were close enough.
The parts of the image corresponding to each plane in the
scene have been unwrapped and two examples of these
patches are shown in Fig. 13b.
Different points of view are obtained by changing the

location of the sensor. The images captured by the omnidir-
ectional camera at each location are shown in Fig. 14a,
whereas the range scan obtained is depicted in Fig. 14b.
Screen shots of the Virtual Reality Modeling Language
(VRML) scene models are shown in Fig. 14c.
A more complex scene has been reconstructed using

photographic and registered range scan data from 19 differ-
ent points of view which permitted reconstructing the planes
that are not visible from all the view points. Two screen
shots of the VRML model are presented in Fig. 15.

5 Conclusions and future work

The aim of this work is to build the full 3D model of an
indoor environment by means of a sensor that combines
omnidirectional vision and structured light. The two omni-
directional systems that compose the sensor are calibrated
and the resulting model is used to measure distances in a
real scene. Finally, the scene model is reconstructed by
moving the sensor in a scene containing planar surfaces
and collecting data at different locations. The virtual
scene is built using two informational streams: the range-
finder scan data and the texture of the scene objects. Both
data sources were used to reconstruct the scene, as they
offer complementary hints about the environment. The pos-
ition and orientation of the robot are also estimated in each
step. The experimental results show that the shapes are
properly retrieved and the textures are correctly mapped
on the objects that surround the sensor. Mapping the
texture on the corresponding objects enables the human
operators to detect discontinuities that are not spotted by
the laser pattern.
The single camera catadioptric system offers a wide FOV

but has lower resolution than common cameras. Therefore
such an omnidirectional device can be used for gathering
information from the surrounding scene but is not suitable
for very accurate detail detection. Following this logic, we
conclude that the proposed sensor is appropriate for appli-
cations that need a large FOV and fairly low accuracy
such as human-made environment modelling that is useful
for robot navigation and remote inspections.
An inherent disadvantage of the proposed sensor is that it

can recover only one line of 3D dots at a given position. The
first prototype presented here can be improved by the use of
a more complex-structured light pattern. For instance, a set
of concentric circles or colour-coded light can increase the
vertical FOV. Thus, full cylindrical surfaces of 3D dots
could be recovered. Another shortcoming of the proposed
sensor is its range. The laser used for the prototype
Table 1: Calibrated parameters for the omnidirectional camera

j w au ay u0 y0 a b g tx ty tz

1.07 26.12 255.10 56.84 394.23 292.20 23.08 23.12 23.13 10.22 20.94 2444.29

Measurement units: mirror parameters (j and w) – mm; intrinsic parameters (au, ay , u0 and y0) – pixels; rotation angles (a, b and g) –
radians; translations (tx, ty and tz) – mm
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Fig. 11 Peak detection of a laser stripe in the omnidirectional image

a Detail of the real image
b Real and approximated points in the omnidirectional image
Fig. 12 Planar surface, placed at different locations, imaged by the omnidirectional camera
Fig. 13 Elevation map and texture unwrapping

a Elevation map of the experimental scene. The position of the camera is marked by a black sphere
b Examples of unwrapped image parts

Table 2: Sensor accuracy within different ranges

Range Minimum error Maximum error Mean error Standard deviation

400–450 4.7 24 6.2 3.1

450–500 5.1 21 9.1 2.2

500–550 6.5 18 11.5 3.9

550–600 8.2 22.5 14.1 5.6

600–650 9.1 26.8 15.6 7.3

650–700 11 32.5 17.3 6.9

700–750 14.2 39.8 19.9 9.5

750–800 16.3 47.1 22.5 11.3

The presented error is the average distance between the 3D points reconstructed by the sensor and the
reference plane. The values are given in millimetres
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Fig. 14 Scene modelling with the sensor placed at different locations

a Images captured by the omnidirectional camera
b Range scans provided by the sensor at each position. The position of the sensor is marked by a black sphere
c Texture mapped on the surrounding planes
Fig. 15 3D reconstruction of a scene from 19 omnidirectional
views
52
presented here is not visible at distances greater than 80 cm.
A stronger laser would overcome this problem. The only
concern about increasing the laser strength is the eye
safety restrictions that would have to be applied in the
environment where the sensor was used.
Finally, we would like to highlight some of the advan-

tages of the proposed solution for omnidirectional scene
modelling: it is not intrusive since there are no modifi-
cations of the scene; unlike traditional stereo, the camera
synchronisation is not an issue since only a single camera
is used; the sensor is more robust and easier to calibrate
since it is compact and does not have mobile elements
and, last but not least, it is cheaper than other similar struc-
tures since we use only two mirrors, one camera and a
simple laser projector.
In conclusion, in this paper, we have presented a new

single-shot 3D range-acquisition sensor which provides a
3608 panoramic image of the scene surrounding the robot,
which is useful for a wide variety of applications such as
robot navigation, pipe inspections and so on.
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