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Abstract. In recent years, 6 Degrees Of Freedom (DOF) Pose Esti-
mation and 3D Mapping is becoming more important not only in the
robotics community for applications such as robot navigation but also in
computer vision for the registration of large surfaces such as buildings
and statues. In both situations, the robot/camera position and orien-
tation must be estimated in order to be used for further alignment of
the 3D map/surface. Although the techniques differ slightly depending
on the application, both communities tend to solve similar problems by
means of different approaches. This article is a guide for any scientist
interested in the field since the surveyed techniques have been compared
pointing out their pros and cons and their potential applications.

1 Introduction

Thus far, robot navigation has been focused on 2D mapping in flat terrains and
usually restricted to indoor structured scenarios [34]. Recently, the need to ex-
plore complex and unstructured environments has increased [27]. The complexity
of this sort of environments requires 6DOF movement due to the unevenness of
natural terrains. Besides, the growing interest in 3D modeling of large objects
such as buildings and statues has forced the scientific community to face new
challenges with the aim of reducing the propagation error present in registra-
tion [33]. In both situations, the robot/camera pose is estimated in order to be
used in a further alignment of the 3D map/surface. Although the techniques dif-
fer slightly depending on the application, both communities tend to solve similar
problems by means of different approaches [11] [31].

In general, a good estimation of the initial position is always required in-
dependently of the approach or technique used. Hence, section 2 provides a
classification of the most important methods used to obtain a coarse pose es-
timation, including inertial navigation, visual odometry and surface-to-surface
matching, among others. Then, pair-wise registration approaches such as the
Iterative Closest Point are used to refine the alignment between two clouds of
points, see section 3. Finally, any error accumulated between correlated views is
minimized by means of cycles and overlapping regions common among the ac-
quired views. Hence, section 4 discusses a new classification of these techniques
including analytic methods such as bundle adjustment and the well known ICP
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Table 1. Coarse one-to-one pose estimation techniques. R: Restricted (some DOF are
constrained in a limited range); TOF: Time-of-flight; LT: Laser Triangulation; DLP:
Digital Light Projector.

Technique author DOF sensor scene

Coarse
one-to-one

pose
estimation

Nüchter, 2004 [27] 6 TOF outdoor
mechanical sensors Folkesson, 2003 [11] 6R TOF outdoor

devices Pulli, 1999 [31] 6 LT object
mechanisms Bernardini, 2002 [2] 6 LT object

Huang, 1989 [18] 6 monocular indoor
Image Feature to point Shang, 1998 [39] 6 binocular indoor

to Davison, 2003 [9] 6 monocular indoor
image Point to feature Lowe, 1999 [23] 6 binocular indoor

Chen, 1998 [6] 6 DLP object
Johnson, 1999 [20] 6 DLP object

Computer Point to Carmichael, 1999 [5] 6 DLP object
vision Surface feature Chua, 1997 [8] 6 database object

to Huber, 2003 [19] 6 LT object
surface Nister, 2004 [28] 6 monocular outdoor

Feature Stamos, 2003 [33] 6 TOF outdoor
to point Wyngaerd, 2003 [38] 6 DLP object

Triebel, 2005 [36] 6R TOF outdoor

multi-view approach, and statistical methods such as Simultaneous Localization
And Mapping (SLAM), among others. These techniques are compared and dis-
cussed analyzing their pros and cons and potential applications. The article ends
with conclusions.

2 Coarse One-to-One Pose Estimation

The initial position is always required independently of the approach or tech-
nique used. The initial pose can be obtained using two well-known approaches:
1) Initial pose estimation by mechanical devices and 2) Initial Pose estimation
by computer vision. The first technique is based on benefiting by using some sort
of device: a) sensors, such as odometers, compasses or inertial systems [11]; or
b) mechanisms, such as rotating tables, robot arms or conveyors [31] [2].When
sensors or mechanical devices can not be used or when their measure is rough
or inaccurate, an estimation of the initial position by means of computer vi-
sion may be a good choice. Therefore, the second technique is based on directly
analyzing the visual images (given by cameras) or the surface views (given by
scanners) looking for correspondences which are used to solve the alignment and
consequently the pose. Although in this paper the final registration concerns 3D
objects, the initial pose estimation can be achieved using both 2D or 3D views.
Therefore, two main groups of pose estimation techniques using computer vi-
sion are proposed: a) Image-to-image correspondences and b) Surface-to-surface
correspondences. Image-to-image techniques are based on 2D image-to-image
matching using both discrete and differential epipolar constraint dealing with
2D images directly acquired by a stereo-head [18] or a moving camera [9]. Note
that in the calibrated case the 3D is computed by triangulation. Besides, in
uncalibrated systems the motion up to a scale factor is estimated by solving
the well-known Kruppa equations computing a perspective reconstruction. The
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Table 2. Fine one-to-one pose estimation techniques. R: Restricted (some DOF are
constrained in a limited range); TOF: Time-of-flight; LT: Laser Triangulation; DLP:
Digital Light Projector.

Technique author DOF sensor scene

Fine
one-to-one

pose
estimation
(Pair-wise)

Besl, 1992 [3] 6 LT outdoor
Greenspan, 2001 [14] 6 DLP object

Point to Jost, 2002 [21] 6 database object
point Guidi, 2004 [15] 6 DLP object

Triebel, 2005 [36] 6R TOF outdoor
Trucco, 1999 [37] 6 synthetic data object
Chen, 1991 [7] 6 DLP object

Point to Gagnon, 1994 [13] 6 monocular object
plane Park, 2003 [29] 6 database object

Euclidean reconstruction is obtained by taking any metric measure from the
scene that allows the determination of the scale factor, usually a distance be-
tween two 3D features [9]. On the other hand surface-to-surface techniques deal
with 3D features or clouds of points acquired by any 3D acquisition technique
such as stereo [28], laser triangulation or time-of-flight lasers [33], among others.
Here, the main difference is in the way of selecting the matching points.

All these methods process the 2D/3D points of the given images/surfaces to
extract significant points which are used in the matching process. Hence, the
techniques are classified according to: a) feature-to-point approach when the
significant points are only those that satisfy a given feature [17] [33]; and b)
point-to-feature approach when an arbitrary group of points are characterized
obtaining a set of features that differ one to another depending on point neigh-
borhood [23] [8] [5].

In summary, although coarse pose estimation methods based on mechanical
devices provide good results in flat terrains, a combination of both mechanical
and computer vision methods is usually required in the presence of rough and
unstructured environments. Techniques based on the discrete epipolar geometry
have been widely studied and nowadays robust solutions are available even in
6DOF. Besides, the differential movement estimators are quite sensitive to noise.
Hence, these methods are, in general, adapted to the application constraining the
number of DOF with the aim of reducing the error in the estimation. Therefore,
surface-to-surface alignment is more adequate for complex 3D scenarios, but
then we have to avoid symmetries in the views to obtain accurate registrations.

3 Fine One-to-One Pose Estimation

Once an initial 3D pose is estimated by any coarse registration technique, an iter-
ative minimization should be applied to obtain a refined pose and hence a better
alignment between both views. Herein, the methods are classified according to
the minimization function, which is usually the distance between corresponding
points (point-to-point) or the distance between points and their correspond-
ing plane (point-to-plane). For instance, Point-to-point alignment, such as the
Iterative Closest Point (ICP) [3], focus on finding the distance between point
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correspondences. ICP is the most common point-to-point fine registration
method and the results provided by authors are good [14] [36]. However, the
method can not cope with non-overlapping regions because outliers are barely
removed. In addition, this method usually presents problems of convergence,
many iterations are required and, in some cases, the algorithm converges to
local minima. The algorithm proposed by Chen [7] (Point-to-plane) is an alter-
native to ICP. Given a point in the first image, the intersection of the normal
vector at this point with the second surface determines a second point in which
the tangent plane is computed. The distance between this plane and the initial
point is the function to minimize. Despite the difficulty of determining the cross
point between a line and a plane in a cloud of points, some techniques such as
the fast variant of ICP proposed by Park [29] and the method of Gagnon [13]
are presented to speed this process up. Compared to ICP, this method is more
robust to local minima and, in general, better results are obtained. Moreover,
the method is less influenced by the presence of non-overlapping regions and
usually requires less iterations compared to ICP.

4 Cycle Minimization

One-to-one alignment of views in a sequence causes a drift that is propagated
throughout the sequence. Hence, some techniques have been proposed to reduce
the propagating error benefiting from the existence of cycles and re-visited re-
gions and considering the uncertainty in the alignment. This sort of techniques
is classified into analytic and statistic, as shown in Table 3 and explained in the
following paragraphs.

Analytic minimization: In order to minimize the propagating error, some au-
thors have improved their algorithms by adding a final step that aligns all the
acquired views at the same time. These approaches spread one-to-one pair-wise
registration errors throughout the sequence of views. Early approaches proposed
the aggregation of subsequent views in a single metaview, which is progressively
enlarged each time another view is registered [7]. Here, the main constraint is
the lack of flexibility to re-register views already merged in the metaview. Some
modifications of metaview approach have been presented to improve the effi-
ciency of the algorithm [31] [27]. A different multi-view approach proposes a
multi-view registration technique based on the graph theory: views are associ-
ated to nodes and transformations to edges. Authors consider all views as a
whole and align all them simultaneously [19] [32]. Analytic methods based on
the metaview approaches present good results when initial guesses are accurate
and the surface to be registered does not have a large scale. Otherwise, the
method suffers a large propagation error producing drift and misalignments and
its greedy approach usually falls in local minima. The use of methods based on
graphs has the advantage of minimizing the error in all the views simultaneously
but they usually require a previous pairwise registration step, which accuracy
can be determinant in the global minimization process. Besides, closing the loop
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Fig. 1. Multi-view registration of multiple 3D views of a ceramic frog out in our lab

strategies provide trustworthy constraints for error minimization but require a
huge amount of memory and usually involve a high computational cost.

Statistic minimization: The same problem of registering 3D views in a sequence
has been also faced by means of a probabilistic approach (statistic techniques), es-
pecially in mobile robot navigation. The technique receives the name of Simulta-
neous Localization and Mapping (SLAM) since both the pose and the structure of
the environment are estimated simultaneously. The main difference compared to
analytic multi-view is that the uncertainty in the measure is not neglected. Hence,
two main groups of techniques have been considered depending on the way of rep-
resenting such uncertainty: a) Gaussian filters and b) non-parametric filters. Both
Kalman Filter (KF) for linear systems and Extended Kalman Filter (EKF) for
non-linear systems are undoubtedly the most well-known Gaussian filters. Both
consist in two main steps: a) Prediction, which estimates the current state by using
the temporal information of previous states; and b) Update, which uses the current
information provided by robot on-board sensors to refine prediction. Whenever
a landmark is observed by the on-board sensors of the robot, the system deter-
mines whether it has been already registered and updates the filter. Hence, when
part of the scene is revisited, all the gathered information from past observations
is used by the system to reduce the uncertainty in the whole mapping, strategy
known as closing the loop. Besides, mobile robot localization and mapping has also
been tackled by using non-parametric filters such as histogram filter or particle fil-
ter. The main advantage compared to Gaussian filters is the possibility of dealing
with multimodal data distribution, so that multiple values (particles) are used to
represent the belief [35] [9]. Nevertheless, note that Gaussian filters have a poly-
nomic computational cost whereas the computational cost of a non-parametric
filter may be exponential. In the presence of large environments in which tons of
data are gathered, Gaussian filters state vectors increase considerably leading to
inefficiency in terms of computational cost. Similar problems appear using non-
parametric filters such as the particle filter. Hence, some authors have proposed
different techniques to cope with computational cost and memory size [16] [22].
This drawback can be solved by using methods based on building submaps [4]
which present more robustness against uncertainty compared to methods based
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Table 3. Cycle minimization techniques. R: Restricted (some DOF are constrained
in a limited range); TOF: Time-of-flight; LT: Laser Triangulation; DLP: Digital Light
Projector.

Technique author DOF sensor scene
Bergevin, 1996 [1] 6 monocular object

Iterative Huber, 2003 [19] 6 LT object
Analytic lineal Pulli, 1999 [31] 6 LT object

(Multiview) Sharp, 2004 [32] 6 DLP indoor
Nüchter, 2004 [27] 6 TOF outdoor

Cycle robust Masuda, 2001 [25] 6 LT object
minimization Pollefeys, 2000 [30] 6 monocular outdoor

Guivant, 2000 [16] 6 TOF outdoor
Martinelli,2005 [24] 6R TOF indoor

Gaussian Liu, 2003 [22] 6R TOF outdoor
Statistic Bosse, 2003 [4] 6 TOF outdoor

Estrada, 2003 [10] 6R TOF outdoor
Davison, 2003 [9] 6 monocular indoor

Non Parametric Montemerlo, 2002 [26] 6R TOF outdoor

on a unique global map. Some methods impose global restrictions for global map
joining, providing accurate solutions in the presence of short loops [12]. However,
loop consistency constraints used in methods such as Hierarchical SLAM [10] can
be essential in order handle larger loops and prevent inconsistency and misalign-
ments in the final map.

In summary analytic methods are the most common in high-resolution ob-
ject reconstruction by means of multi-view registration techniques. Although
multi-view registration methods have demonstrated to provide accurate solu-
tions, misalignments can appear in the presence of featureless environments,
symmetries and smooth objects. Besides, statistical methods are the most used
in 3D mapping in mobile robot navigation. The advantage of statistical methods
is in their performance in the presence of less reliable sensors, complex environ-
ments and unstructured scenes with few features and landmarks. However, they
are not recommended for handling tons of data since the manipulation of large
state vectors derives to an inefficient computation.

5 Conclusion

This paper presents a state of the art of the most representative techniques for
6DOF pose estimation and 3D registration of large objects and maps. The most
referenced articles over the last few decades have been discussed analyzing their
pros and cons and potential applications.

The article is intended to be a guide for any researcher interested in the
field. To the best of our knowledge, this article is the first that compares the
techniques present in both robotics and computer vision communities, providing
new classification criteria, discussing the existing techniques, and pointing out
their pros and cons and potential applications.
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