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Abstract

Depth computation is an attractive feature in computer vision. The use of traditional perspective cameras for panoramic perception
requires several images, most likely implying the use of several cameras or of a sensor with mobile elements. Moreover, misalignments
can appear for non-static scenes. Omnidirectional cameras offer a much wider field of view (FOV) than perspective cameras, capture a
panoramic image at every moment and alleviate problems due to occlusions. A practical way to obtain depth in computer vision is the
use of structured light systems. This paper is focused on combining omnidirectional vision and structured light with the aim of obtaining
panoramic depth information. The resulting sensor is formed by a single catadioptric camera and an omnidirectional light projector. The
model and the prototype of a new omnidirectional depth computation sensor are presented in this article and its accuracy is estimated by
means of laboratory experimental setups.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Vision is certainly the most important of the five senses.
It is a complicated process that requires numerous compo-
nents of the human eye and brain to work together. How-
ever, binocular human vision has a limited field of view
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(Yagi, 1999) which is complemented by peripheral vision.
In specific real-life situations, such as vehicle driving, a
even wider vision field is required and vision is enhanced
by the use of reflecting surfaces. The main problem of this
kind of systems is the dead angles, the regions in which
objects cannot be seen due to the physical limitations of
the mirrors. This problem can be overcome using omni-
directional vision sensors which ideally have the capability
to see in all directions (360) simultaneously.

1.1. Omnidirectional vision sensors

Besides these obvious advantages offered by a large field
of view, in robot navigation the necessity of employing
omnidirectional sensors also stems from a well known
problem in computer vision: the motion estimation algo-
rithms can sometimes mistake a small pure translation of
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the camera for a small rotation, and the possibility of error
increases if the field of view is narrow or the depth varia-
tions in the scene are small. An omnidirectional sensor
can reduce this error since it receives more information
for the same movement of the camera than the one
obtained by a reduced field of view. A common classifica-
tion of existing omnidirectional sensors is related to the
components used for their fabrication. Thus, the field of
view of conventional cameras is enhanced by: (a) fish-eye
lenses; (b) multiple image acquisition systems using rotat-
ing cameras or structures of many cameras with comple-
mentary fields of view; (c) cameras in front of especial
mirrors (planar, hyperbolic, parabolic, spherical, dual
convex and conic). Yagi (1999) surveyed the existing
techniques to build cameras with a wide field of view and
Svoboda and Pajdla (2000) proposed several classifications
of the existing omnidirectional cameras according to their
most important features.

Beginning in the early nineties, the attention given to
omnidirectional vision and its knowledge base has grown
continuously as the numbers of researchers involved in
the study of omnidirectional cameras has increased. New
mathematical models for catadioptric projection and, con-
sequently, better performing catadioptric sensors have
appeared. The catadioptric sensors use reflecting surfaces
(convex or planar mirrors) coupled to a conventional cam-
era. In the commercial applications, the large interest gen-
erated by catadioptrics is due to their specific advantages
when compared to other omnidirectional systems, espe-
cially the price and the compactness. In 1990, the Japanese
team from Mitsubishi Electric Corporation, lead by Yagi,
studied the panoramic scenes generated using a conic mir-
ror-based sensor (Yagi and Kawato, 1990). The sensor,
named COPIS, was used for generating the environmental
map of an indoor scene from a mobile robot. The conic
mirror shape was also used, in 1995, by the researchers
from CREA, University of Picardie Jules Verne. Their
robot was provided with an omnidirectional sensor, bap-
Fig. 1. SVP catadioptric image formation. (a) Hyperbolic mirror with p
tized SYCLOP, and was used for navigation and localiza-
tion in 3D space (Pegard and Mouaddib, 1996).

The catadioptric sensors can be classified depending on
the way they gather light rays. When all the observed light
rays converge into a point, called the focus, the sensors are
known as Single View Point (SVP). In 1996 Bruckstein and
Richardson (2000) compared several mirror shapes and
thoughtfully studied the parabolic and the hyperbolic pro-
files, the most frequent used mirrors in SVP sensors. Later,
Baker and Nayar (1998) explored the catadioptric sensors
that produce SVP. Using geometrical relations, they found
the equation of the single view point constraint. The solu-
tions for this equation represent the entire class of mirrors
that respect the constraint. While some of these solutions
are impractical, others define the following set of feasible
mirrors: planar, conical, spherical, ellipsoidal, hyperboloid
and parabolic. In the case of the hyperbolic mirrors, the
SVP constraint is satisfied when the pinhole and the mirror
view point are placed at the two foci of the hyperboloid.
The parabolic shape is a solution for the SVP constraint
when the image is formed by an orthographic projection,
see Fig. 1.

The catadioptric sensors that do not possess a single
view point (non-SVP) are less used but have proved to be
helpful for applications with specific requirements such
as prescribed distortions (Hicks and Perline, 2001) or with
linear projection constraints (Gaspar et al., 2002).

1.2. Previous work in panoramic 3D modelling with

catadioptric sensors

Our current research is focused on modelling 3D real
scenes using catadioptric sensors. As shown in the previous
section, there are many ways to obtain wide field of view
sensors but neither the standard cameras nor the catadiop-
tric ones can provide depth information about the scene
when used independently. A method for obtaining 3D
information using a single catadioptric camera performing
erspective camera. (b) Parabolic mirror with orthographic camera.
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simultaneous localization and map building with the SYC-
LOP sensor was presented by Drocourt et al. (2002). Depth
perception is recovered by taking into account dead-reckon-
ing information from the rigid translation of the sensor dur-
ing the navigation. In the special situations when a 3D scene
model is available, the panoramic image can be mapped
onto the model to obtain a virtual 3D environment.
Researchers from the University of Alberta (Southwell
et al., 1996b) used a similar method for pipe inspection
using a catadioptric camera with a conical mirror. The
omnidirectional image provided by the catadioptric camera
is mapped onto a 3D surface defined by a previously avail-
able model of the real surface or onto a complex develop-
able surface formed by basic building blocks.

Stereoscopic vision combines separate images taken
from distinct points of view and permits depth to be per-
ceived visually. Stereo catadioptric sensors are special struc-
tures of mirrors and lenses designed to obtain depth from
images with a wide field of view. In order to obtain distinct
points of view of a scene with a single camera, several
researchers used structures of convex mirrors (Southwell
et al., 1996a; Fiala and Basu, 2002; Nene and Nayar,
1998) or planar mirrors (Gluckman and Nayar, 1999,
2002; Kawanishi et al., 1998). For instance, Southwell
et al. (1996a) used a non-SVP catadioptric sensor provided
with a two lobbed spherical mirror to obtain two images
with separated view points that allow panoramic 3D per-
ception. Later, Fiala and Basu (2002) used a similar sensor
to obtain a stereo panoramic view in which horizontal and
vertical lines were detected using the Panoramic Hough
Transform, an extension of the Hough Transform adapted
for catadioptric images. Depth is retrieved by matching the
lines imaged by the two spherical mirrors through the radial
symmetry. Kawanishi et al. (1998) developed a high-resolu-
tion SVP omnidirectional sensor built with six cameras and
a hexagonal pyramidal mirror. Stereo views are obtained by
connecting two such sensors placed in a back-to-back con-
figuration. Gluckman and Nayar (1999) obtained stereo
panoramic views using two planar mirrors and a perspective
camera. The sensor produces a stereo image but the whole
360� image is not built in a single shot which means that a
part of the scene is always hidden. Lin and Bajcsy (2003)
described an omnidirectional sensor that provides depth
information by using two cameras, a beam splitter and a
conical mirror. The sensor produces a high-resolution pan-
oramic stereo image but has a small vertical FOV due to the
superposition of the view fields of the near camera, the far
camera and the conical mirror.

The results obtained from stereoscopic vision are
directly related to the accuracy of matching the points
between the observed images. The matching problem is
actually a difficulty shared by all of the above mentioned
panoramic stereo methods.

Structured light-based techniques are a particular case
of stereo vision used to solve the correspondence problem
in which one of the cameras is replaced by a pattern projec-
tor (Salvi et al., 1998, 2003). The use of this technique is
similar to placing visible landmarks in the scene so that
image points can be identified and matched faster and more
accurately. This paper presents an omnidirectional sensor
that provides 3D information using structured light. The
sensor is formed by a single-camera catadioptric configura-
tion with an embedded omnidirectional structured light
projector. The sensor design and the calibration of the
whole system is detailed in Section 2. The experimental
results and the accuracy measurements are shown in Sec-
tion 3. The article ends with conclusions and further work.

2. Sensor geometry and calibration

As explained in the introductory section, the main goal
of the proposed sensor is to retrieve 3D information from
an omnidirectional image to overcome the matching prob-
lem present in stereo vision. In the proposed solution,
shown in Fig. 2, the omnidirectional camera is coupled
with a structured light projector that has a field of view
of 360� (Orghidan et al., 2003). Due to their optical prop-
erties, catadioptric sensors having an SVP were chosen to
build the omnidirectional camera of the proposed sensor.
Commonly, the central projection constraint is fulfilled
by the use of a parabolic mirror in conjunction with an
orthographic camera or a hyperbolic mirror with a per-
spective camera. The first configuration, which preserves
the SVP independently of the translation between the mir-
ror and the camera, was finally preferred due to its simpli-
city in focusing the image.

The third dimension of the scene is perceived by crossing
the light rays emitted by the laser with the ones observed by
the camera or, in other words, performing a triangulation.
The laser should project a pattern that covers the whole
scene and should be easily identifiable. The chosen pattern
was the circle. The light of the projected laser pattern is
reflected by the conical mirror and spread onto the scene
along an imaginary conical shape. The parabolic mirror
reflects the whole scene into the camera and all the spots
illuminated by the laser can be immediately identified. With
the models for both components of the sensor, a precise tri-
angulation can be carried out. In the following section, we
describe the modelling process and the parameter estima-
tion (calibration).

2.1. Omnidirectional camera calibration

Assuming that the camera–mirror pair possesses an
SVP, the omnidirectional camera can be modelled as a pro-
jection onto a sphere followed by a projection onto a plane,
as stated by Daniilidis and Geyer (2000), Geyer and Dani-
ilidis (2000). Another way of approaching camera calibra-
tion is by considering the mirror surface as a known
revolution shape and modelling it explicitly, for instance,
considering that the reflecting surface is a paraboloid and
the camera is orthographic. Both models were tested and
the comparative results were reported in (Orghidan et al.,
2005). The omni-camera used for this work has an SVP



Fig. 2. The proposed sensor. (a) Catadioptric omnidirectional camera with an embedded structured light projector. (b) Laboratory prototype.
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but contains two reflecting surfaces so the first method
mentioned (shape independent) was preferred.

The calibration is performed using a set of known 3D
points, Pw = [xw,yw,zw], distributed on the four walls of a
cube placed around the sensor. Considering Ps = [xs,ys,zs]
to be the intersection of the light ray emitted by the point
Pw with the sphere of radius R, then the perspective projec-
tion of Ps on the image plane from a point C = [0,n] pro-
duces a point Pi = [x,y] as shown in Fig. 3.

The relation between Pw and Ps is expressed in Eq. (1).

xs ¼ k � xw

ys ¼ k � yw

zs ¼ k � zw

8<
: ð1Þ

Since the points belong to the sphere, Eq. (2) also holds

x2
s þ y2

s þ z2
s ¼ R2 ð2Þ
Fig. 3. Image formation using the projective equivalence of an S
The perspective projection of Ps on the image plane from a
point C = [0,n] produces a point Pi = [x,y] as expressed in
Eq. (3)
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n� zs
¼ x
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Adding the intrinsic camera parameters (au,av,u0,v0)
the pixel coordinates of the image points are shown in
Eq. (4)

u ¼ auðnþ uÞxw

n
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VP catadioptric projection with the projection on the sphere.
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The parameters of the model are: n, which depends on the
eccentricity; u, which is a function of both the eccentricity
and the scale; the intrinsic camera parameters au,av,u0, and
v0; and rX(a), rY(b), rZ(c) and tx, ty, tz, the vectors that
model respectively the orientation and the translation be-
tween the world coordinate system and the camera coordi-
nate system. The orientation vectors are functions of the
three angles (a,b,c) which define the rotation on each axis
and are expressed in radians while the translations are mea-
sured in millimetres. The three rotation angles and the
three translations form the set of extrinsic parameters, as
detailed in (Salvi et al., 2002).

The difference between the positions of the calculated
image points and the positions of the real image points is
the calibration error of the model. Minimizing the above
error by means of a nonlinear iterative algorithm such as
Levenberg–Marquardt, the model of the omnidirectional
camera is calibrated.

2.2. Omnidirectional laser projector model

The omnidirectional light projector is formed by a laser
that emits a circle and is pointed at a conical mirror so that
the projected light covers the entire field of view of the cata-
dioptric camera. The proposed projector can be seen as a
reversed omni-camera where the light flows in the opposite
direction. So, the projector takes advantage of the attri-
butes revealed by previous studies of catadioptric cameras
based on the conical mirror shape. Lin and Bajcsy (2001)
pointed out that the conical mirror can be used to build
true SVP configurations with the advantage that it pre-
serves image point brightness better than other mirrors
since it does not distort the image in longitudinal direc-
tions. Yagi (1999) highlighted that the conical mirror on
a vertical section behaves like a planar mirror and conse-
quently provides a much better resolution than any other
omni-mirror shape. Baker and Nayar (1998) proved that
the curved mirrors (such as parabolic, hyperbolic, etc.)
increase defocus blur because of their bend. Consequently,
the cone turns out to be the ideal mirror shape to be used to
build the structured light projector.

The bright spots on the scene are observed by the cali-
brated omnidirectional camera which possesses a unique
centre of projection. This property allows the direction of
the light source for each image point to be calculated. Since
the locations of the calibration planes are known, the 3D
coordinates of the laser stripe lying on those planes can
be determined. A set of such points can be used to calibrate
the laser-conic mirror pair. The 3D projected shape can be
represented either as a cloud of points or as a parametric
model (Ahn, 2004). The first model mentioned is generally
used for object visualization using polygonal mesh surfaces
generated from the point cloud. The resulting models
describe the object with limited accuracy and require a
large amount of computing time and memory space as well.
The alternative to the point cloud is the parametric model
which provides useful information such as size, shape, posi-
tion and rotation of the object. Moreover, the parametric
model describes the object in a compact form and needs
few points for the parameter estimation. For these reasons,
the parametric model was selected to represent the pro-
jected 3D shape. The main problems of the parametric
model are the analysis and the computational difficulties
at the calibration stage when the model is fitted to the
experimental data. However, the choice of a set of con-
straints and a proper model can overcome these drawbacks
as we show in the following paragraphs.

A 3D surface can be mathematically described implicitly
as stated in Eq. (5), where a is the vector of parameters and
(x,y,z) are the coordinates of points in a 3D space.

Gða; x; y; zÞ ffi z� F ða; x; yÞ ¼ 0 ð5Þ
A general 3D curve can be obtained by intersecting two im-
plicit surfaces. The choice of the two surfaces is not trivial
and an inappropriate selection can lead to an unnecessarily
large set of model parameters, a situation known as over-
parametrization. The correct constraints have to be found
and applied in order to remove the redundant degrees of
freedom.

Ideally, when the laser is perfectly aligned with the
conic mirror, the 3D shape formed by the reflected laser
pattern can be imagined as a circular cone, called the
‘‘laser cone of light’’. Unfortunately, the precision with
which the coordinates of the bright spots are obtained is
limited by the catadioptric camera calibration accuracy
and by its resolution. Moreover, a perfect alignment of
the laser and the conic mirror is difficult to guarantee,
so a more general shape than the circular cone should
be considered. Since the perspective projection of a circle
placed on a plane P onto a plane that is not parallel to
P is an ellipse, it can be deduced that a suitable shape
for modelling the laser-cone is a revolution surface whose
intersection with the plane perpendicular to the omnidirec-
tional camera optical axis is an ellipse. This shape, the
elliptic cone, was used in (Orghidan et al., 2005) and
proves to be more accurate than the circular cone. Still,
for a large amount of noise, the elliptical cone cannot
be uniquely determined.

Therefore, the general quadratic surface was chosen to
model the laser projection. Let us assume, without loss of
generality, that the world reference system is placed such
that the calibration planes are perpendicular to the X and
the Y axes. The intersections of the quadratic with the cal-
ibration planes are arcs described by a subinterval of the
parameter domain: the arcs contained in the planes perpen-
dicular to the X and Y axes provide information on the
parameters of the quadratic with x = ct and y = ct, respec-
tively. Writing the quadratic as in Eq. (6), its intersection
with planes X and Y are shown in Eqs. (7) and (8), respec-
tively. The parameters of the arcs for each plane are
obtained by fitting the corresponding points into the subse-
quent equations. Taking into account that the 3 · 3 matrix
is symmetric, most of the parameters of the quadratic sur-
face can be retrieved from Eqs. (7) and (8). The parameters
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a12 and a21 correspond to the ellipse obtained by crossing
the quadratic with the plane XY.
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With the added constraints, the number of parameters to
be simultaneously minimized decreases, leading to a more
accurate computation.

3. Experimental results

The experiments presented in this section are aimed at
finding out the reliability of the sensor by evaluating its
accuracy measuring depth in a real scene. The section starts
with an overview of the sensor calibration. Depth measure-
ments are performed using a laboratory setup and the
results are presented and commented on the second part
of this section.
Fig. 4. The calibration planes placed a
The system was built using off the shelf components.
The optics and the mirror used for the omnidirectional
camera were provided by Remote Reality. The camera is
a Sony SSC-DC198P with a 1/3 in. CCD and a resolution
of 768 · 576 pixels. The laser and its optics are produced by
Lasiris, the diode power is 3 mW and produces red light
with a wavelength of 635 nm.

3.1. Omnidirectional camera calibration

The camera calibration is performed using points dis-
tributed on four planes, placed around the camera at differ-
ent distances and orientations. The points are the corners
of the squares in a checkered pattern. The distance between
two adjacent points on the same plane is 5 cm. Four sam-
ples of the images used for calibration are presented in
Fig. 4. Note that the choice of the calibration pattern is
crucial to obtaining good reference points. During our
experiments we tested the calibration using both dotted
and a checkered patterns. As expected, the calibration
using a checkered pattern proved to be more accurate than
the one performed using a dotted pattern because of the
deformation of the dots after the reflection in the mirror.

The calibrated parameters of the camera-model are
listed in Table 1.

The 2D image error and the 3D scene reconstruction
error have been computed for a sample of 1320 calibration
points located on planes placed around the sensor in a
range going from 40 cm up to 80 cm. The average 2D cal-
round the omnidirectional camera.



Fig. 5. Omnidirectional structured light projector calibration. (a) Calibrated quadratic fitted to the 3D points. In the illustrated case the points were
affected by a Gaussian noise with r = 5. (b) The evolution of the error as a function of noise.

1 For interpretation of colour in figures, the reader is referred to the Web
version of this article.

Table 1
The calibrated parameters for the omnidirectional camera

n u au av u0 v0 a b c tx ty tz

1.07 �6.12 �55.10 56.84 394.23 292.20 �3.08 �3.12 �3.13 10.22 20.94 �444.29

The measurement units are: the mirror parameters (n,u) in mm; the intrinsic parameters (au,av,u0,v0) in pixels; the rotation angles (a,b,c) in radians and
the translations (tx, ty, tz) in mm.
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ibration error, computed as the distance in pixels from the
imaged point and the modelled image of the same point, is
l2D = 1.22 pixels and the sample standard deviation
r2D = 1.48 pixels. The 3D calibration error was calculated
as the distance between the backprojection of the image
points on the calibration planes and the 3D coordinates
of the corresponding real points from the calibration pat-
tern. The average 3D calibration error is l3D = 3.09 mm
and the sample standard deviation r3D = 2.75 mm.

3.2. Omnidirectional laser projector calibration

The robustness of the calibration method against noise
was tested under simulation. We generated a set of 61
points representing the intersection of a cone with the
walls of a calibration box having the side-length equal
to 50 cm. Then, the three coordinates of the points were
perturbed with Gaussian noise having the variance of r.
The general quadratic shape, representing the projection
of the circular laser pattern onto the conic mirror, was fit-
ted to the 3D points and the resulting surface is shown in
Fig. 5(a). The error is considered to be the residual value
obtained by plugging the 3D points into the quadratic
equation. Consequently, the residual value for the points
lying on the surface equals zero and it increases for points
placed away from the surface. The calibration was vali-
dated one hundred times for each value of r in the interval
[1..11] with a step of 0.25. The average of the absolute val-
ues of the residual errors was calculated at each step. The
evolution of the error as a function of noise is presented in
Fig. 5(b).
The height of the conic mirror used to build the labora-
tory prototype is h = 4.4 cm and the cone aperture angle is
b = 52�. The laser projects a circular cone with a fan angle
a = 11.4�. Since the relation between the two angles is
b � 0.5(a + p/2) the laser is reflected along a very flat
surface which can be approximated to a plane: ax + by +
cz + d = 0, see Fig. 6(b).

The image of the laser is affected by a certain amount of
undesired lighting peaks superimposed onto it. This is due
to noise produced by four main sources: electrical noise,
quantization noise, speckle and image blur. The first two
noise sources are associated with the image sensor while
the speckle is related to the reduced wavelength of light
compared to the surface roughness and the monochroma-
tism of the laser light. Image blur is inherent in the cata-
dioptric cameras due to the mirror curvature. In the omni-
directional image, shown in Fig. 6(a), the center of the laser
stripe is determined with sub-pixel accuracy using the peak
detection method based on a low pass filter described by
Forest et al. (2004). A detail of the laser stripe is shown
in Fig. 7(a) in which the effects of the noise on the laser
stripe are visible. The detected peaks are represented by
red dots in Fig. 7(b) while the green1 dots are placed along
the ellipse fitted to peaks, plotted with blue.

The intersections between the laser plane and the planes
of the calibration box are straight lines which are imaged as
elliptical arcs by the omnidirectional camera. Hence, the
calibration accuracy is increased by performing an ellipse



Fig. 6. Omnidirectional laser projector calibration. (a) Omnidirectional view of the laser pattern. (b) Plane fitted to a set of points of the laser stripe.
The dotted rectangles are the points on the planes around the camera.

Fig. 7. Peak detection of a laser stripe in the omnidirectional image. (a) Detail of the real image. (b) Real and approximated points in the omnidirectional
image.
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fitting for each curve in the image, as shown in Fig. 8.
However, this approximation can only be done for those
segments of the stripe that represent the projection of the
laser pattern onto a plane on the scene.
Fig. 8. Ellipse fitting to laser stripes projected on the four calibration
walls.

400 450 500 550 600 650 700 750 800
0

5

10

15

20

25

30

35

Distance from sensor (mm)

R
ec

on
st

ru
ct

io
n 

er
ro

r 
(m

m
)

Fig. 9. Accuracy of the proposed sensor with targets placed at different
distances and with different model parameters. The dashed line represents
the 3D error with the model obtained by all the calibration points. The
dotted line stands for the error using the model obtained when the
calibration planes are placed at the same distance as the reference one. The
other lines follow the 3D reconstruction errors of the model with the
parameters obtained by the calibrations using planes at different distances.



R. Orghidan et al. / Pattern Recognition Letters 27 (2006) 843–853 851
The 3D positions of the laser points are calculated using
the reversed camera model for the back-projection of the
image points on the known calibration planes. For a more
accurate calibration, the laser plane was fitted to a cloud of
points obtained by the back-projection of the laser image
points on several calibration planes placed at different dis-
tances and orientations with respect to the sensor.

3.3. Scene reconstruction and accuracy estimation

As in traditional stereo, the proposed sensor allows
depth perception when its two components are able to
generate disparity up to a certain amount. The disparity,
which is the angular difference between two different view-
ing directions of the same point, is directly related to the
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Fig. 10. Depth perception for planes at different positions. The continuous line
fitted to the estimated points. (a) Calibration using only the calibration planes
the calibration planes at 63.50 cm.
depth of the observed point and the distance between
the ‘‘eyes’’, known as baseline. Even though our sensor
does not deal with two images, its capability to perceive
depth within a certain range is strongly connected to the
length of its baseline. In the case of the presented sensor
the baseline is the distance between the camera view point
and the laser plane, along the optical axis. At the design
stage, the baseline has been implicitly chosen because the
laser stripe had to be visible in the central part of the
omnidirectional image. After calibration, the length of
the baseline was calculated to be 95.26 mm. Note that,
due to the SVP property of the catadioptric camera, the
baseline is constant and does not depend on the elevation
of the observed scene point, which is not the case for non-
SVP stereo catadioptric systems.
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s represent the real positions of the planes. The dotted lines are the planes
at 55.88 cm. (b) Calibration using all the points. (c) Calibration using only
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In order to estimate the sensor accuracy, we placed a
planar surface at different known positions and its location
was estimated. The mean error is the average of the dis-
tances of the 3D points reconstructed by the sensor to
the reference plane. The plane was placed at different dis-
tances from the sensor within a range from 40.62 cm
(16 in.) to 78.74 cm (31 in.) and the error was calculated
for each position. Note that the sensor calibration was
performed several times using calibration planes placed at
different distances from the sensor. This technique is parti-
cularly useful for the proposed sensor since the laser stripe
shows up in the omnidirectional image at unpredictable
distances from the image centre. As shown in Fig. 9, the
3D error has a smooth variation when the calibration
parameters obtained using points taken at different dis-
tances are plugged into the model (the dotted line). A
higher variation is obtained when the reconstruction is
performed using any other set of parameters, obtained by
placing the calibration planes at the same distance from
the sensor.

The reconstruction of planes placed at different posi-
tions and using different model parameters are presented
in Fig. 10. The measurable quantities represented on both
axes are expressed in millimetres.

4. Conclusions and future work

This paper is focused on combining omnidirectional
vision and structured light with the aim of obtaining pan-
oramic depth information. The resulting sensor is formed
by a single catadioptric camera and an omnidirectional
light projector. The two omnidirectional systems that
compose the sensor are calibrated and the resulting model
is used to measure distances in a real scene. The experi-
mental results show that the shapes are properly retrieved
and the average error of the sensor is less than 2.5 cm for
obstacles placed in a range of 80 cm in any direction. The
results obtained are encouraging and prove that this sen-
sor can be used with depth perception industrial applica-
tions such as pipe inspection. The sensor is capable of
finding obstacles placed vertically, common in man made
environments. Moreover, when previous information
about the scene geometry is available the accuracy can
be increased by using this information at the segmenta-
tion stage for removing potential noise sources. The pro-
vided depth information is reliable for close target
distances making the sensor suitable for industrial inspec-
tion from a slow moving platform. The use of 360�
images and scene-depth information is ideal for robot
navigation tasks, especially in obstacle avoidance and
map building.

The single-camera catadioptric systems benefit from a
wide field of view at the expense of a resolution that is
lower than common cameras. Therefore, such an omnidi-
rectional device should be used for gathering information
from the surrounding scene and is not suitable for wide
scenes or for very accurate detail detection. Following this
logic, we conclude that the proposed sensor is appropriate
for applications that need a large field of view and fairly
low accuracy. High accuracy can be obtained if the sensor
is used in conjunction with a perspective camera that could
provide more precise image details for some parts of the
scene. The structured light projection can be used by both
the omnidirectional and the perspective cameras for depth
calculations.

An inherent disadvantage of the proposed sensor is that
it can recover only one line of 3D dots at one position. The
first prototype can be improved by the use of a more com-
plex structured light pattern. For instance, a set of concen-
tric circles or colour coded light patterns can increase the
vertical FOV for stereo perception as much as the overlap-
ping between the conical mirror and the parabolic mirror
fields of view. Thus, full cylindrical surfaces of 3D dots
could be recovered. However, it is not always necessary
or worthwhile to assume the costs of building the entire
3D cylinder. If only a small region is required for a partic-
ular application or the sensor moves in a well structured
environment then less computing time is necessary to build
that region.

Another shortcoming of the proposed sensor is its
range. The laser used for the prototype presented here is
not visible at distances greater than 80 cm. A stronger laser
would overcome this problem. The only concern about
increasing the laser strength is the eye safety restrictions
that might apply in the environment where the sensor
is used. Moreover, the sensor detection range can be
increased by using optical filters adapted to the laser fre-
quency and a higher resolution camera in order to optimize
the laser detection.
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