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Optimizing Plane-to-Plane Positioning Tasks
by Image-Based Visual Servoing

and Structured Light
Jordi Pagès, Christophe Collewet, François Chaumette, Member, IEEE, and Joaquim Salvi

Abstract—This paper considers the problem of positioning an
eye-in-hand system so that it becomes parallel to a planar object.
Our approach to this problem is based on linking to the camera a
structured light emitter designed to produce a suitable set of visual
features. The aim of using structured light is not only for simplifying
the image processing and allowing low-textured objects to be con-
sidered, but also for producing a control scheme with nice properties
like decoupling, convergence, and adequate camera trajectory. This
paper focuses on an image-based approach that achieves decoupling
in all the workspace, and for which the globalconvergence isensured
in perfect conditions. The behavior of the image-based approach is
shown to be partially equivalent to a 3-D visual servoing scheme, but
with a better robustness with respect to image noise. Concerning
the robustness of the approach against calibration errors, it is
demonstrated both analytically and experimentally.

Index Terms—Convergence analysis, decoupled visual features,
plane-to-plane task, structured light, visual servoing.

I. INTRODUCTION

VISUAL servoing is nowadays a widely used technique in
robot control. The goal is to fulfill robotic tasks by using

data provided by a vision sensor. Information extracted or cal-
culated from the images are used in a closed-loop control law
which leads to the execution of a task like positioning or target
tracking [1].

This paper deals with the combination of visual servoing and
structured light. For a long time, such a combination has been
seen as a powerful option [2]. However, there are few visual
servoing works exploiting structured light. The main contribu-
tion in this field is due to Motyl et al. [3], [4], who modeled the
kinematics of simple visual features obtained when projecting
laser planes onto planar objects and spheres. Andreff et al. [5]
used a laser pointer in their approach based on 3-D lines in order
to control the depth. Similarly, Krupa et al. [6] coupled a laser
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pointer to a surgical instrument in order to control the pan-tilt
and the depth of this instrument with respect to an organ, while
both the organ and the laser are viewed from a static camera.

The main interest concerning the combination of visual ser-
voing with structured light is that positioning tasks with re-
spect to nontextured or nonstructured objects become feasible,
and that the image processing is much simpler. Thus, tasks like
docking, welding, or painting large surfaces lacking structure
or texture can be faced. For example, Kondo and Tamaki [7]
equipped an underwater robot with two laser pointers and a
camera for avoiding obstacles and docking tasks. In [8], a glass-
climbing robot uses two laser pointers and a camera for aligning
the robot body with the glass surface. In both cases, the camera
and lasers are accurately calibrated for fulfilling the positioning
task by using 3-D data obtained by triangulation. In our opinion,
these tasks could be robustly performed by using a visual servo
control approach like the one presented in this paper.

Positioning tasks are still an issue in visual servoing. Indeed,
during the last years, many works have focused on approaches
for which the convergence of the system is ensured, even if the
initial position is far from the desired one [5], [9], [10]. A suit-
able design strategy attempts to decouple visual features, so that
each one is closely related to one degree of freedom (DOF). Of
course, position-based visual servoing provides such a decou-
pling [11], [12], but the problem with such methods is with the
stability of the pose-estimation algorithm with respect to image
noise [13]. Hybrid techniques are based on controlling rota-
tional DOFs in the Cartesian space while the translational ones
are controlled from image data [9], [14]. However, they require
partial pose estimation of the object at each iteration. On the
other hand, some pure image-based techniques have succeeded
to decouple rotational DOFs from translational ones near the de-
sired state [15], [16]. Concerning the global stability analysis,
for the most part, approaches for which analytical conditions
have been found are hybrid approaches, as in [5] and [9], or the
extended-2-D visual servoing [10], [17]. Usually, the global sta-
bility analysis of pure image-based techniques is too complex,
even in absence of calibration errors.

Another important research topic in image-based visual ser-
voing is to improve the camera trajectory in the Cartesian space.
It is well known that even if an exponential decrease of the vi-
sual error is achieved, it does not necessarily imply a suitable
camera trajectory [13]. This is mainly due to nonlinearities in
the interaction matrix. Important efforts have been done in order
to improve the mapping from the feature space to the camera ve-
locities [16], [18].
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In this paper, we exploit the visual features provided by a
structured light emitter based on laser pointers, in order to fulfill
the classic plane-to-plane positioning task. Such a task consists
of moving the camera linked to the robot end-effector to a pose
where its image plane is parallel to a planar object at a given
depth. For this task, three DOFs are constrained, while the re-
maining three are free. With this classical example, we demon-
strate that the performance of the control loop can be optimized,
thanks to an adequate modeling of the features obtained by using
structured light. The main contribution of the paper is the for-
mulation and analysis of an image-based approach with perfect
decoupling properties in all of the workspace, thanks to the pro-
jected light pattern. The global convergence under ideal condi-
tions is proven. Furthermore, its robustness against calibration
errors is demonstrated analytically and experimentally. In addi-
tion to this, a linear map from the task function to the camera
velocities is made, producing a suitable camera trajectory.

The paper is organized as follows. First, in Section II, the
robotic task is formally defined. Secondly, the proposed sensor
design and modeling are explained in Section III. Afterwards,
a decoupled image-based approach for executing the task is
proposed in Section IV. Then, Section V shows how to make
the image-based approach robust against calibration errors
concerning the relative camera-emitter pose. Our approach
is compared with 3-D visual servoing through simulations in
Section VI. Experiments validating the theoretical results are
presented in Section VII. Finally, conclusions are presented in
Section VIII.

II. DEFINITION AND REGULATION OF THE ROBOTIC TASK

The goal of the task is to control a robotic arm by using
an eye-in-hand configuration, so that the camera linked to the
robot end-effector becomes parallel to a planar object at a
certain desired distance . This kind of task achieves
a plane-to-plane virtual link between the camera and the ob-
ject. Let the camera kinematic screw be , where

are the translational velocities, and
are the rotational ones. Then, once the camera is

parallel to the object plane, camera motions according to ,
and do not change the plane-to-plane virtual link [19]. There-
fore, as three DOFs of the camera remain free, a secondary task
could be considered by using the redundancy framework [20].

In visual servoing, given a set of visual features stacked in
a vector , its variation due to the camera velocity is ex-
pressed by the well-known equation

(1)

where is the interaction matrix. The rank of determines
the number of DOFs that are controlled. If the rank is less
than six, the null space of determines the type of the virtual
link that can be achieved by using .

Robotic tasks can be formally described by a function which
must be regulated to zero [20]. The task function is defined as
a vector of the form

(2)

where and are, respectively, the visual features’ values at the
current and desired states, and is an combination matrix
of full rank . In the particular case of a plane-to-plane virtual
link, we have , so that with independent visual
features, it is possible to set . Thanks to the structured
light and an adequate modeling, we will have this case where

.
The regulation of the task function to can be done by using

a simple proportional control law of the form [1], [20]

(3)

with a positive gain, and the pseudoinverse of a model or
an approximation of . With this control law, the closed-loop
equation of the system is

(4)

A key issue in visual servoing is to ensure that the desired state
is reached for any initial pose.

III. A PROPOSAL FOR STRUCTURED LIGHT SENSOR

Nowadays, devices based on laser technology are the ones
which have obtained the highest degree of compactness. There-
fore, they are suitable to be used in an eye-in-hand configura-
tion. By using different types of diffracting lenses, several pat-
terns are available: from simple points and lines to more com-
plex ones like grids, dot arrays, and circles. In visual servoing,
laser planes have been suggested for positioning tasks [2]–[4].

In this paper, a structured light sensor is designed so that
whenever the camera is parallel to the object, the projected pat-
tern on the object is invariant to depth and the corresponding
image is symmetric. The first property allows the visual fea-
tures’ variation to be independent of the depth whenever the
camera is parallel to the object. The second property allows a
partially decoupled control scheme to be obtained. Such a con-
trol scheme allows avoiding singularities, as well as making the
stability analysis of the system easier [9], [15].

The structured light sensor that we propose consists of laser
pointers, since very low-cost devices are easily available. The-
oretically, three noncollinear points are enough to recover the
equation of a planar object. Consequently, we have first thought
of a sensor composed of three laser pointers. However, we have
found that better decoupling properties are obtained when using
four laser pointers. Concretely, the proposed structured light
sensor is formed by four laser pointers attached to a cross struc-
ture, as shown in Fig. 1(a).

The coupling of the camera with the structured light emitter
has been ideally modeled as follows.

• The frame {L} corresponding to the cross structure is per-
fectly aligned and has the same origin as the camera frame
{C}, see Fig. 1.

• The four lasers have the same common direction. For mod-
eling simplifications, it is set to which coincides
with the camera optical axis. The projected pattern is thus
invariant to the depth when the camera is parallel to the
object.

• All the lasers are placed at the same distance from the
laser-cross intersection. According to this and the pre-
vious modeling constraints, the image of the pattern is
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Fig. 1. System architecture. (a) Proposed structured light sensor. (b) Ideal con-
figuration of the robot manipulator, camera, and structured light sensor.

Fig. 2. Camera image when it is parallel to the object at a given distance.

symmetric whenever the camera and the object are parallel
(see Fig. 2).

Note that these assumptions have been only taken for mod-
eling issues. In real conditions, it is very difficult to perfectly
align the laser-cross with the camera frame because of the struc-
ture of the robot, or because the optical center position is not
exactly known. That is why the study of the robustness against
misalignments between the camera and the laser-cross, as done
in Sections IV and V, is a key point when analyzing the approach
presented in this paper.

A. Laser Pointer Modeling

This section presents the modeling of the interaction matrix
of an image point corresponding to a projected laser point. Such
an interaction matrix will be used later in the decoupled image-
based approach presented in Section IV. We consider a planar
object modeled according to the following equation:

(5)

with the unitary normal vector to the plane,
its distance to the origin of the camera frame, and

a point belonging to the plane. The planar object can
be also modeled by using the following minimal equation:

(6)

with

(7)

The laser pointer can be modeled according to a vectorial
equation as follows:

(8)

TABLE I
IDEAL MODEL PARAMETERS

where is an unitary vector defining the laser
direction, is the laser origin defined as the
intersection of the laser direction with the plane , and
is the distance from to .

The interaction matrix of a normalized image point
corresponding to the 3-D intersection of

a laser pointer and a planar object is [21], [22]

(9)

with

(10)

A nonminimal representation for this matrix can be found in
[3]. Note that the rank of is 1. It is due to the particular
epipolar geometry existing between the camera and the laser
pointer [5], so that always belongs a straight line.

B. Sensor Model

The sensor is composed of the camera and the structured light
emitter. The camera observes the four projected points whose
interaction matrices can be calculated from (9) and the following
model parameters:

• reference point of each laser pointer ;
• normalized image point coordinates of each

projected point;
• depth of the projected points.
Given the equation of the straight line modeling a laser

pointer (8) and the equation of the planar object (5), the
3-D coordinates of the corresponding projected point are
obtained. Afterwards, the computation of the normalized co-
ordinates in the function of , , and
is straightforward. The reference points are fixed according to
the ideal configuration of the laser-cross shown in Fig. 1. Then,
the model parameters obtained under this configuration and
expressed in the camera frame are presented in Table I.

IV. DECOUPLED IMAGE-BASED APPROACH

A first image-based approach for our structured light sensor
was proposed in [21]. However, decoupling was only reached
near the desired state, and the selected visual features were too
complex to prove the global convergence of the system, even
under ideal conditions. This section presents a set of three de-
coupled visual features extracted from the image which partially
decouples the controlled DOFs for any camera-object pose. Let
us take a look at the interaction matrices of , , and
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. They are calculated taking into account ,
the general interaction matrix in (9), the model parameters in
Table I, and the relationships in (7). Then, noting ,
we obtain

It is obvious that simple combinations of such features can lead
to a decoupled system. To do that, we have chosen the following
set of visual features:

(11)

Note that , , or are never equal to zero, except in
the degenerate case when the camera is at infinity. The interac-
tion matrix of is

(12)

which is always of rank 3 and never singular. Note that the last
two features are independent to translational motions, which al-
lows us to obtain a decoupled system. This happens because
when the laser-cross is perfectly aligned with the camera frame,
one can show from Table I that the visual features are related to
the plane parameters as follows:

(13)

Therefore, under ideal conditions, the image-based approach
based on these features behaves as a position-based technique
using , and as features. Thus, a new way to implicitly es-
timate the object pose has been found from a nonlinear combi-
nation of the image-point coordinates. This relationship allows
the interaction matrix in (12) to be expressed in terms of the vi-
sual features

(14)

This allows us to decide which model of interaction matrix
can be used in the control law (3).

• Nonconstant control law: is computed at each iteration.
Note that in this case, all the elements of the interaction
matrix can be obtained from the visual features.

• Constant control law: is the interaction matrix
evaluated at the desired state, i.e., when ,

for

(15)

Note that this matrix is independent of the depth . This in-
dicates that near the desired state, a linear map from camera
velocities to visual features velocities is made, as in [18]
and [21].
Note also that any desired orientation can be reached very
easily, thanks to (13). However, we will focus in the re-
mainder of the paper on the case of the plane-to-plane po-
sitioning task.

In the following sections, the analytic behavior of both con-
trol laws is analyzed for the ideal case, i.e., perfect alignment of
the laser-cross and perfect camera calibration, and then for the
case when the camera and the laser-cross are not aligned.

A. Analytic Behavior of the Nonconstant Control Law

The analytic behavior of the nonconstant control law under
ideal conditions is straightforward. Note that in that case, a per-
fect estimation is available, so that the closed-loop
equation of the system (4) becomes

(16)

Therefore, a pure exponential decrease to of the task function
is achieved. Therefore, the system always converges to the de-
sired position from any starting state.

B. Analytic Behavior of the Constant Control Law

Thanks to the linear and decoupled form of , it is also pos-
sible to demonstrate the global convergence of the system when
using the constant control law. In addition to this, it is possible
to obtain the equations describing the camera velocities and tra-
jectory.

1) Global Convergence: When using in the control law,
the product of matrices involved in (4) can be
expressed as

(17)

using (14) and noting that , , and .
The determinant of is , which is always nonnull.
Therefore, , yielding that the equilibrium point

is unique. Furthermore, using (13), it is obvious to show
that if and only if the object is parallel to the image plane

and at the desired distance .
Thanks to the decoupled form of the interaction matrix (14),

we can solve the differential system in (4), which can be written
using (17) as

(18)
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(19)

(20)

The following solutions are obtained after some tedious de-
velopments [22]:

(21)

(22)

(23)

with

(24)

(25)

(26)

Let us start by demonstrating the global convergence of the ro-
tational subsystem defined by (19) and (20). The subsystem
formed by and globally converges to the desired state
if

(27)

Both functions clearly tend to zero when time approaches in-
finity, since . Moreover, it is easy to show
that and are strictly monotonic functions by taking
a look at their first derivative

(28)

with . Note that the functions and are
monotonic, since the sign of their derivatives never changes,
and it only depends on the initial conditions. Furthermore, they
are strictly monotonic, since their derivative only zeroes when

or when the function at is already zero. Therefore,
for any initial condition, and always tend towards
zero strictly monotonically.

The global convergence of the translational subsystem de-
pends on the behavior of . It is easy to show that con-
verges to zero for any initial state, since

(29)

In [22], it has been shown that either is always mono-
tonic, or it has a unique extremum before converging monoton-
ically to zero. Furthermore, sufficient conditions are given so
that it is possible to check, from the initial state of the system
and the desired depth , whether either will be mono-
tonic during all the servoing or if it will have a peak.

2) Camera Trajectory: The control law based on maps the
task function components , and to the camera
velocities as follows:

(30)

so that using the pseudoinverse of (15), we obtain

(31)

Note that and are strictly monotonic, while
is monotonic under the same conditions as .

Then, we can express the coordinates of a fixed point in the
camera frame at any instant of time when the camera moves
according to , by using the well-known kinematic equation

(32)

Since the constant control law only generates velocities for
, and , (32) can be rewritten as

(33)

where , and are given by (31). If we choose as
a fixed point the initial position of the camera ,
the system of differential equations can be solved, obtaining

(34)

with

(35)

The expressions of and have the same form. The only
difference is that depends on , while depends
on . The study of the derivative of , and similarly
for , shows that both and are monotonic func-
tions [22].

Concerning , its derivative can change sign, so its mono-
tonicity is not ensured. Indeed, will be monotonic under
the same conditions as is monotonic. When is not
monotonic, a unique peak will appear also in .

In summary, we can state that a complete analytic model de-
scribing the behavior of the ideal system when using the con-
stant control law has been obtained.

C. Stability in Presence of Laser-Cross Misalignment

This section determines if the robotic task can be achieved
when the camera and the laser-cross are not aligned, as assumed
in the perfect model. As shown in [22], this type of calibration
error is more important than calibration errors in the camera in-
trinsic parameters. Concretely, in [22], the stability against er-
rors in the intrinsic parameters is demonstrated. The laser-cross
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Fig. 3. Model of misalignment between the camera and the laser-cross.

TABLE II
MODEL PARAMETERS UNDER A TRANSLATIONAL MISALIGNMENT

misalignment is modeled according to a homogeneous frame
transformation matrix of the form

(36)

which transforms points from the structured light sensor frame
to points in the camera frame (see Fig. 3). This transformation
is used to calculate the actual lasers’ orientation and their
reference points in the camera frame. Afterwards, the nor-
malized coordinates of the projected points, taking into account
the actual pose of the laser-cross, can be obtained. The model
parameters , and of every laser pointer under different
particular cases of are given in [22].

Let be the measured task function when the laser-cross is
not aligned with the camera. Then, denotes the interaction
matrix corresponding to the measured visual features so that
it takes into account the laser-cross misalignment. The closed-
loop equation of the system can be noted as

(37)

Analyzing the global convergence of this system is too difficult,
because the interaction matrix is no longer partially decou-
pled. An alternative consists of studying the local asymptotic
stability. This can be done by linearizing the equation around
the desired state so that and .
We thus consider

(38)

where is given by (15). The system is said to be locally
asymptotically stable if and only if the eigenvalues of

have all positive real part. Note that this holds for both
the constant and the nonconstant control law, since they are
equivalent around the desired state.

Let us study the particular case when the laser-cross is
displaced from the camera origin so that and

. In this case, the model parameters are the
ones shown in Table II.

The interaction matrix is then

(39)

and the product of matrices in the linearized
closed-loop equation of the system is

(40)

whose eigenvalues are

(41)

so that, according to the demonstration given in [22], they are
positive when

(42)

Note that the parameter plays an important role in the stability.
Concretely, it is necessary to maximize this parameter in order
to enlarge the stability domain.

If the local asymptotic stability analysis is made for other
types of misalignments modeled by (36), additional constraints
are found [22]. Therefore, the image-based approach is quite
sensitive to laser-cross misalignment, which can cause the
system to diverge in presence of a large misalignment. In the
following section, a way to enlarge the stability domain of the
image-based approach is presented.

V. MAKING FEATURES ROBUST AGAINST

LASER-CROSS MISALIGNMENT

In this section, we present a simple method to enlarge the
robustness domain of the features against laser-cross misalign-
ment. The goal is to define a corrected set which is analyt-
ically and experimentally robust against laser-cross misalign-
ment. Fig. 4 shows the image-point distribution in the desired
state under different types of misalignment (the four lasers have
still the same relative orientation). As can be seen in Fig. 5(a),
a complete misalignment of the laser-cross induces the polygon
enclosing the four points in the desired image to appear mis-
aligned and translated.

The idea consists of defining a planar transformation that
minimizes the misalignment observed in the image. This image
transformation is constrained as follows: in the absence of laser-
cross misalignment, the corrected set of visual features must
be equal to the uncorrected one . Therefore, in the ideal case,
the results concerning the global convergence and camera tra-
jectory concerning will also hold for .

First of all, we eliminate the misalignment exhibited by the
polygon in Fig. 4(d), which is produced when the laser-cross
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Fig. 4. Effects of laser-cross misalignment in the desired image. (a) Ideal image. (b) The laser-cross is horizontally displaced or rotated around Y . (c) The
laser-cross is vertically displaced or rotated around X . (d) Laser-cross rotated around Z .

Fig. 5. Image points correction. (a) Desired image under a general misalign-
ment of the laser-cross. (b) Image points after applying the transformationT .
(c) Image points after transformation T and translation �x .

is rotated around the optical axis. Let us define the following
unitary vectors:

(43)

Then, a simple 2-D transformation matrix of the form

(44)

is defined so that aligns the unitary vector corresponding to
with the image axis and the unitary vector corre-

sponding to with the image axis . Let us note

(45)

The result of applying to the misaligned image points of
Fig. 5(a) is shown in Fig. 5(b). Note that under ideal conditions,

is equal to the identity according to the normalized coordi-
nates in Table I.

Then, it only remains to define a translation vector which
is able to center the polygon in the image [see Fig. 5(c)], and
which is for any object pose when there is no laser-cross mis-
alignment. We propose to use the following vector:

(46)

Then, the corrected image points are obtained as follows:

(47)

so that the corrected set of visual features is, therefore

(48)

The global convergence of the ideal model is also ensured
when using . In the following sections, the improvement in
terms of robustness of , with respect to laser-cross misalign-
ment, is proved analytically. Furthermore, the corrected visual
features avoid a potential problem of the uncorrected set . Since
the definition of involves the computation of , , ,
and , a division by zero may be reached due to the laser-
cross misalignment. Note that this problem no longer appears
in , since the corrected image points are symmetrically dis-
tributed around the image center.

A. Stability in Presence of Laser-Cross Misalignment

In this section, we analyze the stability of the system based
on in the presence of laser-cross misalignment. Even if the
system has been stated to be very robust against this type of cal-
ibration error through simulations [22], the global convergence
has not been proven, since the differential system is too com-
plex. That is why the local asymptotic stability against different
types of misalignment is presented as an analytic way to show
the improvement in robustness.

1) Misalignment Consisting of a Translation: Let us first an-
alyze the case when the laser-cross is aligned with the camera
frame, but it is displaced from the camera origin, according to

. The current and desired normalized coor-
dinates of the laser points are obtained from Table II. The 2-D
transformation components defined in (44) and in (46) are

(49)

Note that the laser-cross displacement is captured by . Similar
to Section IV-C, the product of matrices in the linearized closed-
loop equation of the system must be calculated.
After some developments, we obtain

(50)

whose eigenvalues are the elements on the diagonal which are
all equal to one. Therefore, the local asymptotic stability of the
system in front of a displacement of the laser-cross is always
ensured when using . Note that the restriction imposed by the
parameter over the local asymptotic stability using has been
removed.

2) Misalignment Consisting of Individual Rotations: We
now present the local asymptotic stability analysis when the
laser-cross is centered in the camera origin, i.e.,
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, but it is rotated around one camera axis. Let us first
consider a rotation around the axis. The model parameters
under this type of misalignment can be found in [22]. In this
case, the image transformation becomes

(51)

so that the product of matrices in the closed-loop equation of the
system is

(52)

Note that the eigenvalues are again the elements of the diagonal,
and they are all positive if , which imposes
that the object must be in front of the camera.

In the case when the laser-cross is rotated around the
camera axis by an angle , an equivalent result is obtained.

Finally, when the laser-cross is rotated by an angle around
the optical axis of the camera, the image transformation is de-
fined as [22]

(53)

obtaining the following matrix in the linearized closed-loop
equation of the system:

(54)

whose eigenvalues are

(55)

Note that the real part of and is , so that, in
order to ensure their positiveness, it is only necessary that

.
In conclusion, the local asymptotic stability domain of the

corrected features is practically unrestricted. Therefore, the
improvement with respect to the uncorrected version is analyt-
ically proven. Furthermore, the local asymptotic stability of
in the presence of camera-intrinsic errors is also ensured [22].

VI. COMPARING 2-D AND 3-D VISUAL SERVOING

As shown in Section IV, under ideal conditions, the decou-
pled visual features proposed in this paper are equivalent to the
object plane parameters , , and in (6). A comparison of our
method with a position-based approach can, thus, be performed.
In this case, the plane parameters are reconstructed and directly
used in the control loop. Let us denote the signal vector com-
posed of the reconstructed 3-D parameters as

(56)

so that the desired state vector is and the inter-
action matrix corresponding to is [see (12)]

(57)

A simple way to reconstruct the 3-D parameters of the plane
consists of using triangulation. However, this technique needs
to accurately know the relative position of the lasers and the
camera. Otherwise, bad reconstruction results are obtained. A
better solution consists of defining the plane reconstruction
problem in a nonlinear least-squares sense, taking advantage of
the data provided by the current and desired images. As shown
in [22], the following system of nonlinear equations can be
built for each laser point:

(58)

where and express the lasers’
direction. Note that there are eight equations for five unknowns

(59)

Therefore, a possible misalignment between the laser-cross and
the camera is taken into account in the equations. The system
can be solved with an iterative algorithm like Gauss–Newton or
Levenberg–Marquardt.

The performance of this position-based approach and the de-
coupled image-based approach have been compared through
simulations. The following control law for the position-based
approach has been used:

(60)

being the interaction matrix in (57) estimated at each it-
eration using the reconstructed plane parameters , and

.
Concerning the decoupled image-based approach, the non-

constant control law has been used

(61)

being the interaction matrix in (12) estimated at each iter-
ation from the corrected visual features in (48), and

.
A simulation example including large laser-cross misalign-

ment and image noise is now presented. In the simulation, the
laser-cross is displaced from the camera origin according to the
translation vector cm. Furthermore, the
laser-cross frame is rotated around , around , and

around . At each iteration of the simulation, Gaussian
noise with a standard deviation of two pixels has been added
to the image. The goal is to position the camera parallel to the
object at a distance 60 cm. The initial position of the
camera is defined so that it is at a distance of 105 cm to the ob-
ject, and their relative orientation is determined by
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Fig. 6. Simulation results comparing the 3-D and 2-D approaches. First row:
3-D visual servoing. Second row: 2-D visual servoing. (a), (c) Task function
versus time (in s). (b), (d) Camera kinematic screw versus time (m/s and rad/s).

and , being the angle between and the projec-
tion of to the plane , and the angle between
and the projection of to the plane .

The 3-D approach has been implemented by using the iter-
ative Gauss–Newton algorithm in order to solve the nonlinear
system of equations in (58) at each iteration. In the initial state
of the simulation, the guess solution given to the iterative algo-
rithm is which corresponds to the desired
state and a perfect alignment of the laser-cross. During the re-
mainder of the simulation, the solution provided by the previous
state is given as an initial guess. Such a strategy has shown the
best performance. The results obtained by the 3-D approach are
plotted in the first row of Fig. 6. As can be seen, the task is
realized, and therefore, the reconstruction results obtained by
the proposed algorithm are satisfactory. However, we can ob-
serve that near the desired state, some eventual peaks appear in
both the task function and the camera kinematic screw. Such
peaks correspond to states where the nonlinear least-squares
algorithm has not succeeded in converging to the right recon-
struction. That confirms that this approach is sensitive to image
noise, and that it is subject to falling into a local minimum. Let
us note that if a simple triangulation algorithm is used to esti-
mate the 3-D parameters , , and , the results are worse,
since a very unstable behavior is obtained (not shown here). Fur-
thermore, another drawback of this technique is that, like in all
position-based approaches, the stability cannot be analytically
proven, as it depends on the convergence of the reconstruction
algorithm [11].

The second row of Fig. 6 shows the simulation results when
using the image-based approach in the same conditions. As can
be seen, the camera kinematic screw is similar to the one from
the 3-D approach, but without any peak. Furthermore, as the
visual features are directly computed from the image and not
using an iterative algorithm, it is more suitable for a real-time
robot platform.

VII. EXPERIMENTAL RESULTS

In order to validate the theoretical results presented in this
paper, experiments with an eye-in-hand robot have been done.
The experimental setup consists of a 6-DOF robot arm with a
camera with focal length 8.5 mm fixed to its end-effector. The
images are digitized at 782 582 pixels, and the pixel dimen-
sions are about m m. The normalized image coor-
dinates have been calculated from the pixel coordinates

by using the camera intrinsic parameters, as follows:

(62)

where is the focal length (in meters), is the principal
point (in pixels), and are the conversion factors from
meters to pixels. A rough approximation of the camera-intrinsic
parameters has been used. In [22], the local asymptotic stability
analysis shows that a coarse camera calibration does not affect
the approach. This issue is here confirmed under real conditions.

The laser-cross has been built so that 15 cm. Such a pa-
rameter has been chosen taking into account the robot struc-
ture, so that the laser-cross can be approximately positioned ac-
cording to the ideal model, i.e., aligned with the camera frame.
Indeed, this parameter and the camera-intrinsic parameters con-
strain the minimum distance of the virtual link. In this con-
figuration, the minimum to have all the laser points in the
image bounds is about 0.5 m. If the real task requires smaller po-
sitioning distances, either should be smaller, or another lens
with smaller focal distance should be used.

The visual features corresponding to the desired state are cal-
culated through the following learning stage. The camera is po-
sitioned with respect to a planar target containing structured
landmarks by means of classic 2-D visual servoing. In our ex-
periments, four points forming a square of known sides were
used. Once the desired position is reached, the lasers are turned
on, obtaining the desired image point distribution from which
the desired visual features are calculated. This target plane is
only used once for obtaining the desired point distribution. Af-
terwards, the experiments are made with another planar object
containing no visual marks.

A. Laser-Cross Approximately Aligned With the Camera

In the first experiment, the laser-cross has been approximately
aligned with the camera. The direction of the four lasers is not
exactly equal. Therefore, the robustness of the approach with
respect to this kind of modeling error is also tested. The desired
position is defined by cm, and the initial position is
as in the simulation defined by cm, ,
and .

The image corresponding to the initial and the desired states
is shown in Fig. 7(a). As can be seen in Fig. 7(b), the laser points
do not exactly lie on the image axis, and their traces from the
initial to the desired position, which shows us the epipolar line
of each laser, are not perfectly parallel to the axis. Furthermore,
it is not possible to ensure that all the four lasers have the same
exact orientation, which causes the epipolar lines to not intersect
at a unique point.
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Fig. 7. Experiment with a coarse alignment. (a) Initial image (solid dots) in-
cluding image axis and the desired position of each laser point (circles). (b) Final
image with the trace of each laser point from its initial position to its final posi-
tion. Nonconstant control law: (c) Task function versus time (in s). (d) Camera
kinematic screw (in m/s and rad/s). Constant control law: (e) Task function
versus time (in s). (f) Camera kinematic screw (in m/s and rad/s).

The results obtained in the experiment using a nonconstant
matrix in the control law are plotted in Fig. 7(c) and (d). Note
that even if the task function converges nicely to zero, the
camera velocities are strongly nonmonotonic. The results of the
experiment when using the constant control law are shown in
Fig. 7(e) and (f). As can be seen, the monotonicity of both the
task function and the camera velocities is preserved, as in the
ideal case predicted by the analytic model.

B. Large Camera and Laser-Cross Misalignment

The same experiment has been repeated by introducing a
large misalignment between the laser-cross and the camera.
Concretely, the laser-cross has been displaced from the camera
origin about 6 cm in the sense of the axis of the camera
frame. Furthermore, it has been rotated about 7 around the
axis, and smaller rotations have been done around the and
axes. The initial image and the desired laser point distribution
obtained during the learning stage are shown in Fig. 8(a). The
large misalignment between the camera and the laser-cross is
clearly observed in laser traces shown in Fig. 8(b). The image
correction presented in Section V produces the laser points
traces shown in Fig. 8(c). As can be seen, the corrected image
minimizes with success the misalignment of the laser traces
with respect to the image axis.

Fig. 8(d) and (e) presents the results when using and the
constant control law. As can be seen, even with such a large

Fig. 8. Experiment with a large misalignment. (a) Initial image (solid dots) in-
cluding image axis and the desired position of each laser point (circles). (b) Final
image with the trace of each laser point from its initial position to its final posi-
tion. (c) Corrected image from the initial to the desired position. Constant con-
trol law: (d) Task function versus time (in s). (e) Camera kinematic screw (m/s
and rad/s).

misalignment, the approach still obtains almost a monotonic de-
crease in the task function, as well as in the camera velocities.
Therefore, the robustness of this approach against laser-cross
misalignment expected from the analytic results is confirmed.
The nonconstant control law has also shown good performance.
However, for this given example, the servo control has been
stopped, since the robot has reached a joint limit. This is due
to the nonmonotonic nature of the camera velocities generated
by the control law, as observed in the previous experiment in
Fig. 7(d).

VIII. CONCLUSION

This paper has presented a solution to the classic plane-to-
plane positioning task when visual servoing and structured light
are combined. The projection of structured light not only simpli-
fies the image processing, but also enables dealing with low-tex-
tured objects. A structured light sensor composed of four laser
pointers for eye-in-hand systems has been proposed.

An image-based approach decoupling the rotational part from
the translational one in the whole workspace has been proposed.
The new approach is similar to a position-based approach, but
using only image data. Therefore, the new approach does not
require reconstructing the object plane by using triangulation or
a nonlinear minimization algorithm. The interaction matrix of
the image-based approach can be also expressed in terms of the
2-D visual features. This allows two control laws to be used.
The first is a nonconstant control law, where the online estima-
tion of the matrix is used. The global convergence of the system
in the absence of calibration errors is ensured. A constant con-
trol law based on the interaction matrix evaluated at the desired
state can also be used. In this case, not only has the global con-
vergence been proven under ideal conditions, but also, the equa-
tions describing the camera velocities and the camera trajectory
have been obtained. Furthermore, the robustness, with respect
to misalignment between the camera and the lasers, has been
improved by defining an image transformation.
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Experimental results have been carried out in order to prove
the validity of our approach. Experiments with small and large
calibration errors have been considered. The results show that
both control laws are efficient and robust, with respect to mod-
eling errors.

The high level of decoupling achieved in this work is due
to the fact that the points are projected with structured light.
Such decoupling has still not been reached with visual features
extracted from the object itself. Future work will concern the
control of additional DOFs by taking into account marks. In
addition, we want to extend this work to nonplanar objects.
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