

www.vdi.de

© Copyright VDI Verlag GmbH
Düsseldorf 2006

 Subject: Control architectures

 Control architectures

Conference: 1956/2006

 Subject Authors Date Conf./Page A

Method transfer between applied robotics and general motion

Abstract
Joachim Strobel, KUKA
Roboter GmbH, Augsburg
(D)

15.05.2006 1956/0017 33

A versatile modular robot control architecture for sensor
integrated assembly

Abstract

Jochen Maaß, Thomas
Reisinger, Jürgen
Hesselbach, Walter
Schumacher, Technical
University of Braunschweig
(D)

15.05.2006 1956/0018 33

Robot integrated PLC-based process control for complex
path applications

Abstract

Alexander Meißner, Dürr
Systems GmbH,
Bietigheim-Bissingen (D)

15.05.2006 1956/0019 33

How MAS support distributed robot control

Abstract
Bianca Innocenti, Beatriz
López, Joaquim Salvi,
University of Girona (E)

15.05.2006 1956/0020 33

HOW MAS SUPPORT DISTRIBUTED ROBOT CONTROL

Bianca Innocenti
IIiA- University of Girona

Spain

Beatriz López
IIiA- University of Girona

Spain

Joaquim Salvi
IIiA- University of Girona

Spain

Speaker: Bianca Innocenti, Institute of Informatics and Application (IIiA), U. of Girona, Girona, E-17071 Spain.

 +34 972 41 88 84, bianca@eia.udg.es

Topic: Session A4: Control architectures
Keywords: multi-agent system, distributed control, mobile robotics, coordination mechanisms

Abstract

One of the current challenges of robotics is to make completely autonomous robots capable of modifying their
performance in complex and changing environments. However, it is technologically difficult and potentially dangerous to
build complex systems that are controlled in a completely centralized way. So, distributed systems should be used to
develop the robot control architecture, in order to provide mechanisms to distribute, coordinate, adapt and extend the
control system of the robots. In this paper we present a reactive multi-agent architecture to control a mobile robot. In this
architecture, agents have fixed roles and they interact in order to achieve goals. One aspect of the architecture is that agents
negotiate in order to take control of the robot and, hence, there is not a unique agent that implements action selection
mechanisms. We have implemented this architecture and tested it on a real robot, a Pioneer 2 DX of ActivMedia Robotics.

1. Introduction

According to the roadmap of the PLANET network [1], the ultimate goal for robotic systems is to obtain a robot capable of
improving their performance by autonomously adapting their control software to different tasks and environments, as well
as by learning to perform novel tasks in an appropriate way. That means completely autonomous robots capable of
modifying their performance in complex and changing environments. Artificial Intelligence provides learning and
adaptation methods, as well as decision making techniques to achieve these control properties. However, it is
technologically difficult and potentially dangerous to build complex systems that are controlled in a completely centralized
way [2].

Recent advances in Multi-Agent Systems have inspired researchers to advance in implementing distributed architectures.
There are many definitions of software agents, for example Murphy's definition [6]: A software agent is an autonomous
program which can interact with and adapt to their world. An agent is self-contained, independent, situated and has self-
awareness.

This is a global definition and many things can be thought as agents and certainly it does not involve "intelligence", so we
prefer the definition of intelligent agent that is, an agent that is capable of flexible autonomous action in order to meet its
design objectives, where flexibility means three things [7]-[9]:

• Reactivity: intelligent agents are able to perceive their environment, and respond in a timely fashion to changes
that occur in it in order to satisfy their design objectives. A reactive system is one that maintains an ongoing
interaction with environment, and responds to changes that occur in it (in time for the response to be useful);

• Pro-activeness: intelligent agents are able to exhibit goal-directed behaviour by taking the initiative in order to

satisfy their design objectives;

• Social ability: intelligent agents are capable of interacting with other agents (and possibly humans) in order to
satisfy their design objectives. Social ability is the ability to interact with other agents (and possibly humans) via
some kind of agent-communication language, and perhaps cooperate with others.

When problems become more complex, realistic and large-scaled, they are beyond the capabilities of a single agent. The
only reasonable way to attack this type of problems is to create an organization of agents in which each agent is highly
specialized at solving a particular problem aspect. This organization is known as Multi-Agent System. Formally, a Multi-
Agent System is a distributed system that contains a collection of agents that work together in order to solve problems

[10], [7], [12]. Agents in MAS interact through communication. Therefore they provide more flexibility to the
development of robot architectures. Regarding communication constraints due to agent interaction for coordination, recent
works on real-time multi-agent systems have proved the responsiveness of these kinds of architectures to their
environments [25].

Regarding robotics, most of the applications of MAS have been applied to the coordination of teams of robots (1 robot = 1
agent) [12]-[15]. But there are less examples in the application of MAS to implement distributed control system for a
single robot (1 robot = n agents) [16]-[21]. In this latter case agents are used to maintain "independency" among the
different behaviours of the robot, usually grouped in three main layers: reactive, intermediate and deliberative, conforming
a hybrid architecture.

The present work develops a reactive multi-agent architecture. As we have designed the architecture as an organization,
we have stated some different tasks to perform in the community, as for example, sensing, so agents have been assigned
different roles regarding their responsibility on the tasks. These roles fix interactions and relationships among agents,
making them to cooperate to achieve goals (as for example surveillance) and to compete for the use of the different
resources (as for example the robot motors).

This paper is organized as follows. Next Section presents the related work. Section 3 describes the proposed architecture
and Section 4 emphasises on the coordination mechanism developed. Empirical results are shown in Section 5. Finally,
conclusions and future work are drawn in Section 6.

2. Related Work

Most robot architectures found in the literature rely on hybrid approaches that usually have three main layers: the reactive,
the intermediate and the deliberative layers. Commonly, reactive layer contains a set of behaviours that are combined in
order to give a rapid response over unexpected events while planning a task, or a mission, or a path is executed
independently in the deliberative level. The intermediate layer usually is used as an interface between the reactive and the
deliberative layers. According to these three layers, hybrid architectures are usually implemented as modules with a
hierarchical organization, having lower level agents priority over higher level agents.

In this line, Rosenblatt's work was one of the pioneers of building an architecture composed of distributed, independent,
asynchronous decision-making behaviours that are coordinated by a central arbiter [3]. The overall behaviour of the
system is rational, coherent and goal-oriented while preserving real-time responsiveness to its immediate physical
environment. The advantages of this architecture are the following: they facilitate their development and lead to the
evolutionary creation of robust systems of incrementally greater capabilities [3]. Many more architectures have now been
developed, as for example O2CA2 [4], in which the coordination is based on a voting scheme. In a more advanced work
[5], several architectures are analyzed, and the advantages of hierarchical architectures are pointed out. In these
architectures, each behaviour is implemented by a module with communication abilities.

Advances in Multi-Agent Systems (MAS) have inspired researchers to go one abstract level further in implementing the
architectures, in which modules are replaced by agents [19], [20]. Using agents to deploy hybrid architectures instead of
modules, the different layers can provide alternative actions at a given time (go, stop); even at the same layer, several
agents can suggest different actions (go, avoid obstacles). So the key issue in MAS is the coordination mechanism that
arbitrates and selects the single action to be performed at a given time according to the possible set of actions provided by
different agents.

There are several architectures built as multi-agent systems to control a single robot. The MAS proposed by [17] has two
kinds of agents at the reactive level: elementary agents that have basic abilities, and high-level agents responsible for the
integration and coordination of several elementary agents.

In [20], there is a specific agent that based on an auction process, determines which action must be carried out. This
architecture differs from typical hybrid ones in that all the components of the architecture coordinate among them
obtaining a non hierarchical structure. In this case, bids represent the urgency of the system on having a service engaged.
However final action decision depends on a centralized agent.

In [19] the definition of the MAS system control architecture is based on the organization theory and the strategic
alliances. In this work, the MAS is considered as an organization and the robot architecture is designed as a joint of
specialized social entities that interact and cooperate among each other in order to achieve common or private goals. The
structure of the organization defines the social roles of various components, their responsibilities for tasks and goals, the

way in which the resources are allocated and the strategies that must be adopted. This structure defines how to coordinate
the activities of various actors and how they depend on each other. There is no negotiation to decide upon the action to
perform, but all is predefined.

Other interesting work related to the engineering of complex adaptive agents is [5], which proposes a behavioural-oriented
design methodology in order to build complex systems. The author, however, implements a single agent with objects,
because the author believes that objects presumably operate more quickly. Even that some communication and
coordination issues can waste time, recent works as [25] corroborate that negotiation among different agents can be
achieved in real-time.

Our architecture pretends to take advantages of some of the above ideas. Particularly, we propose a non-hierarchical
architecture, conceived as an organization in which agents have their own roles. As it is a Multi-agent system we give
flexibility to the architecture being easier to add agents to the community and to distribute the system in different
computers. Unlike the presented architectures, ours distributes coordination: coordination is performed as a negotiation
among agents.

3. Reactive MAS Architecture

The reactive multi-agent architecture compounds several specific agents related to different aspects of reactive control:
perception agents, actuator agents, and behavioural agents. Perception agents obtain information about the environment
and about the internal conditions of the robot; actuator agents are in charge of controlling the linear and angular speed of
the robot interacting directly with motors; and behavioural agents carry out specific actions, as avoiding obstacles.

Figure 1: MAS reactive architecture

There is a perception agent per each sensor present on the robot. These agents extract information about the environment
and the robot and process it in order to communicate it, when required, in an appropriate way to other agents in the
community.

There is a behavioural agent per each specific behaviour to perform. Based on the information received from perception
agents, they calculate the linear and angular speed the robot must have in order to achieve the desired action. As they
cannot send the desired linear and angular speeds all together to the actuator agents, some coordination must be done.
Instead of centralizing the behaviour selection in a coordinator agent (to select the winning action as in [20]), behavioural
agents negotiate to take control.

Figure 1 shows the complete multi-agent architecture used to control the robot. As the robot has encoders, ultrasonic
sensors and a battery charge sensor, there are three perception agents: the encoder agent, the sonar agent and the battery
sensor agent. More agents can be added in case of addition of new sensors. Regarding to behavioural agents, we have
defined the goto agent, the avoid agent, the goThrough agent and the battery charge agent. Analogously, it is possible to
introduce more behaviours if required. There are two additional agents in this architecture that are the client and the robot
agents. We explain next, the roles of the different agents that form the reactive architecture. We begin the explanation with

the robot agent because it represents the physical constraints of our robot that determines some design decisions in our
MAS architecture.

3.1 Robot Agent

The robot agent is the interface between the multi-agent architecture and the robot micro-controller. He represents the real
robot in the architecture. The commercial robot Pioneer 2DX of ActivMedia Robotics has two driving wheels, motorized
with DC motors, fixed at the front of the robot's body, and a free wheel at the back. Each front wheel has an encoder
sensor attached. There are also 8 ultrasonic sensors placed as a ring in the front of the robot. The dynamic model and a
detailed description of the robot can be found in [22]. It is also possible to measure the battery charge during operation.
The robot has a micro-controller and a PC-104 on-board. The micro-controller obtains the sensor readings and controls the
motors. Inside, there are two controllers, a linear speed controller and an angular speed controller. Communication with
the PC-104 (where the MAS architecture is running) is made via RS-232. The commercial library ARIA from ActivMedia
is used to communicate the local server (micro-controller) to the agents.

The micro-controller acts as a server and only allows one client connection at a time. Thus, it provides the information of
the different sensors and actuators. It computes the position and heading of the robot in local coordinates, reads all the
ranges provided by sonars and gives the battery charge when required.

Particularly, the robot agent communicates, each 100 ms, with the robot and gets the actual position, sonar readings and
battery charge, and it distribute this information to the different sensor agents when required. It also gets the desired
angular and linear speed from behavioural agents and sends them to the micro-controller.

3.2 Encoder Agent

This agent is responsible of getting the position and heading of the robot in local coordinates, related to a frame attached to
the centre of mass of the robot and translate them to global coordinates, in an earth fixed frame.

It gets the position and heading from the robot agent, as the latter is the only agent that can interact with the micro-
controller.

3.3 Sonar Agent

This agent is in charge of creating a local map to locate obstacles based on the reading of the 8 ultrasonic sensors. It gets
the different measurements from the robot agent and treats them in order to find the obstacles in the path of the robot. It
also has to update this map as the robot moves on.

To create the map, a zone around the robot is divided in cells as shown in figure 2. Cells are obtained dividing the circle
around the robot in 18 circular sectors that represents the ultrasonic sensor visibility zones and the circular sectors in 10
parts representing different distances from the robot.

This organization in cells is useful for dealing with noise and fictitious obstacles detected by ultrasonic sensors. If an
object is detected in a cell several times, then the probability associated to the cell increments, indicating the presence of
the object. So, each cell is labelled by a probability regarding the fact that an obstacle has been detected inside.
Probabilities are incremented when an obstacle is sensed in the cell and decremented otherwise. In this way, we introduce
some "memory" to sensors.

At each sample time, this agent first applies the movement to the map (to move objects according to the robot motion),
then update the sonar information and set it to the map. After that, and using probabilities, finds the closest point (centre of
the cell where an object has been detected) to the robot. This point must be eluded, so its coordinates are sent to the avoid
agent in order to be used for speed calculation.

Figure 2: Local map

3.4 Battery Sensor Agent

It obtains the battery charge level from the robot, asking this parameter to the robot agent. It is necessary to check this
value time to time because the robot should recharge batteries when its voltages are around 10V. This is due to the fact that
batteries can be permanently damaged when this level goes below this value. Therefore this agent senses the battery level
at a given frequency. The frequency is dynamically increased as the level value tends to 10V.

3.5 Goto Agent

This agent is responsible of driving the robot to the goal position, obtained from the client agent, based on the information
provided by the encoder agent.

Given a desired position (x, y) and an orientation θ, and according to the actual position and heading, this agent calculates
the linear and angular speeds to drive the robot to the target position (goal). There are two separate PID controllers that
obtain these speeds depending on distance and heading to the desired position, which are combined following a fuzzy
approach (see [26] for further details).

In addition, this agent calculates a parameter that we call utility. This parameter is computed based on the distance left to
the goal (dl) in millimetres:

βα +⋅= ldpGoto (1)
Being:

HL uu
pp

−
−

= minmaxα
HL

HL

uu
pupu

−
⋅−⋅

= maxminβ (2)

Where pmax and pmin are the maximum and minimum value respectively of the pGoto parameter (pmin ≤ pGoto ≤ pmax), and
uL and uH are distance thresholds.

Figure 3 shows the shape of pGoto as well as the parameters used to calculate α and β. pmin and pmax allow the
modification of the overall relevance of the behaviour, while uL and uH are set according to the loss of the degree of
relevance.

Once the pGoto utility is calculated, the goto agent sends this parameter to the avoid and to the goThrough agents in order
to coordinate their behaviours.

Figure 3: Urgency parameter of goto agent

3.6 Avoid Agent

This agent is responsible of avoiding the obstacles that could be in the robot path to the goal. He asks the sonar agent for
the closest obstacle point and calculates the suitable linear and angular speeds for avoiding collisions with the object. In
order to calculate the speeds, the agent has three different zones around the object: the caution zone, the danger zone and
the stop zone. When the robot is in the caution zone (see figure 4) the avoid agent calculates a lower linear speed, because
it’s far from the object and there is a low probability of colliding. In the danger zone, the avoid agent changes the linear
speed as well as the angular speed, heading the robot out of this zone. If the robot enters in the stop zone, the avoid agent
stops the linear movement and rotates the robot 180 degrees. These zones vary according with the kind of environment the
robot is moving. If there are plenty of objects the zones are smaller than if the surroundings are wide. Moreover maximum
speeds can be greater in the second case.

Figure 4: Zones around the obstacle point

Once the linear and angular speed are computed, the avoid agent computes the utility parameter. This parameter is
calculated in function to the distance left to the obstacle (pd) and the heading of the robot respect to the obstacle (ph):

dh pppAvoid ⋅= (3)

Both, ph and pd are defined in the [0,1] interval and computed according to the following expression:

11 βα +⋅= oh hp

22 βα +⋅= od dp (4)

Where αi and βi with i=1,2 are defined as in (2), being in this case pmin and pmax the minimum and maximum value of the ph
value (phmin≤ph≤phmax) and the pd value (pdmin≤pd≤pdmax) respectively; do represents the distance left to the object and ho is

the compounding angle as shown in figure 5. The pAvoid utility parameter is sent to the goto agent and to the goThrough
agent, to coordinate their behaviours.

Figure 5: Angle (ho) and distance (do) involved in the pAvoid calculation

3.7 GoThrough Agent

Based on the information provided by the sonar agents, the goThrough agent calculates the linear and the angular speeds of
the robot in order to drive the robot through narrow places like doors.

The utility function of the goThrough agent is computed considering the distance to the door in a similar way to the goto
agent (equation (1)). The pGoThrough utility value is sent to the goto and to the avoid agents in order to coordinate their
behaviours.

3.8 Client Agent

This agent is the user interface of the architecture and allows commanding the robot goals (desired position and
orientation). So, the user can send a goal position and orientation to the architecture throw the client agent.

4. Agents’ Coordination

Coordination among agents is necessary when there are several agents trying to use the same resource at a given time. In
the presented architecture, these conflicts can arise among the avoid, the goto and the goThrough agents when trying to
send conflicting actions to the robot, as shown in figure 6. Here, circles represent the agents, and the arrows, the
communication flow between two agents.

A possible solution to this problem is to define a central coordinator agent that imposes a decision among the conflicting
agents based on some knowledge. However, we believe that such centralized coordination mechanism can be a bottleneck
when dealing with architectures with a lot of agents. Conversely, we think that a distributed coordination approach can be
more appropriated to deal with them.

In the proposed architecture each agent computes a normalized utility value (between [0,1]) only known by the agent itself.
In order to solve conflicting decisions, the utility value is used to obtain the control over the resources. This utility value is
sent to the other agents in conflict in order to negotiate the best action. Thus, the agent who has a higher value of utility
wins the decision. This agent is getting the control regarding to the conflicting activity. For example, suppose that the goto
agent has a utility value of 0.5, the goThrough agent of 0.3 and the avoid agent of 0.7; being 0.7 the higher value. The
avoid agent takes the control of the situation, and it is the only one that sends speeds to the robot agent.

To reduce communication among agents using this decentralized approach, the agent who has the control, broadcasts its
utility value. If there is no response, meaning that it has the higher value, the agent uses the resource. On the other hand, if
there is an agent with a higher utility value, then it informs all the agents with this value, indicating that it is going to use
the resource. In this way, communication process is reduced and centralization of coordination is avoided.

Figure 6: Conflicts among the avoid, the goto and the goThrough agents

Figure 7 shows the negotiation state diagram for the conflicting action depicted in figure 6. Circles means the states and
arrows are the messages between the agents. The parameters of the message refers to the emitter agent and to the receiver
agent, as for example, send_utility(goto,avoid) means that the goto agent sends its utility value to the avoid agent. The goto
agent changes from the initial state to the state number 1 when it receives a message from the client agent, indicating the
desired position. It remains in state 1 until the encoder agent sends the current position. At this moment, changes to state
number 2. Here the goto agent computes the desired angular and linear speeds and the utility value and sends the later to
the other agents (conflicting agents), and changes its state to number 3. At this state, it computes continuously the desired
speeds based on the information given by the encoder agent and computes its utility value. Each time, it sends the utility
value to the conflicting agents (in this case, the avoid and the goThrough agents) and waits a short time for an answer. If
there is no message, the cycle continues and the agent sends the desired speeds to the robot agent. If a higher utility value
is received, the goto agent changes its state to number 4. Based on the information received from the encoder agent, it
computes the desired speeds and the utility, but in this new state it does not send the utility to the other agents in conflict. It
remains listening to the agent with the highest utility, which has taken the robot control. When the utility is the highest, the
state changes to state number 3. Changes from state 3 to 4 and conversely are performed until in a given moment, the
desired position is reached. This can only happens from state 3, when the goto agent has the robot control. Then a null
speed message is sent to the robot, ending the whole process.

Figure 7: Negotiation state diagram

5. Experiments

As stated before, we have implemented this architecture and tested it on a real robot. The robot used to test the architecture
is the commercial robot Pioneer 2DX of ActivMedia Robotics.

In order to develop the architecture, an ad-hoc MAS platform has been developed using the C++ programming language
for the Linux operating system. The decision of building an ad-hoc platform stands on the fact that all the existing
commercial multi-agent platforms cannot operate in real-time and in most of them, there is an agent (as for example the

facilitator in Open Agent Architecture [28]) that centralizes all the communication, becoming the bottleneck of the whole
architecture.

Several experiments have been carried out with our proposed architecture. Next, we select one of those experiments to
illustrate the performance of the architecture.

Figure 8 shows the trajectory described by the robot when asked to arrive to the goal point of (x,y) = (5,0) meters (m) and
a heading of θ = 0º, starting at (x,y)i = (0,0) m and θi = 0º. At approximately 2.36 m there is an object, a rectangular
column of 0.50x0.50 m. Remind that obstacles are considered as a point (the closest point to the robot) while the robot is
travelling so, the different zones of the avoid agent are moving according to the detected point. In the scenario of figure 8,
the first obstacle is detected at (2.0, 0.0), when the robot is in position (1.3, 0.0) and is moving forward.

Figure 8: Trajectory of the robot until goal position

Also, it can be seen in figure 8 when each agent takes control of the robot. First, as the obstacle is not detected, the goto
agent is sending his calculated speeds to the robot, because its utility value is higher than the others. As the goal is right in
front of it, the angular speed is zero and the linear speed is maximum (see figure 9). At approximately at 1.3 m the obstacle
is detected by the sonar agent. The utility value of the avoid agent starts to increase until its value is greater than the utility
of the goto agent, and at this moment, the avoid agent takes control over the robot. Since the robot position is inside the
caution zone, the avoid agent reduces the robot's linear speed and increases the angular speed in order to rotate the robot
out of the path of the obstacle. When the obstacle is not detected anymore in the trajectory, the utility value of the avoid
agent goes below the utility value of the goto agent, so the later gets control again. As it turns the robot towards the goal,
the obstacle is found again and the avoid agent wins back the robot control. As soon as the obstacle is not on the path of
the robot, the goto agent takes control again to drive the robot to the goal position. The experiment shows how the
negotiation protocol is valid when dealing with the robot movement while maintaining an adequate responsiveness to the
obstacles found in the path to the goal.

It can be observed that there is only one agent acting at a time. This causes non smooth trajectories to be obtained due to
the change of behaviours. Smoothen trajectories can be achieved by other methods as for example [23] and [24]) but they
are centralized. How to improve trajectory smoothness by maintaining a distributed coordination mechanisms has to be
analyzed in the future.

Figure 9 shows the different linear and angular speeds applied to the robot during the entire trajectory described in figure
8. Maximum linear speed is limited to 20 cm/s while maximum angular speed is 80º/s, even though this value is never
reached.

Figure 9: Speeds sent to the robot

Finally in figure 10 it is depicted the evolution of variables x,y and θ along time. It can be seen that the x coordinate is
reached while there is a little error (less than 5 cm) in the y coordinate. Something similar happens with the orientation of
the robot, where the error is less than 7 degrees. These errors are due to the fact that a zone around the goal is defined in
order to avoid that the robot starts to oscillate trying to reach the goal point. The same happens with the angle. In this case,
the maxim distance at which the robot can stop is 10 cm with a ±10º error in the heading.

Figure 10: Evolution of x, y and θ along time

Among the different experiments performed, we have adjusted the parameters of the utility functions. In figure 11 are
shown the best parameters for the utility function of the goto agent. They are pmin=0.7, pmax=1.0, uL=100mm and uH=
300mm. The best parameters for the utility function of the avoid agent are depicted in figure 12. For the pd function they
are pmin=0, pmax=1.0, uL=650mm and uH= 850mm and for the ph function, pmin=0, pmax=1.0, uL=40º and uH= 90º.

0 10 20 30 40 50 60
0

2

4

6

temps [s]

x
[m

]

0 10 20 30 40 50 60
−1

−0.5

0

0.5

temps [s]

y
[m

]

0 10 20 30 40 50 60
−100

−50

0

50

temps [s]

or
ie

nt
ac

io
 [g

ra
us

]

0 10 20 30 40 50 60
0

50

100

150

200

250

temps [s]
V

lin
 [m

m
/s

]

0 10 20 30 40 50 60
−40

−20

0

20

40

temps [s]

V
an

g
[g

ra
us

/s
]

Figure 11: Calculation of urgency of the goto agent

Figure 12: Calculation of urgency of the avoid agent

We have performed several experiments starting at different positions and headings, with different goals and with the
presence of more than one obstacle and we have obtained the results summarized in table I (see [27] for detailed
information).

Table I: Experimental results
Nº obstacles Succeed Failure Collision on failure

0 98% 2% 0%
1 80% 20% 75% (of 20%)
2 60% 40% 90% (of 40%)

Success is considered when the robot stops inside a circle of 10 cm radius and ±10º heading of the goal position; otherwise
the robot fails in achieving its target position. The causes of failure can be analyzed according to the percentage of
collisions, as shown in the third column of table I. When there are no obstacles the robot achieves the goal position the
98% of the times. When there is only one obstacle, the robot succeeds 80% of the times. Of the 20% of failing times 75%
the robot collides with the obstacle. When there are two objects, the robot arrives to the goal the 60% of the times. Of the
40% of failing times, 90% the robot collides. We have analyzed that collisions are due to ultrasonic sensors. Most of the
times, sonars do not detect the object, especially convex angles as columns or corridor corner's.

6. Conclusion

In order to develop completely autonomous robots capable of modifying their performance in complex and changing
environments, distributed systems should be used to develop the robot control architecture. Multi-Agent Systems is a
powerful Artificial Intelligence tool that allows to develop this kind of systems. In this paper a multi-agent based
architecture is presented. This architecture has been conceive as an organization in which its members have an assigned
role to accomplish, so, in this way it is defined how several agents coordinate their activities.

The agents that constitute the architecture are perception agents, behavioural agents and actuator agents. As perception
agents we have implemented the encoder and the sonar agents according to the sensors available in our robot. The encoder
agent besides calculating the movement related to the robot's attached frame, it translates them to global coordinates. The
sonar agent aside from taking the sonar readings, it constructs a local map around the robot pointing out the zones with
possible presence of obstacles and finds the object point nearest to the robot. If some new sensor is added to the robot, new
agents can be implemented in order to treat new sensor information.

As behavioural agents we have implemented the avoid agent, the goto agent and the goThrough agent. The avoid agent,
based on the information received from the sonar agent calculates the linear and angular speed needed to avoid the
collision with the obstacle. He also calculates a utility value (pAvoid) representing the degree to fulfil the desired action.
The goto agent calculates the linear and angular speeds necessary to move the robot to the goal position. This agent also
calculates a utility parameter (pGoto). Finally, the goThrough agent calculates the linear and angular speeds necessary to
cross over narrow places. It also computes a utility value (pGoThrough). A negotiation protocol based on the utility values
has been presented among the behavioural agents in order to coordinate commands to be sent to the robot.

In addition to these agents, there are the client agent and the robot agent. The former is an interface that allows user to send
target points to the robot. The latter represents the robot in the architecture in order to guarantee that only one connection
at a time to the micro-controller is performed, according to the robot constraints.

We have perform several experiments obtaining encouraging results, that we expect to improve with the addition of
localization and navigation agents, that support higher deliberative behaviours, as planning. Particularly, we expect to
resolve the arisen problems due to the ultrasound readings that do not detect the obstacles with the addition of a
localization and a navigation agents. Non-moving obstacles can be detected using a global map computed by these new
agents, instead of a single point as done in the present implementation.

Finally we want to stress the fact that our distributed architecture can run in different computers if needed. This fact
strengthens the computational properties of the system, so if new agents are added to the system, providing richer and
more complex behaviours, their execution can be distributed in different computers. As a consequence, complex
behaviours could be achieved without significant computational cost but probably with some communication throughput
cost. Recent works as [25], in which a MAS approach has been proved useful for real-time robotics, make us believe that
we are working in the right direction.

7. References

[1] M. Beetz: “A roadmap for research in robot planning”. PLANET: European Network of Excellence in AI Planning.
Technological Roadmap on AI Planning and Scheduling., pp 89-118,2003.

[2] R. Murray, K. Aström, S. Boyd, R. Brockett, and G. Stein: “Future directions in control in an information-rich
world”. IEEE Control Systems Magazine, 23, issue 2 pp 20-33, 2003.

[3] J. Rosenblatt: “DAMN: A Distributed Architecture for Mobile Navigation”. PhD thesis, Robotics Institute at Carnegie
Mellon University, 1997.

[4] P. Ridao, J. Batlle, M. Carreras: “O2CA2: a new object oriented control architecture for autonomy: the reactive
layer”. Control Engineering Practice, 10(8) pp: 857-873, 2002.

[5] J. Bryson: “Intelligence by Design: Principles of Modularity and Coordination for Engineering Complex Adaptive
Agents”. PhD thesis, Massachusetts Institute of Technology. 2001.

[6] R. Murphy: “Introduction to AI Robotics”. The MIT Press, 2000.

[7] M. Wooldridge: “An Introduction to Multiagent Systems”. John Wiley & Sons, LTD, 2002.

[8] G. Weiss: “Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence”. The MIT Press,
Cambridge, Massachusetts, 1999.

[9] N. R. Jennings, K. Sycara, and M. Wooldridge: “A roadmap of agent research and development.” Autonomous Agents
and Multi-Agents Systems. Editorial Kluwer Academic Publishers, pp. 7-38, 1998.

[10] B. Chaib-Draa, B. Moulin, and I. Jarras: “Systèmes multi-agents: Principes généraux et applications”. Principes et
architecture des systèmes multi-agents, JP. Briot et Y Demazeau (eds) (Hermes, Lavoisier). 2001.

[11] B. Moulin and B. Chaib-Draa: “A review of distributed artificial intelligence”. Foundations of Distributed Artificial
Intelligence. O'Hare, G. and Jennings, N. (eds), Wiley, pp. 3-55, 1996.

[12] H. Hu and D. Gu: “A multi-agent system for cooperative quadruped walking robots”. Proceedings of the IASTED
International Conference Robotics and Applications. pp. 1 -- 5, 2000.

[13] W. Spears, D. Spears, J. Hamann, and R. Heil: “Distributed, physics based control of swarms of vehicles”.
Autonomous Robots 17, pages: 137-162, 2004.

[14] M. Dorigo and et al.: “Evolving self-organizing behaviours for a swarm-bot”. Autonomous Robots 17, pages: 223-
245, 2004.

[15] J. L. De la Rosa and et al.: “Rogi team real: Research on physical agents”. RoboCup-99: Robot Soccer World Cup
III. Veloso, Pagello, Kitano (eds), pp. 434 --438, 1999.

[16] M. C. Garcia-Alegre and F. Recio: “Basic agents for Visual/Motor coordination of a mobile robot”. Conference
Proceedings of the First International Conference on Autonomous Agents, pp. 429-434, 1997.

[17] M. C. Neves and E. Oliveira: “A multi-agent approach for a mobile robot control system”. Proceedings of Workshop
on "Multi-Agent Systems:Theory and Applications" (MASTA'97 - EPPIA'97) - Coimbra -Portugal, pages 1-14, 1997.

[18] R. J. Ross: “Research proposal: Development of a MAS based robot control architecture and the investigation of
speech priming on robots”. University College Dublin, 2002.

[19] P. Giorgini, M. Kolp, and J. Mylopoulos: “Socio-intentional architectures for multi-agent systems: The mobile robot
control case”. Proceedings of the Fourth International Bi- Conference Workshop on Agent-Oriented Information Systems
(AOIS-02) at CAiSE2002, Toronto, Canada, 2002.

[20] D. Busquets, C. Sierra, and R López de Mántaras: “A multiagent approach to qualitative landmark-based
navigation”. Autonomous Robots, 15, pages: 129-154, 2003.

[21] R. Manzotti and V. Tagliasco: “From behaviour-based robots to motivation-based robots”. Robotics and Autonomous
Systems, vol.~51, pp. 175-190, 2005.

[22] B. Innocenti, P. Ridao, N. Gascons, A. El-Fakdi, B. López and J. Salvi: “Dynamical model parameters identification
of a wheleed mobile robot”. 5th IFAC/EURON Symposium on Intelligent Autonomous Vehicles (preprints), 2004.

[23] B. Gerkey, M. Mataric, and G. Sukhatme: “Exploiting physical dynamics for concurrent control of a mobile robot”.
Proceedings ICRA '02. IEEE International Conference on Robotics and Automation, vol. 4, pp. 3467-3472, 2002.

[24] A. Saffiotti: “The uses of fuzzy logic in autonomous robot navigation”. Soft Computing, vol. 1, no. 4, pp. 180-197,
1997.

[25] L. Soh, C. Tsatsoulis: “A real-time negotiation model and a multi-agent sensor network implementation”.
Autonomous Agents and Multi-Agent Systems, 12(3) pp: 215-271, 2005.

[26] B. Innocenti, B. López, Q. Salvi: “Fuzzy Concurrent Position Control Adjustment for a Mobile Robot”. Technical
report: IIiA 06-02-RR. Institute of Informatics and Applications. 2006.

[27] S. Garcia: “Implementation of the control reactive architecture of the Grill robot”. BsC. Thesis: submitted to
University of Girona, 2005.

[28] SRI International: “Open agent architecture (OAA): Developer's guide v. 2.3.0.”. On-line:
http://www.ai.sri.com/oaa/distribution/v2.3/

BIANCA INNOCENTI graduated in Electronic Engineering in the National University of San Juan (Rep. Argentina) in
1997 and graduated in Automation and Industrial Electronic Engineering in the Technical University of Catalonia (Spain)
in 2005. She joined the Control Engineering and Intelligent Systems Group in the University of Girona (Spain), where she
obtained the DEA degree in the PhD program Industrial Informatics and Advanced Control Technologies in October 2000.
At present, she is an assistant professor in the Electronics, Computer Engineering and Automation Department of the
University of Girona. Her current research interests are in the field of mobile robotics and multi-agent systems.

BEATRIZ LOPEZ graduated in Computer Science from the Autonomous University of Barcelona (UAB, Barcelona,
Spain) in 1986. She joined the Artificial Intelligence Research Institute of the Spanish Scientific Research Council (CSIC,
then placed at the Centre of Advanced Studies of Blanes, CEAB) in 1988 where she received the PhD. degree in Computer
Science from the Technical University of Catalonia (UPC, Barcelona, Spain) in 1993. She has been associate professor
from 1992-1995 and 1998-2000 at the Rovira Virgili University. She has served also as a Computer Science Engineer in
several private companies. Currently, she is an associate professor at the Department of Electronics, Computer Science and
Systems Engineering at the University of Girona, Spain. Her research interests include multi-agent systems, planning and
scheduling, and case-based reasoning. She is member of the Catalan Association for Artificial Intelligence that belongs to
the European Coordination Committee on Artificial Intelligence (ECCAI).

JOAQUIM SALVI graduated in Computer Science in the Technical University of Catalonia in 1993. He joined the
Computer Vision and Robotics Group in the University of Girona, where he received the DEA degree in Computer science
in July 1996 and the PhD in Industrial Engineering in January 1998 which was rewarded with the best thesis award in
engineering in the University of Girona. At present, he is an associate professor in the Electronics, Computer Engineering
and Automation Department of the University of Girona. His current interests are in the field of computer vision and
mobile robotics, focused on structured light, stereovision and camera calibration.

