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Abstract: In this paper we face the problem of positioning a camera attached to the end-
effector of a robotic manipulator so that it gets parallel to a planar object. Such problem,
so-called plane-to-plane positioning, has been treated for a long time in visual servoing. Our
approach is based on linking to the camera a structured light emitter composed of four
parallel laser pointers so that its distribution is aimed to produce a suitable set of visual
features. The aim of using structured lighting is not only for easing the image processing and
allowing low-textured objects to be treated, but also for producing a control scheme with
nice properties like decoupling, stability and good camera trajectory. This paper proposes
several sets of visual features and analyzes their performance and robustness against different
types of calibration errors both analytically and experimentally.
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Asservissement visuel basé sur la lumière structurée pour
un positionnement plan à plan

Résumé : Nous traitons dans cet article de la réalisation d’une tâche de positionnement
par asservissement visuel dans le cas d’une caméra embarquée. La tâche de positionnement,
dite de plan à plan, consiste à faire coïncider le plan du capteur avec celui de l’objet supposé
plan. Un tel problème n’est pas nouveau en soi, si ce n’est que notre approche repose sur
l’emploi d’un éclairage structuré. Plus précisément, quatre pointeurs laser sont utilisés et le
choix de leur distribution spatiale permet l’obtention d’informations visuelles pertinentes.
Dans ce contexte, l’utilisation d’un tel éclairage ne permet pas seulement de faciliter le
traitement de l’image ou de pouvoir prendre en compte des objets faiblement texturés mais
d’élaborer une loi de commande présentant des propriétés remarquables de découplage et
de stabilité tout en conduisant également à une bonne trajectoire de la caméra. Cet article
propose plusieurs ensembles d’informations visuelles et analyse, analytiquement et expéri-
mentalement, leurs comportements en terme de performance et de robustesse vis-à-vis de
différents types d’erreur de calibration du dispositif laser.

Mots-clé : asservissement visuel, lumière structurée, tâche plan à plan, analyse de stabil-
ité, découplage d’informations visuelles, pointeurs laser.
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1 Introduction
Visual servoing is a largely used technique which intends to control a robot in order to fulfill
a certain task by using data provided by visual sensors (usually cameras). Certain data
extracted or calculated from the sensor signal are used in a closed-loop control law which
leads to the execution of a task like positioning with respect to static objects or target
tracking. A comprehensive survey on the different visual servoing approaches can be found,
for example in [32].

This paper focuses on the combination of visual servoing and structured light, which is
a type of approach which has not been very exploited up to date. The interest of combining
both techniques is that positioning tasks with respect to non textured objects becomes
feasible and the image processing is much simpler. In addition to this, with an appropriate
choice of the structured light emitter configuration the control loop can be optimized in
terms of decoupling and stability. In order to demonstrate this fact we have chosen the
following classical task: achieving a plane-to-plane virtual link between a sensor attached to
the robot end-effector and a planar object. The paper presents several sets of visual features
exhibiting nice stability properties against calibration errors in both the camera intrinsic
parameters and the structured light emitter, and different behaviors in terms of decoupling
visual features. To do this we propose a set of visual features which decouples the rotational
degrees of freedom (dof) from the translational ones and produces suitable camera velocities
thanks to a proper configuration of the structured light emitter.

The paper is structured as follows. In Section 2 a brief introduction of the main visual
servoing approaches is presented. The structured light sensor proposed to fulfill the plane-
to-plane virtual link and its modelling is presented in Section 3. Section 4 reviews the
task function definition used in visual servoing, the derivation of a proportional control law
and the procedure used to analyze its stability. Afterwards, four visual servoing approaches
exploiting the projected light are presented. First, Section 5 deals with several position-based
approaches based on reconstructing the object pose by triangulation. Then, a simple 2D
approach based on image points coordinates is shown in Section 6. After that, in Section 7
a 2D approach based on the area corresponding to the projected pattern and combinations
of angles extracted from the image is analyzed. The last approach is based on a robust
non-linear combination of image points which is presented in Section 8. Some simulations
and experiments showing the behavior obtained with each one of the proposed approaches
are shown in Section 9. The paper ends with conclusions.

2 An overview of the main visual servoing approaches
Visual servoing is based on controlling the motion of a robot by using a camera. Hereafter,
we present a brief overview focusing on the most typical system configuration called eye-
in-hand. In such systems, a camera is attached to the end-effector of the robot so that the
control law computes at each iteration of the loop the camera velocities required to fulfill the
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task. Then, the robot jacobian is used to compute the corresponding robot joints velocities.
Several types of information can be used, which are detailed in the next sections.

2.1 Position-based visual servoing
In the case of position-based visual servoing, 3D information computed from the image(s)
are used in the control law. Two cases can be distinguished depending of whether the object
model is known or not. In the former case, 3D information can be obtained by using pose
estimation algorithms based on points [22, 29, 30, 37, 55, 56], straight lines [24], polyhedric
objects [25], conics [20] and some quadrics like spheres and cylinders [23]. In the latter case,
when the object model is unknown, 3D information is obtained by reconstruction [19]. This
can be done by using a passive stereovision system composed of two calibrated cameras [8]
or by using different strategies based on a unique camera. In this case, two or more images
must be considered and 3D reconstruction can be obtained by structure from motion [31],
dynamic vision [3] or by active vision [11].

A classical advantage granted to position-based approaches refers to their ability to
produce suitable camera trajectories since the control is made in the cartesian space [9]. In
addition to this, the rotational velocities can be decoupled from the translational ones, even
if this only holds when the system is perfectly calibrated. There are three main drawbacks
inherent to position-based approaches. First, the pose estimation or 3D reconstruction
algorithms are sensible to image noise. Secondly, since no control is made in the image
space, the features used for the reconstruction can leave the image bounds. Finally, the
stability analysis taking into account calibration errors is in most cases impossible to face.

2.2 Image-based visual servoing
2D visual servoing is based on using visual features directly calculated from the images
which are used as input in the control scheme. Thus, this type of approaches tend to avoid
the use of any object model.

Former works started using image points which are still today one of the most popular
primitives [7, 14, 26–28].Other 2D primitives have been modelled like straight lines [26, 39],
segments, circles, ellipsis, cylinders and spheres [26, 42].

On the recent years, more complicated primitives have been taken into account. For
example, complex contours [13, 16], the principal components of the image [21] and image
moments [10].

Some other works tend to combine different visual features cited above in a unique control
scheme. For example, in [17], point coordinates, the area enclosed by points and the angle
between segments are used to improve the performance of the system.

Image-based visual servoing is traditionally robust against modelling errors of the system.
Furthermore, since control is made in the image space, it is easier to design strategies to
avoid image features going out the image bounds [17, 43]. However, since the features are
usually strongly coupled, the generated camera trajectory cannot be very suitable (some
efforts in order to decouple degrees of freedom can be found for example in [17, 38, 53]).

INRIA
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Other drawbacks are the possibility of reaching a singularity in the control law or falling
into local minima [9].

2.3 Hybrid visual servoing
This approach combines 2D with 3D features. In case of knowing the model of the object,
classic pose recovering algorithms can be used to estimate some 3D features as in position-
based visual servoing. However, several model-free approaches have been presented. A lot of
approaches have been done for the case when the desired image is known. Some of them are
based on recovering the partial pose between the camera and the object from the desired and
the current image [40,41,44]. The obtained homography is decomposed in a rotation matrix
and a scaled translation. Note that if both displacement components are directly used in
a control law, a model-free position-based visual servoing scheme arises as in [5]. However,
the most usual choice is to combine part of the 3D information recovered with 2D features
like an image reference point. Other approaches exist, like the one presented in [50], where
the depth distribution of the object is explicitly included in the visual features. Another
example is found in [4], where the binormalized plücker coordinates of 3D lines are used,
so that the depth to the lines are estimated from a pose calculation algorithm assuming a
partial knowledge of the object structure. When the desired image is unknown, the rotation
to be executed can be calculated by doing a local reconstruction of the object normal in a
certain point [3, 12, 15, 46, 51].

Typical advantages of hybrid approaches are: they are usually model-free (do not require
to know the object model even if in most cases the desired image must be known); they allow
control in the image since 2D information is included; they can exhibit decoupling between
translational and rotational degrees of freedom; stability analysis in front of camera and
robot calibration errors is often feasible [40,44]. On the other hand, the main drawback that
can appear is the sensibility to image noise affecting the partial pose algorithm.

2.4 Dynamic visual servoing
The analysis of the 2D motion appearing in a sequence of images can be used to obtain geo-
metric visual features which can be then used in a visual servoing scheme like the presented
in the previous sections [3,12,15,51]. However, if the visual features are, for example, the pa-
rameters of the 2D motion model itself, a dynamic visual servoing scheme is defined [18,49].

Essentially, these techniques define the vision task in terms of dynamic visual features
so that, for example, the system can be controlled in order to observe a desired 2D motion
field along the sequence of acquired images.

2.5 Visual servoing by means of structured light
Although the large domain of applications that can be faced with classic visual servoing,
there are still some open issues. For example, classic techniques can not cope with the simple
problem of keeping a mobile robot running parallel to a wall containing no landmarks or
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easily distinguishable visual features. This problem can be generalized to any task where it
is necessary to position the camera with respect to a large object which presents a uniform
appearance so that it is not possible to extract visual features like characteristic points,
straight lines, contours, regions, etc. A possible solution to this problem is to use structured
light emitters to project visual features in such objects. Thus, the application field of visual
servoing can be enlarged to applications like painting, welding, sealing or cutting surfaces,
or docking tasks with respect to large objects.

Two new configurations appear in an eye-in-hand systems when using structured light
devices. If the structured light emitter remains static and separated from the camera and
the robot, the projected marks remain static onto the object surface if it is also static
(see Fig. 1b). The advantage of such approach is that classic visual servoing can be directly
applied. However, for some applications it can be unappropriated due to the typical problems
of classic 2D visual servoing (singularities, local minima, etc.) and some new ones related
to the structured light emitter. For example, if the target object moves or its position
is totally unknown it can fall outside the field of view of the structured light emitter. A
possible solutions is to attach the structured light emitter to the robot so that it remains
rigidly linked to the camera (see Fig. 1a). This approach must take into account that the
projected visual marks do not remain static onto the object surface, but that they vary their
position when the camera moves.

a) b)

Figure 1: Two possible configurations of an eye-in-hand system and a structured light emitter

If the structured light emitter is assumed to be perfectly calibrated with respect to the
camera, triangulation can be used in order to reconstruct the illuminated scene [1, 6, 33, 47]
and use the 3D data in a visual servoing loop. However, there are no works providing
results concerning the sensitivity to image noise and camera-sensor calibration of such type
of approach.

Few works exploiting the combination of visual servoing and structured light can be
found in the bibliography. Albus et al. proposed in [2] to attach two parallel laser planes
to a camera in order to estimate the surface pose of planar objects. The vision system
was intended to be used in a visual servoing eye-in-hand configuration. Nevertheless, no
experimental results were reported and the suggested approach seems to rely on an accurate
calibration of the laser planes. A similar approach was proposed by Kent et al. [34]. In this
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case, however, the sensors linked to the camera of the robot end-effector are a unique laser
plane and several infra-red proximity sensors.

Samson et al. [48] modelled a general thin-field rangefinder whose output is a function of
the distance between the sensor and the planar object. The variation of this measure with
respect to a change in the relative pose sensor-object was formulated so that it can be used
in a control law.

Motyl et al. [35] properly investigated eye-in-hand systems with structured light emitters
attached to the camera. They adapted the calculation method of the image jacobian corre-
sponding to simple geometric primitives to the case when they are provided by the projection
of laser planes onto simple objects. It was shown that in this type of configurations, both
the projected light and the object surface must be modelled in the image jacobian. They
modelled different cases where laser planes are projected to planar and spherical objects.
Their study also focuses on fixing virtual links between the camera and such objects with
the aid of laser planes. Different sets of visual features extracted from the projected light
were formulated.

Some years later, Andreff et al. included depth control by using structured light in
their 2D 1/2 visual servoing approach based on 3D lines [4]. Their control scheme was
however depth-invariant. They prevented this lack of depth-control by providing a laser
pointer to the camera. They first formulated the variation of the distance between the laser
and its projection onto the object due to robot motion. The interaction matrix of this 3D
feature was formulated taking into account a planar object. The result was equivalent to
the presented by Samson et al. [48]. Afterwards, they showed that the projected point lies
always onto a line in the camera image, which is the unique epipolar line of the particular
stereo system composed by the camera and the laser. Then, they chose as 2D visual feature
the distance along the epipolar line between the current position of the point and a certain
reference point. The variation of such feature was related to the variation of the distance
between the laser and the object.

More recently, Krupa et al. [36] applied visual servoing and structured light to laparo-
scopic surgery. In their application, two incision points are made into the patient body: one
for introducing an endoscopic camera and the other to introduce a surgical instrument held
by the end-effector of a robot. The camera pose with respect to the robot frame is unknown.
The task consists of moving the instrument to a certain point of the observed image keeping
a desired depth to the underlying organ. Due to constraints of the surgical incision and the
type of instrument, only three degrees of freedom must be controlled. The instrument holder
is a laser pointer which has three LEDs which are collinear with the projected spot. The
depth from the surgical instrument to the organ is estimated by using the cross ratio of the
four physical points and the corresponding image points. The rotational degrees of freedom
are controlled by an online identification of the image jacobian of the projected spot. On
the other hand, the depth is directly controlled from the calculated estimation.

RR n˚5579
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3 A proposal of structured light sensor for plane-to-plane
positioning

In this paper we present an eye-in-hand system with a structured light sensor attached to
the camera. The interest on combining visual servoing with structured light is not only to
simplify the image processing, but also to treat low-textured objects containing no land-
marks.

The goal of the task here faced consists on positioning the camera parallel to a planar
object. Such type of task, namely plane-to-plane positioning, aims to fix a virtual link
between the camera image plane and the object plane. With this classic task we aim to
demonstrate that using a suitable structured light emitter, the performance of the visual
servoing scheme can be optimized in terms of decoupling, stability and camera trajectory.

The structured light sensor is based on laser pointers since they are low-cost and easily
available. Theoretically, three non-collinear points are enough to recover the parameters of
the equation of a planar object. Consequently, we initially designed a sensor composed of
three laser pointers. Nevertheless, we found that better results can be obtained by using
four laser pointers in order to decouple visual features.

The structured light sensor that we propose consists of four laser pointers attached to a
cross-shaped structure as shown in Fig. 2a. The direction of the lasers have been chosen to
be equal so that four points are orthogonally projected to the planar object (see Fig. 2b).
This causes that the projected shape enclosed by the four points is invariant to the distance
between the object and the laser-cross. This invariance will be very useful as will be shown
in following sections. The symmetric distribution of the lasers in the cross structure will be
also useful for decoupling of visual features.

Consequently, the model of the proposed sensor is as follows. The laser-cross has its own
frame {L} so that all the lasers have the same orientation vector Lu = (0, 0, 1). Furthermore,
the lasers are placed symmetrically so that two of them lie on the XL axis and the other two
on the YL axis. All the lasers are positioned at a distance L from the origin of the laser-cross
frame. The structured light sensor is modelled assuming that it is ideally attached to the
camera of the robot manipulator as shown in Fig. 2b . As can be seen, in this model, the
cross-laser frame perfectly coincides with the camera frame, so that the structured light
sensor is placed just in the camera origin and the lasers point toward the direction of the
camera optical axis. Whenever the camera and the planar object are parallel, the projected
laser points exhibit a symmetric distribution onto the object surface and also in the camera
image (see Fig. 3), which will allow us to find decoupled visual features.

These assumptions have been only taken for modelling issues. However, it is perhaps
not always possible to perfectly align the laser-cross with the camera frame because of the
structure of the robot or because the optical center position is not exactly known. That is
why the study of the robustness against misalignments between the camera and the laser-
cross will be a key point when analyzing the different approaches presented in this paper.

INRIA
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Figure 2: System architecture. a) The proposed structured light sensor. b) Ideal configura-
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Figure 3: Camera image when it is parallel to the object at a given depth.
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Next section presents the modelling of a laser pointer and the image jacobian corre-
sponding to the projected point onto a planar object. Afterwards, the whole model of the
proposed structured light emitter is presented under ideal conditions and different types of
calibration errors.

3.1 Laser pointer modelling
In visual servoing, given a set of visual features s extracted from an image, its variation
due to the relative camera-object velocity (kinematic screw) is expressed in the well known
equation

ṡ = Lsv (1)
being v = (Vx, Vy, Vz ,Ωx,Ωy,Ωz) the camera velocity screw assuming a static object, and
Ls the image jacobian known as interaction matrix.

Given a 3D point X = (X,Y, Z) fixed to the observed object, its normalized coordinates
x = (x, y) resulting of the perspective projection x = X/Z are the most widely used features
in image-based visual servoing. The interaction matrix of a fixed point of coordinates (x, y)
is [26, 27]

Lx =

(
−1/Z 0 x/Z xy −(1 + x2) y

0 −1/Z y/Z 1 + y2 −xy −x

)
(2)

note that the only 3D information included in the interaction matrix is the depth of the
point which appears in the translational components.

The analog case when working with structured light consists of using a laser pointer so
that the intersection of the laser with the object produces also a point X as shown in Fig. 4.
When the laser pointer is linked to the camera in an eye-in-hand configuration, the time
variation of the observed point x depends also on the geometry of the object since X is not
a static physical point. Therefore, some modelling of the object surface must be included in
the interaction matrix.

Figure 4: Case of a laser pointer and a planar object.

In this work we focus on the case of planar objects, which are modelled according to the
following explicit equation

n>X +D = 0 (3)
being n = (A,B,C) the unitary normal vector to the plane and D its distance to the origin
of the camera frame. Hereafter, we take the convention that C > 0 which implies that D < 0
since the object is in front of the camera.
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Motyl et al. were the first on formulating the interaction matrix of a projected point onto
a planar object [35]. In their case, the projected point was the result of the intersection of
two laser planes with the planar object. Note that a laser pointer (straight line in the space)
can be modelled as the intersection of two planes, so that it is equivalent to projecting
two intersecting laser planes. The interaction matrix proposed by Motyl et al. has the
disadvantage of depending on 12 3D parameters: 4 parameters for every one of the two laser
planes (normal vector and distance to the origin) plus 4 parameters for the planar object.
Furthermore, the explicit depth Z of the point does not appear in the interaction matrix.

In a more natural way, the laser pointer can be modelled with a vectorial equation as
follows (all the parameters are expressed in the camera frame)

X = Xr + µu (4)

where u = (ux, uy, uz) is an unitary vector defining the laser direction, Xr = (Xr, Yr, Zr) is
any reference point belonging to the straight line, and µ is the distance from Xr to X.

By deriving the above expression and taking into account that both Xr and u do not
change when the camera moves we find that the time derivative of the projected point is

Ẋ = µ̇u (5)

then, deriving the normalized coordinates x and using the above result we can write

ẋ =
Ẋ

Z
− X

Z2
Ż =

1

Z
µ̇u− x

Z
Ż (6)

from (5) we have that Ż = µ̇uz so that

ẋ =
µ̇

Z
(u− xuz) (7)

In order to calculate µ̇ let first express µ in function of the 3D parameters. By substi-
tuting X in (3) by its expression in (4) we have

µ = − 1

n>u
(n>Xr +D) (8)

deriving this expression we obtain

µ̇ = − 1

n>u
(ṅ>Xr + Ḋ) +

n>Xr +D

(n>u)2
ṅ>u (9)

which can be reduced to
µ̇ = − 1

n>u
(ṅ>(Xr + µu) + Ḋ) (10)

and finally, applying (4) the time derivative of µ is

µ̇ = − 1

n>u
(ṅ>X + Ḋ) (11)
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Taking into account the time derivatives of the planar object parameters [54]
(

ṅ

Ḋ

)
=

(
03×3 [n]×
n> 01×3

)
v (12)

where [n]× is the antisymmetric matrix associated to vector n, the interaction matrix of µ
is

Lµ = − 1

n>u

(
n> (X× n)>

)
(13)

The equivalence of this formula to the one presented by Samson et al. [48] and the one
provided by Andreff et al. [4] is shown in appendix A.

By using the time derivative of µ, Equation (7) can be rewritten as follows

ẋ = − 1

n>u
(u− xuz)

(ṅ>X + Ḋ)

Z
(14)

note that the time derivative of x is expressed in function of 7 3D parameters, namely Z,
n and u. The only parameters concerning the laser configuration are the components of its
direction vector u. This result can be still improved by expressing u as follows

u = (X−Xr)/‖X−Xr‖ (15)

applying this expression in (14) and after some developments ẋ becomes

ẋ =
(Xr − xZr)

n>(X−Xr)

(
Ḋ

Z
+ ṅ>x

)
(16)

Note that the expression does not longer depend on the orientation of the laser u but on
its reference point Xr. Furthermore, if the reference point Xr is chosen as Xr = X0 =
(X0, Y0, 0), which corresponds to the intersection of the straight line modelling the laser and
the plane Z = 0 of the camera frame, the expression simplifies to

ẋ =
X0

n>(X−X0)

(
Ḋ

Z
+ ṅ>x

)
(17)

Applying the time derivatives of the plane parameters in (12) into (17) the interaction
matrix of a projected point is

Lx =
1

Π0

���
�
−AX0

Z

−BX0

Z

−CX0

Z
X0ε1 X0ε2 X0ε3

−AY0

Z

−BY0

Z

−CY0

Z
Y0ε1 Y0ε2 Y0ε3

����
�

(18)
Π0 = n>(X0 − xZ)

(ε1, ε2, ε3) = n× (x, y, 1) (19)
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note that Π0 is the distance of the reference point X0 to the object. With respect to the
interaction matrix given by Motyl et al. [35], the number of 3D parameters concerning the
laser pointer has been reduced from 8 to 3, i.e. X0, Y0 and Z. The orientation u of the laser
remains implicit in our equations. Concerning the planar object, the number of parameters
has been reduced from 4 to 3 since D has been expressed in function of the image coordinates
(x, y), the corresponding depth Z, and the normal vector to the planar object n.

The rank of Lx is always equal to 1, which means that the time variation of the x and y
coordinates are linked. As already pointed out by Andreff et al. [4], the image point x moves
always along a straight line (hereafter called epipolar line). Andreff et al. did not specify
the interaction matrix of a projected point, but the interaction matrix of the distance of the
point to a certain origin of the epipolar line. Furthermore, the interaction matrix related to
this feature was expressed in a frame centered in the laser reference point (similar to X0),
and was expressed in function of the angles defining the normal of the planar object, the
angle between the laser pointer and the camera optical axis, and the distance between the
camera center and X0. The main problem concerning the feature used by Andreff et al. is
that a convention must be taken to chose the sign of the distance from x to the origin of
the epipolar line.

3.2 Model of the structured light sensor
This section presents the parametric model of the system composed by the camera and the
structured light sensor composed of 4 laser pointers. The parameters of the model are the
ones appearing in the interaction matrix of every projected point, which are here summarized

• Reference point of each laser pointer (X0, Y0, 0).

• Normalized image point coordinates x = X/Z of every projected point.

• Depth Z of the projected points.

The reference points X0 are determined by the actual pose of the laser-cross with respect
to the camera frame. The 3D coordinates X of the projected points can be calculated from
X0, the orientation of the lasers u and the object pose. Concretely, from the equation of
the line modelling a laser pointer and the equation of the planar object

{
X = X0 + µu
0 = n>X +D

(20)

we can obtain the depth of the projected point

Z = −uz(n
>X0 +D)

n>u
+ Z0 (21)

RR n˚5579



16 Jordi Pagès, Christophe Collewet, François Chaumette & Joaquim Salvi

and the real normalized coordinates of the image point

xreal =
ux
uz

+
X0

Z

yreal =
uy
uz

+
Y0

Z

(22)

The following subsections present the values of the model parameters under different
types of relative poses between the camera and the laser-cross. First of all, the ideal case is
presented where the laser-cross frame is perfectly aligned with the camera frame. Afterwards,
the parameters of the model are calculated under different types of misalignment between
the camera and the laser-cross.

3.2.1 Ideal model

First of all, let us consider that the structured light sensor is perfectly attached to the camera
so that the laser-cross frame perfectly coincides with the camera frame. In such a case the
model parameters are shown in Table 1. The (x, y) and Z parameters have been calculated
taking into account that the ideal orientation of the lasers coincides with the optical axis
direction so that Cu = Lu = (0, 0, 1).

Table 1: Ideal model parameters

Laser X0 Y0 x y Z
1 0 L 0 L/Z1 −(BL+D)/C
2 −L 0 −L/Z2 0 (AL−D)/C
3 0 −L 0 −L/Z3 (BL−D)/C
4 L 0 L/Z4 0 −(AL+D)/C

3.2.2 Model considering laser-cross misalignment

In this case, we are interested in calculating the model parameters when the laser-cross
is not perfectly aligned with the camera frame and not perfectly centered in the camera
origin. Such a misalignment is represented in Fig. 5 and it can be modelled according to
a frame transformation matrix CML which passes from points expressed in the laser-cross
frame to the camera frame. The model parameters under these conditions are developed in
Appendix B.
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Figure 5: Model of misalignment of the laser-cross

4 Task function and control stability
This section reviews the typical formalism used to define a robotic task in visual servoing.
This formalism allows us to construct a simple proportional control law and to derive its
stability conditions. All this theoretical background will be exploited during the rest of the
work in order to design the control law and to derive the stability analysis of different sets
of visual features.

We remember that the goal of our task is to bring the camera to a position where it is
parallel to the object. This task corresponds to fixing a plane-to-plane virtual link between
the camera image plane and the planar object. Such a virtual link belongs to the classN = 3
since this is the number of degrees of freedom constrained by the link [26]. Concretely, 2
translational and 1 rotational degrees of freedom are constrained. This can be seen by
stacking the interaction matrices of at least three projected points and evaluating it for
n = (0, 0, 1)

Lx =




0 0 X01/Z
2 y1X01/Z −x1X01/Z1 0

0 0 Y01/Z
2 y1Y01/Z −x1Y01/Z1 0

0 0 X02/Z
2 y2X02/Z −x2X02/Z2 0

0 0 Y02/Z
2 y2Y02/Z −x2Y02/Z2 0

0 0 X03/Z
2 y3X03/Z −x3X03/Z3 0

0 0 Y03/Z
2 y3Y03/Z −x3Y03/Z3 0




(23)

The rank of the above matrix is 3 if the points are not collinear. This means that there
are three types of camera motion, namely Vx, Vy and Ωz , which will produce no changes
in the image. For the case of a general relative pose camera-object it can also be seen by
expressing the above matrix in a frame attached to the object as explained in Appendix C.
The interaction matrix expressed in the object frame has the following form (see the appendix
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for the details)

oLx = cLx · cTo =




0 0 −X01/(Π01Z1) X01η1/Π01 X01ξ1/Π01 0
0 0 −Y01/(Π01Z1) Y01η1/Π01 Y01ξ1/Π01 0
0 0 −X02/(Π02Z2) X02η2/Π02 X02ξ2/Π02 0
0 0 −Y02/(Π02Z2) Y02η2/Π02 Y02ξ2/Π02 0
0 0 −X03/(Π03Z3) X03η3/Π03 X03ξ3/Π03 0
0 0 −Y03/(Π03Z3) Y03η3/Π03 Y03ξ3/Π03 0




(24)

with

ηi =
1−A2

C
yi +

A(Bxi +ACyi)

C(1 + C)

ξi =
1−B2

C
xi +

B(Ayi +BCxi)

C(1 + C)

The rank of oLx is 3 and the kernel is generated by the following base

{(1, 0, 0, 0, 0, 0) , (0, 1, 0, 0, 0, 0) , (0, 0, 0, 0, 0, 1)} (25)

which clearly corresponds to a plane-to-plane virtual link. As can be seen, for any relative
pose camera-object there are three degrees of freedom of the planar object which cannot be
perceived by the camera.

In the following section the formulation of the task function is briefly reviewed. After-
wards, a simple control law, and how to analyze its stability, is presented.

4.1 Task function
A robotic task can be described by a function which must be regulated to 0. The task
function e is defined as a m−dimensional vector of the form [26]

e = C(s− s∗) (26)

where s is a k × 1 vector containing k visual features corresponding to the current state,
while s∗ denotes the visual features values in the desired state. C is a m × k combination
matrix that must be of full rank m ≤ k in order to produce the m independent components
of e. The aim of visual servoing is to regulate the task function e to 0 so that s− s∗ = 0.

The task e controls m degrees of freedom from a total of n. When m < n it means that
a virtual link of class N is fulfilled so that m = n−N ≤ k. In our case m = N = 3.

A suitable choice of the combination matrix C is [26]

C = WL̂s

+
(27)

where L̂s

+
is the pseudoinverse of a model of the interaction matrix and W is an m × 6

matrix of full rank m having the same kernel that Ls. The choice of W depends on the
number of visual features k. Since in our case m < n there are two cases that can be
considered:
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• rank(Ls) = m = k ⇒W = L̂s. In this particular case C = Im.

• rank(Ls) = m < k ⇒ the rows of W are the m vectors forming the base of the row
space generated by L̂s.

4.2 Control law
A simple control law can be defined in order to fulfill the task e. We assume that the
combination matrix C is constant so that the derivative of the task function (26) is

ė = Cṡ (28)

and taking into account that
ṡ = Lsv (29)

we have that
ė = CLsv (30)

then, by imposing an exponential decrease of the task function ė = −λe (being λ a positive
gain) we find

−λe = CLsv (31)

from this expression a proportional control law can be built by using a model of the inter-
action matrix L̂s

v = −λ(CL̂s)+e (32)

which is equal to
v = −λ(CL̂s)

+C(s− s∗) (33)

If it is not possible to estimate all the parameters of the interaction matrix at each
iteration, a typical choice is to set L̂s as the interaction matrix evaluated at the desired
position noted as L∗s or Ls(e

∗).

4.3 Stability analysis
One interesting aim in visual servoing is concerned on studying whether the control law is
able to regulate the task function to the desired state or not. In other words, the aim is to
study if the desired state e∗ = 0 is an stable equilibrium point which is reached when time
approaches infinity. Let us remember the following basic definitions:

Equilibrium point: e∗ = 0 is said to be an equilibrium point if ė = 0 when e = 0.

Stability: the stability of an equilibrium point is classically defined in the Lyapunov sense.
The equilibrium point in the origin is said to be stable if

∀ε > 0 ∃δ > 0 s.t. ‖e(0)‖ < δ ⇒ ‖e(t)‖ < ε, ∀t (34)
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Asymptotic stability: the equilibrium point e∗ = 0 is asymptotically stable if it is stable
and if it is attracting so that

lim
t→∞

e(t) = e∗ = 0 (35)

Hereafter we will focus only on the asymptotic stability since it ensures that the equilib-
rium is reached. As explained in [40], the stability analysis of the control law allows us to
determine whether e∗ = 0 is reached from any starting point (global asymptotic stability)
or only when the initial state is nearby the equilibrium (local asymptotic stability).

In order to fulfill the stability analysis, it is necessary to obtain the closed-loop equation
of the system, which is obtained by plugging the control law (33) into (30)

ė = −λCLs(CL̂s)+e (36)

which will be noted hereafter as
ė = −λM(e)e (37)

Note that Ls is the actual interaction matrix in a certain instant of time t, while L̂s is the
value of the model used in the control law. Therefore, since Ls depends on the state e
so does M. If the explicit expression of e in function of time can be obtained by solving
the differential equation (37), then it can be checked if the task function zeroes when time
approaches infinity. However, in most cases it is not possible to obtain such explicit so-
lution. Alternatively, necessary and sufficient conditions for the local asymptotic stability,
and sufficient conditions for the global asymptotic stability are hereafter recalled.

It is well known that the system in (37) is locally asymptotically stable if and only if the
eigenvalues of M(e∗) (which represents the value of M evaluated in the desired state) have
all positive real part.

When analyzing the global asymptotic stability a necessary condition is that e∗ = 0 is
the only equilibrium in the task space, which can be ensured if and only if det(M(e)) 6= 0.
If this is true, then a sufficient condition for the system to be globally asymptotically stable
is that M(e) is a positive definite matrix.

5 Object plane parameters approach
The first visual servoing approach that we present is a pure position-based method. Indeed,
we can use the triangulation capabilities of the system composed by the camera and the
lasers in order to reconstruct up to 4 points of the object so that its pose can be recovered.
In such case, the 3D parameters of the reconstructed plane can be directly used in the
closed-loop of the control scheme so that a position-based approach is performed.

Let us consider that the four parameters of the planar object A, B, C and D can be
precisely estimated at each iteration. The feature vector s could be built up by using these
four 3D parameters. However, since the number of controlled dof is 3, a feature vector of
the same dimension is going to be defined. The equation of the object can be noted as a
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relationship between the depth of a point and its normalized image coordinates as follows

1

Z
= P1 + P2y + P3x (38)

with P1 = −C/D, P2 = −B/D and P3 = −A/D. By using the time derivatives of n and D
in (12) the interaction matrix of s = (P1, P2, P3) is calculated obtaining

Ls =




P1P3 P1P2 P 2
1 −P2 P3 0

P2P3 P 2
2 P1P2 P1 0 −P3

P 2
3 P2P3 P1P3 0 −P1 P2


 (39)

which in the desired state it has the following value

L∗s =




0 0 1/Z∗2 0 0 0
0 0 0 1/Z∗ 0 0
0 0 0 0 0− 1/Z∗ 0


 (40)

On the other hand, the depth of the points belonging to the planar object can be also
expressed as

Z = γ + βY + αX (41)

where γ = −D/C, β = −B/C and α = A/C. In this case, the interaction matrix of the
parameters s = (γ, β, α) is

Ls =




α β −1 −γβ γα 0
0 0 0 −1− β2 βα −α
0 0 0 −βα 1 + α2 β


 (42)

Note that in this case the level of decoupling between the 3D features is higher. Furthermore,
if we look at the interaction matrix in the desired state

L∗s =




0 0 −1 0 0 0
0 0 0 −1 0 0
0 0 0 0 1 0


 (43)

we can see that it does not depend on the depth as in the case of s = (P1, P2, P3) shown
in (40). Therefore, in this case the dynamics of the object parameters around the desired
state vary linearly with respect to the camera motion. That is why we prefer to use the
object plane representation based on s = (γ, β, α). Since the dimension of s is 3 the control
law is

v = −λL̂s

+
(s− s∗) (44)

In order to estimate the object plane parameters it is necessary to reconstruct the four
3D points X projected by the lasers. Then, the equation of the plane best fitting the four
points can be calculated by means of least squares. First of all, it is necessary to calculate
the 3D point coordinates of every projected laser. The simplest way is to triangulate the
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points by using the corresponding image normalized coordinates and the laser orientation
u and the laser origin X0. Nevertheless, it is possible to reduce the number of parameters
concerning the laser calibration by using the information provided by the desired image.

Remember that the 3D point X projected by a certain laser of orientation u and origin
X0 must accomplish the following relationship

X = xZ = µu + X0 (45)

Given an image point x∗ from the desired image the following relationships are extracted
from the above equation 




x∗Z∗ = µ∗ux +X0

y∗Z∗ = µ∗uy + Y0

Z∗ = µ∗uz
(46)

Then, from the last equation we have that µ∗ = Z∗/uz so that plugging it onto the others
we get

x∗Z∗ = Z∗ux/uz +X0

y∗Z∗ = Z∗uy/uz + Y0 (47)

so that the origin of the laser X0 can be expressed as follows

X0 = Z∗(x∗ − uxz)
Y0 = Z∗(y∗ − uyz) (48)

where uxz = ux/uz and uyz = uy/uz.
By using the above definitions, the equations in (47) can be written for the current image

as

xZ = Zuxz + Z∗(x∗ − uxz)
yZ = Zuyz + Z∗(y∗ − uyz) (49)

From (41) the depth is related to the object parameters as

Z =
γ

1− αx− βy (50)

so that the equations in (49) can be expressed in terms of the object parameters as follows

αxZ∗(x∗ − uxz) + βyZ∗(x∗ − uxz) + γ(x− uxz)− Z∗(x∗ − uxz) = 0

αxZ∗(y∗ − uyz) + βyZ∗(y∗ − uyz) + γ(y − uyz)− Z∗(y∗ − uyz) = 0 (51)

Then, using these equations for every one of the four laser pointers the following system
of non-linear equations is obtained





αx1Z
∗(x∗1 − uxz) + βy1Z

∗(x∗1 − uxz) + γ(x1 − uxz)− Z∗(x∗1 − uxz) = 0
αx1Z

∗(y∗1 − uyz) + βy1Z
∗(y∗1 − uyz) + γ(y1 − uyz)− Z∗(y∗1 − uyz) = 0

... =
...

αx4Z
∗(x∗4 − uxz) + βy4Z

∗(x∗4 − uxz) + γ(x4 − uxz)− Z∗(x∗4 − uxz) = 0
αx4Z

∗(y∗4 − uyz) + βy4Z
∗(y∗4 − uyz) + γ(y4 − uyz)− Z∗(y∗4 − uyz) = 0

(52)
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Note that there are 8 equations for 5 unknowns which are

ξ = (α, β, γ, uxz, uyz) (53)

Therefore, all the four lasers are assumed to have the same orientation. The system can be
numerically solved by a minimization algorithm based on non-linear least squares. Never-
theless, it cannot be analytically ensured that the algorithm always converges to the right
solution. Under calibration errors and image noise, it is possible to reach local minima.
Therefore, demonstrating analytically the global asymptotic stability of this position-based
approach seems out of reach.

In the following subsection simulations using this position-based approach are presented.

5.1 Simulation results
The simulations have been performed by taking into account a sampling time of ∆t = 40 ms
and the camera intrinsic parameters obtained from the experimental setup (see Section 9).
The laser-cross has been simulated using L = 15 cm according to the real experimental
setup. The desired position has been chosen so that the camera is parallel to the plane at
Z∗ = 60 cm. The initial position the camera is at a distance of 105 cm from the plane and
the relative orientation camera-object is defined by αx = −30◦ and αy = 15◦ according to
the specification given in Appendix A. The gain λ has been set to 0.12.

5.1.1 Ideal system

A first simulation has been done by taking into account a perfect alignment of the laser-
cross with the camera frame. Furthermore, it has been assumed that the camera intrinsic
parameters are perfectly known and all the lasers have the same direction (which coincides
in this case with the optical axis direction). The initial and desired image simulated under
these conditions are shown in Fig. 6. As can be seen, the epipolar lines of the lasers 1 − 3
and 2− 4 are perfectly orthogonal and intersect in the central point of the image.

non-constant control law: Fig. 7 shows the results when L̂s is estimated at each iteration
by using the reconstructed object plane parameters. Fig. 7c shows the coordinates of a fixed
point expressed in the camera frame along the simulation. The fixed point has been set
as the initial position of the camera origin. Note that the camera trajectory is almost a
straight line in the cartesian space as can also be observed in Fig. 7d. This is possible since
the object pose is perfectly reconstructed under the ideal conditions. Furthermore, the task
function has a pure exponential decrease since Ls = Ls and the closed-loop equation of the
system becomes

ė = −λe (54)
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Figure 6: Simulation of the ideal system. The initial point distribution is shown with the
red dots. The desired point distribution is depicted by the circles. The epipolar lines are
painted in blue.

constant control law: the results when using the constant control law based on L̂s = L∗s
in (43) are plotted in Fig. 8. As can be seen, even if the camera trajectory is no longer
almost a straight line, the lateral displacements of the camera are quite small. On the other
hand, both the task function components and the camera velocities are strictly monotonic
thanks to the linear link existing between them near the desired position (as can be seen in
the form of L∗s).

5.1.2 System including laser-cross misalignment and image noise

A second simulation including calibration errors and image noise has been performed. First,
the laser-cross has been displaced from the camera origin according to the translation vector
(4, 10, 9) cm. Then, the laser-cross has been rotated 12◦ about its Z axis, 9◦ about Y and
−15◦ about X . The rest of model assumptions still fit (all the lasers have the same relative
direction and perfect camera calibration). However, random gaussian noise with standard
deviation of 0.5 pixels has been added to the images at each iteration.

The initial position of the camera is still at 105 cm from the object but their relative
orientation is defined by αx = −25◦ and αy = 15◦. The initial and desired image are
shown in Fig. 9. Note that the large misalignment of the laser-cross is evident in these
images. However, note that all the epipolar lines intersect in a unique image point. This
only happens when all the laser pointers have the same direction.

As can be seen in Fig. 10 and Fig. 11 the behavior of both control laws when using
s = (γ, β, α) is robust against large misalignment of the laser-cross. The image noise mainly
affects the components of the task function e2 and e3 while e1 remains almost insensitive to
it.

Remark: the success of the position-based approach in front of large calibration errors
relies on the iterative minimization of the non-linear system of equations which leads to a
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Figure 7: Ideal system: simulation using s = (γ, β, α) and the non-constant control law. a)
e = s− s∗ vs. time (in s). b) Camera velocities (ms/s and rad/s) vs. time. c) Fixed point
coordinates in the camera frame. d) Scheme of the camera trajectory.
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Figure 8: Ideal system: simulation using s = (γ, β, α) and the constant control law. a)
e = s− s∗ vs. time (in s). b) Camera velocities (ms/s and rad/s) vs. time. c) Fixed point
coordinates in the camera frame. d) Scheme of the camera trajectory.

robust depth estimation of the four projected laser points. During this simulation we have
detected certain sensitivity of the numeric algorithm in front of image noise. Therefore, a
robust algorithm of minimization must be used.

6 Image points approach
The simplest 2D visual servoing approach that can be defined consists of using the image
coordinates of the four projected points. According to the ideal model, if the laser-cross is
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Figure 9: Simulation of the system including large laser-cross misalignment. The initial
point distribution is shown with the red dots. The desired point distribution is depicted by
the circles. The epipolar lines are painted in blue.

aligned with the camera frame, the coordinates x1, y2, x3 and y4 of the four points remain
always to 0. Therefore, we can chose as visual features the following vector

s = (y1, x2, y3, x4) (55)

Since the number of visual features k = 4 is greater than the number of degrees of freedom
that must be controlled (m = 3), matrix W is chosen so that its rows are the basis of the
row space generated by L̂s

W =




0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0


 (56)

Then, setting C = WL̂s

+
, the control law in (33) becomes

v = −λ
(
WL̂s

+
L̂s

)+

WL̂s

+
(s− s∗) (57)

and the closed-loop equation of the system in (36) when using image points is

ė = −λWL̂s

+
Ls

(
WL̂s

+
L̂s

)+

e (58)

A constant interaction matrix is used in the control law, which is obtained by using the
parameters of the ideal model presented in Table 1 (see Section 3.2.1), evaluated in the
desired position where n = (0, 0, 1) and D = −Z∗.

L̂s = L∗s =




0 0 L/Z∗2 L2/Z∗2 0 0

0 0 −L/Z∗2 0 −L2/Z∗2 0

0 0 −L/Z∗2 L2/Z∗2 0 0

0 0 L/Z∗2 0 −L2/Z∗2 0


 (59)
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Figure 10: System including large laser-cross misalignment and image noise: simulation
using s = (γ, β, α) and the non-constant control law. a) e = s − s∗ vs. time (in s). b)
Camera velocities (ms/s and rad/s) vs. time. c) Fixed point coordinates in the camera
frame. d) Scheme of the camera trajectory.

INRIA



Visual servoing by means of structured light 29

a) b)

0 5 10 15 20 25 30
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

t

e1
e2
e3

c) d)

0 5 10 15 20 25 30
−0.5

−0.4

−0.3

−0.2

−0.1

0

t

X
Y
Z

Figure 11: System including large laser-cross misalignment and image noise: simulation
using s = (γ, β, α) and the constant control law. a) e = s− s∗ vs. time (in s). b) Camera
velocities (ms/s and rad/s) vs. time. c) Fixed point coordinates in the camera frame. d)
Scheme of the camera trajectory.

In the following subsections three studies of stability are faced. First, we show that
the global asymptotic stability of the ideal model cannot be proved. Afterwards, the local
asymptotic stability of the system is analyzed taking into account certain types of laser-cross
misalignment. Finally, the local asymptotic stability in front of errors in the camera intrinsic
parameters is also studied.
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6.1 Global asymptotic stability under perfect conditions
The general expression of Ls is obtained by using the ideal model parameters in Table 1
(see Section 3.2.1) which are expressed in function of the object parameters. The obtained
matrix is

Ls=




LAC
(BL+D)2

LBC
(BL+D)2

LC2

(BL+D)2

L(B2L+BD+LC2)
(BL+D)2 − LA

BL+D − L2AC
(BL+D)2

− LAC
(AL−D)2 − LBC

(AL−D)2 − LC2

(AL−D)2
BL

AL−D −L(LA2+LC2−AD)
(AL−D)2

L2BC
(AL−D)2

− LAC
(D−BL)2 − LBC

(D−BL)2 − LC2

(D−BL)2 −L(BD−LB2−LC2)
(D−BL)2

LA
D−BL − L2AC

(D−BL)2

LAC
(AL+D)2

LBC
(AL+D)2

LC2

(AL+D)2
BL

AL+D −L(LA2+LC2+AD)
(AL+D)2

L2BC
(AL+D)2




(60)
A sufficient condition for the system to be globally asymptotically stable is that the

product of matrices M in the closed-loop equation is positive definite. The positiveness of
M is ensured if all the eigenvalues of its symmetric part S are positive.

When using the constant control law based on L∗s the analytic expression of the eigen-
values are too complex. On the other hand, if a non-constant law based on estimating Ls at
each iteration is used (reconstructing the object pose parameters involved by triangulation),
M is the identity so that the global asymptotic stability of the ideal model is ensured for
any initial object pose.

In presence of calibration errors, the global asymptotic stability analysis becomes too
complex. That is why we use instead the local asymptotic stability analysis.

6.2 Local asymptotic stability analysis under laser-cross misalign-
ment

The local asymptotic stability analysis is based on studying the real part of the eigenvalues
of the matrices product appearing in the closed-loop equation (58) evaluated in the desired
state

M(e∗) = WL̂s

+
Ls(e

∗)
(
WL̂s

+
L̂s

)+

(61)

where Ls(e
∗) is the real interaction matrix at the desired state which takes into account the

actual pose of the laser-cross. We take the model parameters presented in Appendix B in
order to obtain such an interaction matrix. The study of stability when using an estimation
of L̂s at each iteration becomes too complex. The case of using the constant control law
based on L∗s is considered in the following sections.

6.2.1 Misalignment consisting of a translation

In this case we assume that the cross-laser frame has the same orientation as the camera
frame, but that its center has been displaced according to the vector CTL = (tx, ty, tz). In
this case the parameters in Table 3 are evaluated for A = B = 0, C = 1 and D = −Z∗ in
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order to obtain the expression of Ls(e
∗) which is

Ls(e
∗) =




0 0
L+ty
Z∗2

(L+ty)2

Z∗2 − (L+ty)tx
Z∗2 0

0 0 −L−tx
Z∗2 − ty(L−tx)

Z∗2 − (L−tx)2

Z∗2 0

0 0 −L−ty
Z∗2

(L−ty)2

Z∗2

(L−ty)tx
Z∗2 0

0 0 L+tx
Z∗2

ty(L+tx)

Z∗2 − (L+tx)2

Z∗2 0




(62)

The system is locally asymptotically stable if and only if the eigenvalues of M(e∗) have
all positive real part. The eigenvalues of M(e∗) are

σ1 = 1

σ2 =
t2x + t2y + 2L2 +

√
(t2x + t2y)2 + 6L2(t2x + t2y)

2L2

σ3 =
t2x + t2y + 2L2 −

√
(t2x + t2y)2 + 6L2(t2x + t2y)

2L2

Imposing their positivity the following constraint arises

t2x + t2y < 2L2 (63)

which means that the local asymptotic stability is only ensured when the projection of
the laser-cross center into the camera plane Z = 0 is included in the circle of radius

√
2L

centered in the camera origin (see Fig. 12 for a schema). Note that the component tz of the
misalignment does not affect the local asymptotic stability. Therefore, a displacement of the
laser-cross from the camera origin can strongly affect the global asymptotic stability of the
system when using image points since even the local asymptotic stability is constrained.

6.2.2 Misalignment consisting of individual rotations

Let now test the stability of the system when the laser-cross is centered in the camera frame,
but rotated with respect to one of the axis. If the three rotations are considered at the same
time, too many parameters appear and no analytical results arise.

In the first case, the laser-cross is rotated an angle ψ around the X axis of the camera
frame. The interaction matrix Ls(e

∗) is calculated according to the model parameters in
Table 4. The eigenvalues of M(e∗) are

σ1 = 1

σ2 =
1 + cosψ

2 cosψ

σ3 =
1

cos2 ψ
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Figure 12: Region of local asymptotic stability for the projection of the laser-cross onto the
image plane

it is easy to see that all the eigenvalues are positive if the rotation angle ψ is expressed in
the interval (−π/2, π/2). Note that there is a singularity for ψ = −π/2 and ψ = π/2, since
in those configurations the lasers do not intersect the object and therefore the servoing is
not possible.

When a rotation θ is done around the Y axis the same eigenvalues are obtained. Finally,
the eigenvalues corresponding to the case of a rotation φ around the Z axis are

σ1 = cosφ

σ2 = cos2 φ+
√

cos2 φ(cos2 φ− 1)

σ3 = cos2 φ−
√

cos2 φ(cos2 φ− 1)

The positivity of the first eigenvalue imposes that φ ∈ [−π/2, π/2]. In the second and
the third eigenvalue, the square root is always of a negative number, so that the real part
of both eigenvalues is cos2 φ, which is always positive.

In conclusion, the approach based on image points is locally asymptotic stable with
respect to individual rotations of the laser-cross around the principal axis of the camera
frame.
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6.3 Local asymptotic stability analysis in presence of camera cali-
bration errors

This section presents the local asymptotic stability analysis of the system when the laser-
cross is perfectly aligned with the camera frame but the calibrated intrinsic parameters of
the camera are not the real ones.

We model the intrinsic parameters of the camera according to the following matrix

A =




fku 0 u0

0 fkv v0

0 0 1


 (64)

where (u0, v0) is the principal point in pixels, f the focal distance (in meters), and (ku, kv)
the conversion factors from meters to pixels for the horizontal and vertical camera axis,
respectively. This matrix expresses how the normalized coordinates x = X/Z of a 3D point
projects onto a certain pixel xp of the image as follows

xp = Ax (65)

When only an estimation Ã of the real intrinsic parameters is available, an estimation x̃ of
the real normalized coordinates x is obtained from the pixel coordinates

x̃ = Ã−1xp (66)

This estimation is related to the real normalized coordinates by

x̃ = Ã−1Ax (67)

Hereafter, the elements of Ã−1A will be noted as follows

Â−1A =




fku

f̃ k̃u
0

u0 − ũ0

f̃ k̃u

0
fkv

f̃ k̃v

v0 − ṽ0

f̃ k̃v
0 0 1




=




Ku 0 U0

0 Kv V0

0 0 1


 (68)

We assume that Ku > 0 and Kv > 0 since f , ku and kv are positive by definition.
With this notation, the estimated normalized coordinates are related to the real ones as

x̃ = Kux+ U0

ỹ = Kvy + V0 (69)

and therefore, its time derivatives are

˙̃x = Kuẋ
˙̃y = Kvẏ (70)
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so that

L �x = KuLx

L �y = KvLy (71)

By using the equations above, it is easy to calculate the interaction matrix L�s corresponding
to the visual features set s̃ measured under a bad camera calibration. Then, the local
asymptotic stability analysis must be applied to the closed-loop equation of the measured
task function ẽ

˙̃e = CL�s(ẽ)
(
CL̂s

)+

ẽ (72)

For the case of s̃ = (ỹ1, x̃2, ỹ3, x̃4) it can be found that the product of matrices M(ẽ) in the
closed-loop equation of the system evaluated in the desired state becomes

M(ẽ∗) =




Ku +Kv

2
0 0

0 Kv 0
0 0 Ku


 (73)

whose eigenvalues are in this case the elements of the main diagonal, which are always
positive if Ku > 0 and Kv > 0, which is true if f̃ > 0, k̃u > 0 and k̃v > 0. Therefore, the
local asymptotic stability of the system when using the image point coordinates is ensured
if the elements of the main diagonal of Ã are positive.

6.4 Simulation results
The system based on the set of visual features s = (y1, x2, y3, x4) has been simulated under
the same conditions than the ones exposed in Section 5.1.

6.4.1 Ideal system

In Fig. 13 the results of the ideal system when using normalized image points is presented.
In this case, the decrease of s − s∗ is not pure exponential and the rotational velocities
generated by the constant control law based on L∗s are non-monotonic.

6.4.2 System including laser-cross misalignment and image noise

The system under the calibration errors described in Section 5.1.2 has rapidly diverged
when using s = (y1, x2, y3, x4). This result was already expected from the local asymptotic
stability analysis of this set of visual features when laser-cross misalignment occurs.

6.5 Linear combination of image points
As it has been said, in order to fulfill a plane-to-plane virtual link we only need k = 3
independent visual features. In the approach based on image points redundant information

INRIA



Visual servoing by means of structured light 35

a) b)

0 10 20 30 40
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

t

y1−y1*
x2−x2*
y3−y3*
x4−x4*

c) d)

0 10 20 30 40
−0.5

−0.4

−0.3

−0.2

−0.1

0

t

X
Y
Z

Figure 13: Ideal system: simulation using s = (y1, x2, y3, x4) and the constant control law.
a) e = s − s∗ vs. time (in s). b) Camera velocities (ms/s and rad/s) vs. time. c) Fixed
point coordinates in the camera frame. d) Scheme of the camera trajectory.
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has been used since the number of visual features was greater than the number of controlled
degrees of freedom. One might think about linearly combining the image points coordinates
in order to obtain a set of 3 visual features.

For example, let us define the following set of visual features

f =
(
x4−x2 y1+y3 x2+x4

)
(74)

The interaction matrix for the desired position is

L∗f =




0 0 2L/Z∗2 0 0 0

0 0 0 2L2/Z∗2 0 0

0 0 0 0 −2L2/Z∗2 0


 (75)

which seems much more decoupled than the interaction matrix corresponding to the image
points approach in (59).

Let us generalize the definition of the set of 3 visual features f as a linear combination
of s of the form

f = Qs (76)
Q̇ = 0

so that the interaction matrix in the desired state has the general form

L∗f =




0 0 D1 0 0 0
0 0 0 D2 0 0
0 0 0 0 D3 0


 (77)

Note that L∗f can be decomposed as

L∗f =




D1 0 0
0 D2 0
0 0 D3


W = DW (78)

On the other hand, by deriving (76) we have

ḟ = Qṡ = QLsv (79)

so that
L∗f = QL∗s (80)

Therefore, the following equality holds

DW = QL∗s (81)

and post-multiplying both sides for L∗s
+

DWL∗s
+ = QL∗sL∗s

+ (82)
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since L∗sL∗s
+ = Ik we have

Q = DWL∗s
+ (83)

The time derivative of the task function when using s can be expressed as

es = C(s− s∗)⇒ ės = Cṡ = CLsv = WL+
s Lsv (84)

Similarly, for the case of f we have

ef = f − f∗ ⇒ ėf = ḟ = Lf v = QL+
s Lsv = DWL+

s Lsv (85)

Note therefore that the dynamics of both tasks are related as follows

ėf = Dės (86)

Therefore, the system dynamics of ef are identical to the dynamics of es but including a
constant factor. Therefore, using a linear combination of visual features which obtains a
diagonal interaction matrix in the desired state does not affect the behavior of the system.

In the following sections new sets of visual features are proposed aiming to improve the
performance of the system in terms of stability against calibration errors and decoupling.
As it will be seen, the features are based on non-linear combinations of the image points
coordinates. Thus, matrix Q will depend on the state so that it will be no longer constant
and therefore, the dynamics of e will change.

7 Normalized area and angles approach
In this section we analyze the performance of a set of visual features consisting of non-linear
combinations of the image points [45].

The first visual feature is based on the area of an element of the image. Such visual
feature has been largely used for depth control [17,38,53]. In our case, we take into account
the area enclosed by the four image points, which can be formulated as follows

a =
1

2
((x3 − x1)(y4 − y2) + (x2 − x4)(y3 − y1)) (87)

The interaction matrix of the area can be easily derived by using the interaction matrices
of the image point coordinates appearing in the formula above. The interaction matrix
evaluated in any state where the camera is parallel to the object (A = 0, B = 0, C = 1) at
a certain depth Z (D = −Z) will be hereafter denoted as L‖. For the case of the area this
matrix is

L
‖
a = ( 0 0 2a‖/Z 0 0 0 ) (88)

Note that the area a‖ observed in any position where the camera is parallel to the object is
known. According to the ideal model it depends on the lasers positions which are symmet-
rically placed around the camera and pointing towards the same direction than the optical
axis. Concretely, we have

a‖ =
A‖

Z2
(89)
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where A‖ is the 3D area enclosed by the four points onto the object surface whenever the
camera is parallel to the object. Since the four laser pointers are orthogonally projected,
the 3D area is constant for any position where the camera and the object are parallel.
Concretely, we have that

A‖ = 2L2 (90)

Thus, the interaction matrix in (88) can be rewritten as

L
‖
a = ( 0 0 4L2/Z3 0 0 0 ) (91)

Note that the dynamics of the area area strongly non-linear.
The 2 visual features controlling the remaining degrees of freedom are selected from the

4 virtual segments defined according to Fig. 14.
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Figure 14: At left side, virtual segments defined by the image points. At right side, definition
of the angle αj .

An interesting feature is the angle between each pair of intersecting virtual segments.
The angle αj corresponding to the angle between the segment ljk and the segment lji (see
Fig. 14) is defined as

sinαj =
‖−→u ×−→v ‖
‖−→u ‖‖−→v ‖ , cosαj =

−→u · −→v
‖−→u ‖‖−→v ‖ (92)

Then, developing the inner and outer products, the angle is obtained from the point coor-
dinates as follows

αj =arctan
(xk − xj)(yi − yj)− (xi − xj)(yk − yj)
(xk − xj)(xi − xj) + (yk − yj)(yi − yj)

(93)

Knowing that the derivative of f(x) = arctan(x) is ḟ(x) = ẋ/(1 + x2), the interaction
matrix of αj can easily be calculated.

Then, by choosing the visual features α13 = α1−α3 and α24 = α2−α4, the following
interaction matrices are obtained for the case whenever the camera is parallel to the object

L
‖
α13 = ( 0 0 0 2L/Z 0 0 )

L
‖
α24 = ( 0 0 0 0 2L/Z 0 )

(94)
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Note that by using the visual feature set s = ( a, α13, α24) the interaction matrix is
diagonal (for any state where the camera and the object are parallel) so that a decoupled
control scheme is obtained with no singularities. However, it can be also noted that the non-
null terms of the interaction matrix are inversely proportional to the depth Z or a power of
the depth Z3. This will cause the camera trajectory to be not completely satisfactory. As
pointed out by Mahony et al. [38], a good visual feature controlling one degree of freedom
(dof) is the one whose error function varies proportionally to the variation of the dof.

Let us start by searching a feature an whose time derivative only depends on constant
values. Since the time derivative of a depends on the inverse of the depth, we can search
a feature of the form an = aγ so that the depth is cancelled in its time derivative. Then,
taking into account all this, the required power γ can be deduced as follows

an = aγ ⇒ ȧn = γaγ−1ȧ =
2γAγ

Z2γ+1
· Vz (95)

In order to cancel the depth it is necessary that

2γ + 1 = 0⇒ γ = −1/2 (96)

so that we find an = 1/
√
a as in [38, 52]. The interaction matrix of an evaluated in the

desired state is in fact valid for any camera position where it is parallel to the object since
it only depends on constant values and not on the depth

L∗an = L
‖
an = ( 0 0 −1/(

√
2L) 0 0 0 ) (97)

Following the same method we can find that defining

α13n = α13n/
√
a (98)

α24n = α24n/
√
a (99)

we obtain the following interaction matrices for the new normalized features

L∗α13n
= L

‖
α13n

= ( 0 0 0
√

2 0 0 )

L∗α24n
= L

‖
α24n

= ( 0 0 0 0
√

2 0 )
(100)

These normalized visual features are related to the object parameters (A,B,C,D) as
follows

an = −
√

(A2L2 −D2)(B2L2 −D2)√
2LCD

α13n = an arctan

(
4LBD(L2(A2 +B2)− 2D2)

L4(A2 +B2)2 + 4D2(D2 − 2B2L2)

)

α24n = an arctan

(
4LAD(L2(A2 + B2)− 2D2)

L4(A2 +B2)2 + 4D2(D2 − 2A2L2)

)
(101)
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Similarly, they are related to the object representation (γ = −D/C, β = −B/C, α = −A/C)
by

an = −
√

(α2L2 − γ2)(β2L2 − γ2)√
2Lγ

α13n = an arctan

(
4Lβγ(L2(α2 + β2)− 2γ2)

L4(α2 + β2)2 + 4γ2(γ2 − 2β2L2)

)

α24n = an arctan

(
4Lαγ(L2(α2 + β2)− 2γ2)

L4(α2 + β2)2 + 4γ2(γ2 − 2α2L2)

)
(102)

If a Taylor approximation of first order is made about A = B = 0 or α = β = 0, the
following relationships appear

an ≈ 1√
2L

(−D
C

)
=

1√
2L

γ

α13n ≈ −
√

2

(−B
C

)
= −

√
2β

α24n ≈
√

2

(−A
C

)
=

√
2α

(103)

Therefore, when the camera is nearly parallel to the object, the features based on normalized
area and angles are proportional to the object parameters (γ,β,α). That is why the features
s = (an, α13n, α24n) are decoupled in the desired state.

Given this set of visual features we have m = k = 3 so that C = I3 and the control law
is

v = −λL̂s

+
(s− s∗) (104)

and therefore the closed-loop equation of the system is

ė = −λLsL̂s

+
e (105)

When using a constant control law, the estimation of the interaction matrix is simply

L̂s = L∗s = L‖s =




0 0 −1/(
√

2L) 0 0 0

0 0 0
√

2 0 0

0 0 0 0
√

2 0


 (106)

7.1 Global asymptotic stability under perfect conditions
Unfortunately, the interaction matrix in function of the object parameters corresponding to
the ideal model is very complex. For example, we show the non-null elements of the general

INRIA



Visual servoing by means of structured light 41

interaction matrix for an expressed in the object frame (see Appendix C)

oLan =
(

0 0 oLan(Vz)
oLan(Ωx) oLan(Ωy) 0

)
(107)

oLan(Vz) = 4
C2L2D(A2B2L4 −D4)

(A2L2 −D2)2(B2L2 −D2)2

oLan(Ωx) =
4L2CBD2((1 + C)(D4 − L2D2) +A2L4(1−A2 + C(1 + B2)))

(1 + C)(A2L2 −D2)2(B2L2 −D2)2

oLan(Ωy) = −4L2CAD2((1 + C)(D4 − L2D2) +B2L4(1−B2 + C(1−A2)))

(1 + C)(A2L2 −D2)2(B2L2 +D2)2

The interaction matrices for α13n and α24n are still more complicated because of the defini-
tion of their time derivatives

α̇13n = an · α̇13 + α13 · ȧn
α̇24n = an · α̇24 + α24 · ȧn (108)

Note that when the camera is not parallel to the object α13 and α24 are different to 0. Then,
the general interaction matrices depend on arctan functions.

Trying to analyze the global asymptotic stability of the system when using the constant
control law based on matrix (106) becomes too complex. We could only ensure the global
asymptotic stability of the ideal system when using a non-constant control law based on
perfectly estimating L̂s = Ls at each iteration. In this case, the closed-loop equation of the
system is

ė = −λe (109)

obtaining a pure exponential decrease of the task function.
Hereafter we focus on the image-based approach based on s = (an, α13n, α24n) and the

constant control law. We show its robustness against to calibration errors through the local
asymptotic stability analysis.

7.2 Local asymptotic stability analysis under laser-cross misalign-
ment

7.2.1 Misalignment consisting of a translation

The interaction matrix for the desired position including a misalignment of the laser-cross
consisting of a translation CTL = (tx, ty, tz) has been computed taking into account the
model parameters in Table 3 at Appendix B obtaining

Ls(e∗) =




0 0 −
√

2
2L − 3

√
2ty

4L
3
√

2tx
4L 0

0 0 0
√

2 0 0

0 0 0 0
√

2 0


 (110)
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Note that the misalignment parameters only affect the normalized area an. On the other
hand, α13n and α24n are invariant to such type of misalignment near the desired state.

Then, the product of matrices in the closed-loop equation (105) becomes M(e∗) =

Ls(e
∗)L̂s

+
that is

M(e∗) =




1 − 3ty
4L

3tx
4L

0 1 0
0 0 1


 (111)

Note that the eigenvalues of M(e∗) are equal to the elements of the main diagonal. Therefore,
the eigenvalues are all equal to 1. It means that the local asymptotic stability of the system
when using this set of visual features is not affected by a misalignment of the laser-cross
consisting of a translation. Therefore, the stability domain of this set of visual features is
much larger than the approach based on image points.

7.2.2 Misalignment consisting of individual rotations

Let us now consider how does a rotation of the laser-cross around one of the axis of the
camera frame affect the local asymptotic stability of the system.

Given the case of a rotation ψ around the X axis the eigenvalues of M(e∗) are

σ1 =
2 cosψ

√
1/ cosψ

cos2 ψ + 1

σ2 =
2 cos2 ψ

√
1/ cosψ

cos2 ψ + 1

σ3 = cosψ
√

1/ cosψ

which are all positive and definite if ψ ∈ (−π/2, π/2).
The same eigenvalues are obtained for the case of a rotation θ around the Y axis of the

camera.
Finally, when a rotation φ is applied around the Z axis, the eigenvalues of M(e∗) are

σ1 = 1

σ2 = cosφ+
√

cos2 φ− 1

σ3 = cosφ−
√

cos2 φ− 1

Note that the real part of the two last eigenvalues is cosφ so in order to ensure their positivity
we must have φ ∈ [−π/2, π/2].

It can be stated that the local asymptotic stability of the approach based on the nor-
malized area and angles is not affected by individual rotations of the laser-cross around the
camera axis.
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7.3 Local asymptotic stability analysis in presence of camera cali-
bration errors

We now present the local asymptotic stability analysis taking into account in the real in-
teraction matrix both the real and the estimated intrinsic parameters of the camera. As
explained in Section 6.3, it is necessary to study the dynamic behavior of the measured task
function ẽ evaluated in the desired state

˙̃e
∗

= −λL�s(ẽ
∗)L̂s

+
ẽ∗ (112)

In this case, the interaction matrix in the desired state ẽ∗ is

L�s(ẽ∗) =




0 0 −
√

2(Ku+Kv)
4L 0 0 0

0 0 0 2LKv√
KuZ∗

0 0

0 0 0 0 2
√
KuL
Z∗ 0


 (113)

so that the product of matrices M(ẽ∗) = Ls(ẽ
∗)L̂s

+
is

M(ẽ∗) =




Ku +Kv

2
0 0

0

√
2LKv√
KuZ∗

0

0 0

√
2KuL

Z∗




(114)

Note that the eigenvalues are the elements of the main diagonal and are positive if Ku > 0
and Kv > 0, which is true if f̃ > 0, k̃u > 0 and k̃v > 0.

Therefore, the system based on the normalized area and angles is robust against camera
calibration errors if the elements of the main diagonal of Ã are positive.

7.4 Simulation results
The simulations described in Section 5.1 have been also done taking into account the set of
visual features s = (an, α13n, α24n) and the constant control law based on L∗s .

7.4.1 Ideal system

The results obtained according to the ideal system specification are shown in Fig.3 15. The
decrease of the task function is strictly monotonic as well as the camera velocities.

Note that the camera velocities and the camera trajectory are pretty similar to the ones
obtained by the position-based approach in Section 5.1.1 when using the constant control
law. This similarity was expected from the analytic approximate behavior deduced in (103).
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Figure 15: Ideal system: simulation using s = (an, α13n, α24n) and the constant control
law. a) e = s− s∗ vs. time (in s). b) Camera velocities (ms/s and rad/s) vs. time. c) Fixed
point coordinates in the camera frame. d) Scheme of the camera trajectory.
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7.4.2 System including laser-cross misalignment and image noise

Fig. 16 presents the results obtained by the current image-based approach for the simulation
conditions described in Section 5.1.2. Note that the system is almost unaffected by the large
laser-cross misalignment, as already expected from the local asymptotic stability analysis
results in presence of this type of calibration errors. Again, the results are very similar to
the ones obtained by the positioned-based approach when using the constant control law.
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Figure 16: System including large laser-cross misalignment and image noise: simulation
using s = (an, α13n, α24n) and the constant control law. a) e = s − s∗ vs. time (in s).
b) Camera velocities (ms/s and rad/s) vs. time. c) Fixed point coordinates in the camera
frame. d) Scheme of the camera trajectory.
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8 A decoupled image-based approach
The aim of this section is to obtain a set of 3 visual features which decouples as much as
possible the controlled degrees of freedom not only near the desired position (as in the case
of the normalized area and angles) but for any camera-object pose. With such a decoupling
we also aim to demonstrate the global asymptotic stability of the system when using the
constant control law based on L∗s . Moreover, we expect a set of visual features which have
the same robustness against calibration errors demonstrated for the previous features.

Let us take a look at the interaction matrices of y−1
1 , y−1

3 , x−1
2 and x−1

4

Ly−1
1

=
(
−K1 −K2 −K3 −K2(BL+D)

C − 1 K1(BL+D)
C K1L

)

Ly−1
3

=
(
K1 K2 K3 −K2(BL−D)

C − 1 K1(BL−D)
C K1L

)

Lx−1
2

=
(
K1 K2 K3 −K2(AL−D)

C
K1(AL−D)

C + 1 −K2L
)

Lx−1
4

=
(
−K1 −K2 −K3 −K2(AL+D)

C
K1(AL+D)

C + 1 −K2L
)

with K1 =
A

LC
K2 =

B

LC
K3 =

1

L

It is obvious that simple combinations of such features can lead to a decoupled system.
We have chosen the following set of visual features

s =
(
y−1

1 − y−1
3 , y−1

1 + y−1
3 , x−1

2 + x−1
4

)

=

(
y3 − y1

y1y3
,

y1 + y3

y1y3
,

x2 + x4

x2x4

)
(115)

whose interaction matrix is

Ls =



− 2A
LC − 2B

LC − 2
L − 2BD

LC2
2AD
LC2 0

0 0 0 − 2(1−A2)
C2

2AB
C2

2A
C

0 0 0 − 2AB
C2

2(1−B2)
C2 − 2B

C


 (116)

which is always rank 3 unless for degenerated cases. Note that the rotational part is de-
coupled from the translational one for any camera-object pose. To our knowledge, there
are no other image-based approach where the interaction matrix has such a high order of
decoupling for any state.

In the ideal case, that is, when no calibration errors occur, the visual features are related
to the object parameters as follows

s = (s1, s2, s3) =

(
− 2D

LC
, − 2

B

C
, − 2

A

C

)
(117)
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Therefore, these features are proportional to the parameters of the object plane expressed
as

Z = γ + βY + αX (118)

so that
s1 =

2

L
γ, s2 = 2β, s3 = 2α (119)

Furthermore, taking into account the Taylor developments in (103), the new visual features
are related to (an, α13n, α24n) by

s1 ≈ 2
√

2an, s2 ≈ −
√

2α13n, s3 ≈
√

2α24n (120)

Therefore, under ideal conditions, the image-based approach based on these features behaves
as the position-based technique presented in Section 5 and very similar to the image-based
approach based on (an, α13n, α24n). Thus, a new way to implicitly estimate the object pose
has been found from a non-linear combination of the image point coordinates. In absence
of calibration errors the equations in (119) could be used to obtain the object parameters
(γ, β, α) and execute the position-based approach without need to solve the system of non-
linear equations in (52).

Another interesting characteristic of these features is that the interaction matrix can be
expressed in terms of the task function components. Usually, in most part of 2D visual
servoing approaches this is unfeasible. By using the normalized image points coordinates
for the ideal case (presented in Table 1), the components of e = s− s∗ = (e1, e2, e3) can be
expressed as follows

e1 =
−2(D+ CZ∗)

LC
, e2 = −2

B

C
, e3 = −2

A

C
(121)

We remember that n is a unitary vector so that C =
√

1−A2 −B2. Thus, we have a
system of 3 equations and 3 unknowns (A, B and D) whose unique solution is

A = −e3

h
, B = −e2

h
, D = −e1L+ 2Z∗

h
(122)

with
h =

√
e2

2 + e2
3 + 4 (123)

and therefore
C =

2

h
(124)

Using these equivalences, the interaction matrix can be expressed in terms of the task
function components as follows

Ls(e) =




e3
L

e2
L − 2

L − e2(e1L+2Z∗)
2L

e3(e1L+2Z∗)
2L 0

0 0 0 − 1
2e

2
2 − 2 1

2e2e3 −e3

0 0 0 − 1
2e2e3 2 + 1

2e
2
3 e2


 (125)
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Note that all the terms in the interaction matrix are known. This allows us to decide
which model of interaction matrix is used in the control law obtained by setting W = L̂s so
that C = I3 and

v = −λL̂s

+
e (126)

• L̂s estimated at each iteration. Note that in this case the elements of the interaction
matrix can be obtained from the task function, without reconstructing the object
parameters by triangulation. The main advantage of such a control law is that if the
interaction matrix is perfectly estimated the task function will have a pure exponential
decrease. However, the camera velocities may be inadequate due to the non-linearities
visible in (125).

• L̂s = L∗s being

L̂s = L∗s =




0 0 −2/L 0 0 0
0 0 0 −2 0 0
0 0 0 0 2 0


 (127)

In this case, the control law becomes simpler and can be calculated faster (it is not
required to calculate the pseudoinverse at each iteration). Note that this matrix does
not contain any non-linearities neither depth information, like in the set of visual
features based on the normalized area and angles. In this case however, this result
has been achieved without need to normalize the features as before. Then, since each
visual feature varies proportionally to the dof which controls, if the task function has
a good decreasing, which will be studied in the following subsection, suitable camera
velocities will be produced [38].

8.1 Global asymptotic stability under perfect conditions
The closed-loop equation of the system is again

ė = −λLs(e)L̂s

+
e (128)

We now present the global asymptotic stability analysis when using two different control
laws.

8.1.1 Non-constant control law

In this case we compute the real interaction matrix at each iteration from the task function
value so that L̂s = Ls(e). Then the product of matrices M in the control law is the identity.
Therefore, the equilibrium point is unique and the closed-loop equation becomes simply

ė = −λe (129)

which ensures a pure exponential decrease of the task function. However, the camera veloc-
ities produced by the non-constant control law can be not very suitable due to the strong
non-linearities in Ls(e)+.
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8.1.2 Constant control law

When using the constant diagonal matrix in (127) in the control law, the product of matrices
M = LsL̂s

+
= LsL

∗
s

+ is the following 3× 3 matrix

M =




1 BD
LC2

AD
LC2

0 B2+C2

C2
AB
C2

0 AB
C2

A2+C2

C2


 =




1 e2(e1L+2Z∗)
4L

e3(e1L+2Z∗)
4L

0
e22
4 + 1 e2e3

4

0 e2e3
4

e23
4 + 1


 (130)

whose determinant is

det (M) =
1

C2
=
h2

4
=

√
e2

2 + e2
3 + 4

4
(131)

which is always non-null, and therefore, the equilibrium point e = 0 is unique. The global
asymptotic stability analysis can be done by using the Lyapunov method, but the sufficient
conditions provided by this method are very restrictive as shown in Appendix D.1. However,
thanks to the nice decoupled form of the interaction matrix, we can solve the differential
system in function of time corresponding to the closed-loop equation of the system

ė(t) = −λLs(e(t))L̂s

+
e(t) (132)

This differential system can be decomposed as follows

ė1(t) = − λ

4L

(
e1(t)

(
4L+ e2(t)2L+ e3(t)2L

)
+ 2Z∗

(
e2(t)2 + e3(t)2

))
(133)

ė2(t) = −λ
4

(e2(t)3 + 4e2(t) + e2(t)e3(t)2) (134)

ė3(t) = −λ
4

(e3(t)3 + 4e3(t) + e3(t)e2(t)2) (135)

The following solutions are obtained according to the developments presented in Appendix D.2

e1(t) =
2e1(0)

a(t)
− 2bZ∗ arctan (u(t))

a(t)L
(136)

e2(t) =
2e2(0)

a(t)
(137)

e3(t) =
2e3(0)

a(t)
(138)

with

a(t) =
√

(e2
2(0) + e2

3(0)) (exp2λt−1) + 4 exp2λt (139)

b =
√
e2

2(0) + e2
3(0) (140)

u(t) =
b(a(t)− 2)

b2 + 2a(t)
(141)
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Let us start by demonstrating the global asymptotic stability of the rotational subsystem
defined by (134) and (135). The subsystem formed by e2(t) and e3(t) is globally asymptot-
ically stable if

lim
t→∞

e2(t) = 0, lim
t→∞

e3(t) = 0 (142)

Both functions clearly tend to 0 when time approaches infinity since limt→∞ a(t) = ∞.
Moreover, it is easy to show that e2(t) and e3(t) are strictly monotonic functions by taking
a look at their first derivative

ėi(t) = −2λei(0) exp2λt
(
e2

2(0) + e2
3(0) + 4

)

a(t)3
(143)

with i = {2, 3}. Note that the functions e2 and e3 are monotonic since the sign of their
derivatives never changes and it only depends on the initial conditions. Furthermore, they
are strictly monotonic since their derivative only zeroes when t→∞ or when the function at
t = 0 is already 0. Therefore, for any initial condition, e2(t) and e3(t) always tend towards 0
strictly monotonically.

The global asymptotic stability of the translational subsystem depends on the behavior
of e1(t). It is easy to show that e1(t) converges to 0 for any initial state since

limt→∞ u(t) = b
2

limt→∞ a(t) = ∞

}
⇒ lim

t→∞
e1(t) = 0 (144)

The monotonicity of e1(t) is not so easy to proof. In fact, depending on the initial condi-
tions, e1(t) can be not monotonic showing some extrema. In Appendix D.3 it is shown that
e1(t) either is always monotonic or it has a unique extremum before converging monotoni-
cally to 0. Furthermore, sufficient conditions are given so that it is possible to check from
the initial state of the system and the desired depth Z∗ if either e1(t) will be monotonic
during all the servoing or it will have a peak.

8.2 Camera trajectory
Thanks to the decoupled form of the interaction matrix in (116) we have obtained the
analytic functions describing the behavior of the task function e(t). Furthermore, when
using the constant control law based on L∗s we can also obtain the functions describing the
camera trajectory. In this case, the control law maps the task function components e1(t),
e2(t) and e3(t) to the camera velocities as follows

v = −λL∗s
+e (145)

where

L∗s
+ =




0 0 0
0 0 0
−L/2 0 0

0 −1/2 0
0 0 1/2
0 0 0




(146)
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so that 



Vz(t) = λ
L

2
e1(t)

Ωx(t) = λ
1

2
e2(t)

Ωy(t) = −λ1

2
e3(t)

(147)

Then, we can express the coordinates of a fixed point X in the camera frame in any
instant of time t when the camera moves according to v(t) = (V(t) Ω(t)) by using the
well-known kinematic equation

Ẋ(t) = −V(t)−Ω(t)×X(t) (148)

Since the constant control law only generates velocities for Vz , Ωx and Ωy, the above equation
can be rewritten as





Ẋ(t) = −Ωy(t)Z(t)

Ẏ (t) = +Ωx(t)Z(t)

Ż(t) = −Vz(t) + Ωy(t)X(t)− Ωx(t)Y (t)

(149)

where Vz(t), Ωx(t) and Ωy(t) are the expressions in (147). If we choose as fixed point the
initial position of the camera (X(0) = (0, 0, 0)), we can solve the system of differential
equations obtaining




X(t) =
e3(0) exp−λt

h(0)2b3
(
expλt b2Z∗h(0)2 arctan (u(t))− e1(0)Lb

(
expλt h(0)2 − b2 − 2a(t)

)

+ b3Z∗ (a(t)− 2)
)

Y (t) =
e2(0) exp−λt

h(0)2b3
(
expλt b2Z∗h(0)2 arctan (u(t))− e1(0)Lb

(
expλt h(0)2 − b2 − 2a(t)

)

+ b3Z∗ (a(t)− 2)
)

Z(t) =
− exp−λt

h(0)2

(
−b2Z∗

(
expλt−1

)
+ e1(0)L (a(t)− 2) 2Z∗

(
a(t)− 2 expλt

))

(150)
Note that X(t) describes how the camera moves farther from its initial position. The

expressions of X(t) and Y (t) have the same form, the only difference is that X(t) depends
on e3(0) while Y (t) does on e2(0). The study of the derivative of X(t) (and similarly for
Y (t)) shows that both X(t) and Y (t) are monotonic functions. The demonstration is as
follows. Let us look at for example at the derivative of X(t)

Ẋ(t) =
λe3(0) expλt

h(0)2a(t)

(
b2Z∗

(
expλt−1

)
+ 2Z∗

(
2 expλt−a(t)

)
+ e1(0)L (2− a(t))

)
(151)

RR n˚5579



52 Jordi Pagès, Christophe Collewet, François Chaumette & Joaquim Salvi

noting that the sign depends on e3(0) and will not change if

b2Z∗
(
expλt−1

)
+ 2Z∗

(
2 expλt−a(t)

)
+ e1(0)L (2− a(t)) ≥ 0 (152)

By using the definition of e1(t) in (121) the above condition can be rewritten as

b2Z∗
(
expλt−1

)
+ 4Z∗

(
expλt

)
− 2D(0)

C(0)
(2− a(t)) ≥ 0 (153)

which is always true since D(0) < 0, C(0) > 0, Z∗ > 0, expλt ≥ 1 and a(t) ∈ [2,∞) (as
shown in Appendix D.2).

Concerning Z(t), its derivative can change of sign, so its monotonicity is not ensured.
Indeed, Z(t) will be monotonic under the same conditions that e1(t) is monotonic too. When
e1(t) is not monotonic, a unique peak will appear also in Z(t).

The final coordinates of X are obtained by calculating the limit when time approaches
infinity

lim
t→∞

X(t) = e3(0)G (154)

lim
t→∞

Y (t) = e2(0)G (155)

lim
t→∞

Z(t) =
e1(0)L− 2Z∗ + h(0)Z∗

h(0)
(156)

with

G =
1

2b3h(0)

(
−2b2Z∗

(
h(0) arctan

(
2

b

)
+ b

)
+ πb2Z∗h(0) + 2be1(0)L (2− h(0))

)
(157)

Note that by using the definition of e1 in function of the object parameters in (121) and
that h = 2/C we have

lim
t→∞

Z(t) = D(0) + Z∗ (158)

where D(0) is the initial distance between the object plane and the camera origin.
In summary, we can state that a complete analytic model describing the behavior of the

system when using the constant control law has been obtained.

8.3 Local asymptotic stability analysis under laser-cross misalign-
ment

The closed-loop equation of the system in presence of calibration errors becomes strongly
coupled so that it is not possible to develop the global asymptotic stability analysis under
these conditions. We present instead the local asymptotic stability analysis when the laser-
cross is not aligned with the camera frame.
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8.3.1 Misalignment consisting of a translation

By using the model parameters in Table 3 we can calculate the interaction matrices of the
inverses of y1, x2, y3 and x4 for the desired state taking into account that the laser-cross is
displaced CTL = (tx, ty, tz) from the camera origin. Then, the interaction matrix of s can
be computed obtaining

Ls(e
∗) =




0 0 2L
t2y−L2 0 − 2Ltx

t2y−L2 0

0 0 − 2ty
t2y−L2 −2

2txty
t2y−L2 0

0 0 − 2tx
t2x−L2 − 2txty

t2x−L2 2 0


 (159)

The local asymptotic stability analysis of the system under this type of misalignment
consists on studying the product of matrices M(e∗) = Ls(e

∗)L̂s

+
which is

M(e∗) =




L2

L2−t2y
0 txL

L2−t2y
− tyL
L2−t2y

1 − txty
L2−t2y

− txL
L2−t2x − txty

L2−t2x 1


 (160)

The eigenvalues of M(e∗) are

σ1 =
L2

L2 − t2y

σ2 =
L2 − t2x +

√
t2x(t2x − L2)

L2 − t2x

σ3 =
L2 − t2x −

√
t2x(t2x − L2)

L2 − t2x
so that imposing the positiveness of σ1 we have that L2 − t2y > 0 which means that

|ty| < L (161)

When imposing the positiveness of σ2 and σ3 we must deal with two hypothesis, one assuming
L2 − t2x > 0 and the other L2 − t2x < 0. Let us develop both hypothesis:

• hypothesis 1 : L2 − t2x > 0. Imposing the positiveness of σ2 and σ3 according to this
assumption leads to

L2 − t2x > 0⇒ Re(σ2) = Re(σ3) = 1 (162)

since √
t2x (t2x − L2) =

√
t2x (−t2x + L2)

√
i (163)
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• hypothesis 2 : L2 − t2x < 0. In this case, imposing the positiveness according to the
second hypothesis we obtain

L2 − t2x < 0⇒ σ2 > 0⇔ L2 − t2x +
√
t2x (t2x − L2) < 0 (164)

which is never true as can be seen by developing the condition as follows
√
t2x (t2x − L2) < −L2 + t2x

t2x
(
t2x − L2

)
< (t2x − L2)2

t2x < t2x − L2

0 < −L2 (165)

Therefore, the right hypothesis is

L2 − t2x > 0 (166)

which imposes that
|tx| < L (167)

Note that the stability domain when using these visual features is a little bit more
restricted than when using directly image point coordinates and therefore, than when using
the normalized area and angles approach. Concretely, the misalignment of the center of
the laser-cross projected onto the camera plane Z = 0 must be included in the square
circumscribed by the circle t2x + t2y < 2L2, which was the error tolerated when using image
points (see Fig. 17).

2L

L

L

Xc

Yc

Figure 17: Local asymptotic stability areas for the projection of the laser-cross center onto
the plane Z = 0.
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Figure 18: a) Rotation around X axis σ2 in function of ψ (degrees) and Zg = Z∗ b) σ2 in
function of ψ (degrees) for the case Zg = 1.1 m

8.3.2 Misalignment consisting of individual rotations

First of all, let us consider a single rotation ψ of the laser-cross around the X axis of
the camera frame. In this case, matrix Ls(e∗) is calculated from the model parameters in
Table 4. Then, the eigenvalues of M = Ls(e∗)L̂s

+
are

σ1 = 1

σ2 = f(L,Z∗, ψ)

σ3 = f(L,Z∗, ψ)

the explicit expressions of σ1 and σ2 are too complex to be included here. In Fig. 18a
the distribution of σ2 in function of the rotation ψ and the depth to the object Z∗ for
L = 0.15 m is plotted. In Fig. 18b a particular case of σ2 for Z∗ = 1.1 m. As can be seen,
the positiveness of σ2 is ensured for almost all angle values. The same plots are shown in
Fig. 19 for σ3. As can be seen, the positiveness of this eigenvalue is not always ensured and
depends on the rotation angle.

In the case of a rotation θ of the laser-cross around the Y axis of the camera, also two
complex eigenvalues appear, whose distributions are plotted in Fig. 20 and Fig. 21, showing
that the rotation around the Y axis is better tolerated by the system.
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Figure 19: Rotation around X axis a) σ3 in function of ψ (degrees) and Zg = Z∗ b) σ3 in
function of ψ (degrees) for the case Zg = 1.1 m
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Figure 20: Rotation around Y axis a) σ2 in function of θ (degrees) and Zg = Z∗ b) σ2 in
function of θ (degrees) for the case Zg = 1.1 m

Finally, if a rotation φ around the Z axis of the camera is applied to the laser-cross, the
eigenvalues obtained from M are

σ1 =
1

cosφ
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Figure 21: Rotation around Y axis a) σ3 in function of θ (degrees) and Zg = Z∗ b) σ3 in
function of θ (degrees) for the case Zg = 1.1 m

σ2 = 1 + i tanφ

σ2 = 1− i tanφ

(168)

imposing the positiveness of the first one, we have that the rotation must be included in
φ ∈ [−π/2, π/2]. Note that the other eigenvalues are complex numbers and that their real
part is always positive. Therefore, rotation of the laser-cross around the optical axis of the
camera does not affect the local asymptotic stability of the system.

In summary, the approach based on this non-linear combination of image points is less
robust against individual rotations of the laser-cross than the image points based approach
and the normalized area and angles approach. In the following section we show how to
overcome this problem by improving the set of visual features.

8.4 Making features robust against laser-cross misalignment
In this section we present a simple method to enlarge the robustness domain of the features
against laser-cross misalignment. The goal is to define a corrected set of visual features s′

which is analytically and experimentally robust against laser-cross misalignment. Fig. 22
shows the image point distribution in the desired state when different types of misalignment
take place (the 4 lasers have the same relative orientation). As can be seen, a general
misalignment of the laser-cross produces that the polygon enclosing the 4 points in the
desired image appears rotated and translated from the image center as shown in Fig. 23a.
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Figure 22: Effects of laser-cross misalignment in the desired image. a) Ideal image. b) The
laser-cross is horizontally displaced or rotated around YC . c) The laser-cross is vertically
displaced or rotated around YC . d) Laser-cross rotated around ZC .

In fact, the set of visual features s = (an, α13n, α24n) is robust against laser-cross mis-
alignment since both the area and the angles are invariant to the location and orientation
of the polygon enclosing the 4 points in the image. Therefore, the corrected set of visual
features s′ must be also unaffected by this type of planar transformation. The idea consists
of defining an image point transformation composed of a planar transformation and a trans-
lation which minimizes the misalignment observed in the image. This image transformation
will be constrained as follows: in absence of laser-cross misalignment, the corrected set of
visual features s′ must be equal to the uncorrected one s. Thus, in the ideal case the results
concerning the global asymptotic stability and camera trajectory concerning s will also hold
for s′.

c)a)

1

3

2 4
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4

b)

1
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2
4

Figure 23: Image points correction. a) Desired image under a general misalignment of the
laser-cross. b) Image points after applying the transformation T. c) Image points after
transformation T and translation −xg .

First of all, we eliminate the misalignment exhibited by the polygon in Fig. 22d which is
produced when the laser-cross is rotated around the optical axis. Let us define the following
unitary vectors

x42 =

(
x42

y42

)
=

x∗4 − x∗2
‖x∗4 − x∗2‖

, x13 =

(
x13

y13

)
=

x∗1 − x∗3
‖x∗1 − x∗3‖

(169)
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Then, a simple 2D transformation matrix of the form

T =
[

x24 x13

]−1
=

1

x42y13 − x13y42

(
y13 −x13

−y42 x42

)
(170)

is defined so that T uses the desired image points in order to align the unitary vector
corresponding to x4 − x2 with the image axis Xp and the unitary vector corresponding to
x1 − x3 with the image axis Yp. Let us note the transformed image points as follows

x′′i = Txi (171)

The result of applying the transformation matrix T to the misaligned image points of Fig. 23a
is shown in Fig. 23b. Then, it only rests to define a translation vector which is able to center
the polygon in the image (see Fig. 23c). The most intuitive choice is the center of gravity
of the polygon xg . However, the choice of a suitable expression for xg is not trivial as it
could be supposed. First of all, xg must be computed from the current image. Secondly,
we remember that in absence of laser-cross misalignment s′ must be equal to s so that
x′i = x′′i = xi. Thus, under ideal conditions T must be the identity, which is true according
to Eq. (170), and xg must be 0. Thus, we could intuitively set xg = (1/4)(x1 +x2 +x3 +x4).
However, according to the ideal model parameters (see Table 1), the general expression of
the laser image points in function of the object parameters are

x1 = 0 y1 = − LC

BL+D

x2 = − LC

AL−D y2 = 0

x3 = 0 y3 = − LC

BL−D
x4 = − LC

AL+D
y4 = 0

(172)

Therefore, we have that

1

4
(x′′1 + x′′2 + x′′3 + x′′4 ) = − L2AC

2 (A2L2 −D2)
(173)

which is only zero when the camera is parallel to the object. Instead of this, we propose to
use

xg =
1

2

(
x′′1 + x′′3
y′′2 + y′′4

)
(174)

Note that this expression is also a measure of the polygon center of gravity according to
Fig. 23b. Moreover, in the ideal case xg is actually 0 for any object pose. Then, the corrected
image points are obtained as follows

x′i = Txi − xg (175)
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The corrected set of visual features s′ is therefore

s′ =
(
y
′−1
1 − y′−1

3 y
′−1
1 + y

′−1
3 x

′−1
2 + x

′−1
4

)
(176)

The global asymptotic stability of the ideal model is also ensured when using s′. In the
following sections the robustness of s′ with respect to laser-cross misalignment is proved
analytically. Furthermore, the corrected visual features avoid a potential problem of the
uncorrected set s. Certainly, since the definition of s involves the computation of 1/y1,
1/x2, 1/y3 and 1/x4, a division by 0 may be reached due to the laser-cross misalignment.
Note that this problem does not longer appear in s′ since the corrected image points are
symmetrically distributed around the image center.

8.5 Robust visual features: local asymptotic stability analysis un-
der laser-cross misalignment

The study of the global asymptotic stability of the system when using the corrected set of
visual features s′ and the constant control law is again too complex. As in the previous
approaches, we instead analyze the local asymptotic stability in front of different types of
laser-cross misalignment. Thus, we intend to prove the robustness of the new set of visual
features in front of such calibration errors.

8.5.1 Misalignment consisting of a translation

Let us first analyze the case when the laser-cross is aligned with the camera frame, but it
is displaced from the camera origin according to CTL = (tx, ty, tz). The real interaction
matrix for this laser-cross pose evaluated in the desired state Ls′(e

∗) must be calculated.
First we evaluate the interaction matrices in the desired state of the point coordinates y1,
x2, y3 and x4 using the model parameters in Table 3 evaluated according to the desired
state A = B = 0, C = 1 and D = −Z∗. These parameters are also used in order to calculate
the 2D transformation defined in (170) and in (174) in the desired state. The expressions
obtained for T and xg are

T =

(
1 0
0 1

)
, xg =

tx
Z∗

, yg =
ty
Z∗

(177)

The interaction matrix of the corrected set of visual features in the desired state is then

Ls′(e
∗) =




0 0 − 2

L
−4tx
L

2tx
L

0

0 0 0 −2 0 0
0 0 0 0 2 0


 (178)
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and the product of matrices in the linearized closed-loop equation of the system M =

Ls′(e
∗)L̂s′

+
is

M =




1 2
tx
L

tx
L

0 1 0
0 0 1


 (179)

whose eigenvalues are the elements on the main diagonal which are all equal to 1. Therefore,
the local asymptotic stability of the system in front of a displacement of the laser-cross is
always ensured when using s′ and the constant control law.

8.5.2 Misalignment consisting of individual rotations

We now present the local asymptotic stability analysis when the laser-cross is centered in
the camera origin but it is rotated around one of the camera axis. Let us first consider a
rotation ψ ∈ (−π/2, π/2) around the X axis. The 2D transformation based on T and xg
can be obtained from the model parameters in Table 4.

T =

(
1 0
0 1

)
, xg = 0, yg =

sinψ

cosψ
(180)

and the interaction matrix in the desired state taking into account this laser-cross pose is

Ls′(e
∗) =




0 0 −2 cosψ

L
−−2Z∗ cosψ sinψ

L cosψ
0 0

0 0 0 −2 cosψ

cosψ
0 0

0 0 0 0 2 0


 (181)

so that the product of matrices in the closed-loop equation of the system is

M =




cosψ
Z∗ cosψ sinψ

L cosψ
0

0 1 0
0 0 1


 (182)

Note that all the eigenvalues (in this case the elements of the main diagonal) are positive
since ψ ∈ (−π/2, π/2).

In case that the laser-cross is rotated an angle θ ∈ (−π/2, π/2) around the Y camera
axis (model parameters in Table 5), the 2D transformation in the desired state is

T =

(
1 0
0 1

)
, xg = − sin θ

cos θ
, yg = 0 (183)
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while the interaction matrix in the desired state taking into account this laser-cross pose is

Ls′(e
∗) =




0 0 − 2

L
0 −−2Z∗ sin θ

L cos θ
0

0 0 0 −2 0 0

0 0 0 0
2 cos θ

cos θ
0


 (184)

so that the product of matrices in the closed-loop equation of the system is

M =




1 0 −Z
∗ sin θ

L cos θ
0 1 0
0 0 1


 (185)

Note that all the eigenvalues are also positive.
Finally, let us study the case when the laser-cross is rotated an angle φ around the optical

axis of the camera (model parameters in Table 6. In this case we have that

T =

(
cosφ sinφ
− sinφ cosφ

)
, xg = 0, yg = 0 (186)

Ls′(e
∗) =




0 0 − 2

L
0 0 0

0 0 0 −2 cosφ 2 sinφ 0
0 0 0 2 sinφ 2 cosφ 0


 (187)

while the product of matrices in the closed-loop equation of the system is

M =




1 0 0
0 cosφ sinφ
0 − sinφ cosφ


 (188)

The eigenvalues are

σ1 = 1

σ2 = cosφ+
√

cos2 φ− 1

σ3 = cosφ−
√

cos2 φ− 1

Note that the real part of σ2 and σ3 is cosφ so that in order to ensure its positiveness it is
only necessary that φ ∈ [−π/2, π/2].

Therefore, the system based on the corrected set of visual features s′ is locally asymp-
totically stable if the laser-cross is not aligned with the camera frame.
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8.6 Robust visual features: local asymptotic stability analysis in
presence of camera calibration errors

We now present the local asymptotic stability analysis in presence of calibration errors in
the intrinsic parameters of the camera. as explained in Section 6.3, it is necessary to study
the closed-loop equation of the measured task function ẽ that in this case is

˙̃e
∗

= −λL�s(ẽ
∗)L̂s

+
ẽ∗ (189)

The interaction matrix in the desired state ẽ∗ is

L�s(ẽ
∗) =




0 0 − 2Kv
L 0 0 0

0 0 0 −2Kv 0 0
0 0 0 0 2Ku 0


 (190)

so that the product of matrices M(ẽ∗) = Ls(ẽ
∗)L̂s

+
is

M(ẽ∗) =




Kv 0 0
0 Kv 0
0 0 Ku


 (191)

Note that the eigenvalues are the elements of the main diagonal and are positive if Ku > 0
and Kv > 0, which is true if and only if f̃ > 0, k̃u > 0 and k̃v > 0. Similarly to the previous
image-based approaches, the system based on s′ is also robust against camera calibration
errors if the elements of the main diagonal of Ã are positive.

8.7 Simulation results
We now present the simulation results obtained by the corrected set of visual features s′

according to the conditions described in Section 5.1.

8.7.1 Ideal system

As has been shown, under ideal conditions, the interaction matrix of s′ can be evaluated from
the task function. The results obtained with the non-constant control law based on a perfect
estimation of L̂s are plotted in Fig. 24. Both an exponential decrease of the task function
and a monotonic behavior of the camera velocities are observed. Furthermore, the camera
trajectory is almost a straight line in the space. Note that, as expected, the results coincide
with the ones obtained by the position-based approach presented in Section 5.1.1. Unlike
the position-based approach, this image-based approach does not require the minimization
of the non-linear equations.

The behavior of the system when using s′ and the constant control law based on L∗s is
shown in Fig. 25. Note that both the task function components and the camera velocities
are strictly monotonic as expected from the analytic results. We remark that these results
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Figure 24: Ideal system: simulation using s′ and the non-constant control law. a) e = s− s∗

vs. time (in s). b) Camera velocities (ms/s and rad/s) vs. time. c) Fixed point coordinates
in the camera frame. d) Scheme of the camera trajectory.
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also coincide with the ideal behavior of the position-based approach based on the constant
control law presented in Section 5.1.1. In addition to this, the results of s′ are also very
similar to the ones given by the image-based approach using s = (an, α13n, α24n). This result
was already expected from the Taylor approximations shown in (120).
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Figure 25: Ideal system: simulation using s′ and the constant control law. a) e = s− s∗ vs.
time (in s). b) Camera velocities (ms/s and rad/s) vs. time. c) Fixed point coordinates in
the camera frame. d) Scheme of the camera trajectory.

Remember that the behavior of the system when using the constant control law under
ideal conditions can also be obtained from the analytic expressions of the task function e(t),
the camera velocities Vz(t), Ωx(t), Ωy(t) and the trajectory X(t) developed in Appendix D.2
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and in Section 8.2. Given the initial object pose parameters n and D and the desired state
defined by n = (0, 0, 1), D = −Z∗, the task function components at t = 0 can be evaluated
by using Equation (248), Equation (243) and Equation (244). The initial conditions found
are the following

e1(0) = 8.5953

e2(0) = 0.5359

e3(0) = 1.1547

The functions e1(t), e2(t) and e3(t) and the corresponding camera velocities Vz(t), Ωx(t),
Ωy(t) in (147) have been evaluated in the interval t ∈ [0, 30] s and are plotted in Fig. 26a-b.
The coordinates of the initial position expressed in the camera frame obtained analytically
in (150) have been also evaluated in the same interval. The resulting curves are plotted in
Fig. 26c and the trajectory of this fixed point in the camera frame is shown in Fig. 26d.
Note that the task function decrease, the camera velocities and the trajectory predicted by
the analytic model coincide with the simulation results in Fig. 25.

8.7.2 System including laser-cross misalignment and image noise

The behavior of the system when using s′ and the non-constant control law in presence of
large calibration errors and image noise is shown in Fig. 27. Note that the system is almost
unaffected by the calibration errors. We find again that the results are nearly the same that
the ones obtained by the position-based approach.

When using the constant control law based on L∗s , the system is also robust against
the laser-cross misalignment, as expected from the local asymptotic stability analysis in
presence of such errors. The results are plotted in Fig. 28. Note that under laser-cross
misalignment the simulation results of this approach are still pretty similar to the ones
obtained by s = (an, α13n, α24n).
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Figure 26: Ideal system: analytic behavior when using s′ and the constant control law. a)
e1(t), e2(t) and e3(t) evaluated at t ∈ [0, 30] s. b) Camera velocities Vz(t) (m/s), Ωx(t) and
Ωy(t) (rad/s) evaluated at t ∈ [0, 30] s. c) Coordinates of a fixed point (initial position) in
the camera frame (in m). d) 3D plot of the same point (’o’ and ’*’ are the initial and the
final point respectively.
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Figure 27: System including large laser-cross misalignment and image noise: simulation
using s′ and the non-constant control law. a) e = s − s∗ vs. time (in s). b) Camera
velocities (ms/s and rad/s) vs. time. c) Fixed point coordinates in the camera frame. d)
Scheme of the camera trajectory.
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Figure 28: System including large laser-cross misalignment and image noise: simulation
using s′ and the constant control law. a) e = s − s∗ vs. time (in s). b) Camera velocities
(ms/s and rad/s) vs. time. c) Fixed point coordinates in the camera frame. d) Scheme of
the camera trajectory.

RR n˚5579



70 Jordi Pagès, Christophe Collewet, François Chaumette & Joaquim Salvi

9 Experimental results
In order to validate the theoretical results and to confirm the simulation results of the
different approaches presented in this paper, real experiments have been carried out. The
experimental setup consists of a six-degrees-of-freedom robot manipulator with a camera
with focal length 8.5 mm coupled to its end-effector. The images are digitized at 782× 582
pixels and the pixel dimensions are about 8.3µm×8.3µm. The laser-cross has been built so
that L = 15 cm. Such a parameter has been chosen taking into account the robot structure
so that the laser-cross can be approximately positioned according to the ideal model, i.e.
aligned with the camera frame.

The aim of the experiments is to test the behavior of the control loop when both the
laser-cross is positioned according to the ideal model specifications and when a large mis-
alignment between the camera and the laser-cross takes place. Furthermore, during the
real experiments a coarse calibration of the camera intrinsic parameters has been used and
the direction of all the lasers is not exactly equal, so that the robustness of the approaches
against this kind of modelling errors is also tested.

9.0.3 Laser-cross coarsely aligned with the camera

In the first experiment, the laser-cross has been approximately aligned with the camera.
The desired and initial position of the camera is defined by Z∗ = 60 cm, D(0) = 105 cm,
αx = −20◦ and αy = 20◦. The image corresponding to the initial state is shown in Fig. 29a.
On the other hand, Fig. 29b shows the trace of the laser points in the image from the initial
state to the desired one.

Indeed, a perfect alignment of the camera and the laser-cross is not possible since we do
not exactly know neither the camera origin location nor the orientation of its axis. This is
evident by looking at the initial and desired images. As can be seen, the laser points do not
exactly lie onto the image axis and their traces from the initial to the desired position (which
shows us the epipolar line of each laser) are not perfectly parallel to the axis. Furthermore,
it is neither possible to ensure that all the 4 lasers have the same exact orientation (which
causes that the epipolar lines do not intersect in a unique point).

The position-based approach has not been implemented since it is equivalent to the
image-based based approach based on s′. Furthermore, the latter has the advantage that it
is less time consuming since no numerical minimization of non-linear equations is required.

First of all, Fig. 30 presents the system response when using image points as visual
features. As can be seen, since the laser-cross misalignment is small enough, the system
converges showing a nice decrease on the visual feature errors and the norm of the task
function (even if it is not a pure exponential decrease, as expected from the expression of
L∗s which depends on 1/Z∗). On the other hand, note that the camera velocities generated
by the constant control law are not monotonic, specially the rotational ones.

Fig. 31 shows the results when using the set of visual features based on the normalized
area and angles. As expected, both the task function and the camera velocities better fit
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an exponential decrease. Furthermore, a linear mapping from task function space to camera
velocities is almost exhibited.

Very similar results are obtained with the corrected version of the decoupled set of visual
features s′, which are presented in Fig. 32. In this case, the results when using the constant
control law are plotted. We can observe the monotonic decrease of the task function and the
camera velocities as predicted by the analytic model. No major differences are appreciated
with respect to the approach based on normalized area and angles.

In Fig. 33 the results when using s′ and the non-constant control law are shown. In this
case, a pure exponential decrease of the task function is expected. Note however, that the
actual behavior is not monotonic, which implies that this type of control law is a bit more
sensitive to the lasers directions and the camera calibration errors. Nevertheless, the system
converges with no major problems. Note also the non-monotonic camera velocities generated
by the control law. We must also mention that when using the non-constant control law
the computation time required at each iteration is higher since the pseudoinverse of the
estimated L̂s must be calculated.

9.0.4 Large misalignment between the camera and the laser-cross

The same experiment has been repeated by introducing a large misalignment between the
laser-cross and the camera. Concretely, the laser-cross has been displaced from the camera
origin about 6 cm in the sense of the −X axis of the camera frame. Furthermore, it has
been rotated about 7◦ around the Z axis (the rotation introduced about the X and Y axis
are much smaller). Such a large misalignment is clearly observed in the initial and desired
images shown in Fig. 34.

Under these conditions, only the approaches based on normalized area and angles, and
the corrected version of the decoupled set of visual features have succeeded. On the other
hand, the image-based approach based on s = (y1, x2, y3, x4) has diverged as expected
from the simulation results. In Fig. 35 the results when using the constant control law
based on s = (an, α13n, α24n) are shown. On the other hand, Fig. 36 presents the results
when using s′. As can be seen, even with such a large misalignment of the laser-cross, both
approaches still obtain almost a monotonic decrease in the task function as well as an almost
monotonic decrease in the camera velocities. Therefore, the large convergence domain of
these approaches expected from the analytic results is here confirmed.

When using s′ and the non-constant control law, the system has not been able to con-
verge to the desired position since the robot has reached a joint limit. This fact has been
also observed when using other initial positions. It seems that the non-linearities in the
camera velocities produced by such a control law become stronger due to errors in the lasers
directions when the laser-cross is largely misaligned. Thus, some of the demanded robot
motions are unfeasible or usually bring the robot very close to some joint limits. There-
fore, we confirm that designing decoupled visual features which vary proportionally to the
corresponding controlled degree of freedom is a good strategy to obtain suitable camera
trajectories [38].
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a) b)

Figure 29: Experiment using a coarse alignment. a) Initial image. b) Final image with the
trace of each laser point from its initial position to its final position.
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Figure 30: Coarse alignment: experiment using s = (y1, x2, y3, x4) and the constant control
law. a) s− s∗ vs. time (in s). b) Norm of the task function vs. time. c) Camera velocities
(ms/s and rad/s) vs. time.
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Figure 31: Coarse alignment: experiment using s = (an, α13n, α24n) and the constant control
law. a) e = s−s∗ vs. time (in s). b) Norm of the task function vs. time. c) Camera velocities
(ms/s and rad/s) vs. time.
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Figure 32: Coarse alignment: experiment using s = (y′1
−1− y′3−1

, y′1
−1

+ y′3
−1
, x′2
−1

+x′4
−1

)
and the constant control law. a) e = s − s∗ vs. time (in s). b) Norm of the task function
vs. time. c) Camera velocities (ms/s and rad/s) vs. time.
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Figure 33: Coarse alignment: experiment using s = (y′1
−1− y′3−1

, y′1
−1

+ y′3
−1
, x′2
−1

+x′4
−1

)
and the non-constant control law. a) e = s−s∗ vs. time (in s). b) Norm of the task function
vs. time. c) Camera velocities (ms/s and rad/s) vs. time.

10 Summary
In this section we briefly summarize the different approaches presented along the paper.
The analytic results concerning the stability under ideal conditions and under calibration
errors are remembered in Table 2. The results provided in the table take into account the
control based on the interaction matrix evaluated in the desired state L∗s . When using a
non-constant control law, the global asymptotic stability has only been proven when the
estimation of Ls at each iteration is perfect, that is, when the conditions of the ideal model
hold and there are no calibration errors.

Position-based approach: the input of the control law are the parameters of the object
plane equation γ, β and α. The interaction matrix of such parameters shows a nice decou-
pling from the rotational to the translational part. Calculating these parameters requires to
triangulate the depths of the image points assuming that all lasers have the same direction so
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a) b)

Figure 34: Experiment using a large misalignment. a) Initial image. b) Final image with
the trace of each laser point from its initial position to its final position.
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Figure 35: Large misalignment: experiment using s = (an, α13n, α24n) and the constant
control law. a) e = s− s∗ vs. time (in s). b) Norm of the task function vs. time. c) Camera
velocities (ms/s and rad/s) vs. time.
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Figure 36: Large misalignment: experiment using s = (y′1
−1−y′3−1

, y′1
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+y′3
−1
, x′2
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+x′4
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)
and the constant control law. a) e = s − s∗ vs. time (in s). b) Norm of the task function
vs. time. c) Camera velocities (ms/s and rad/s) vs. time.
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that the equation of the plane can be fitted at each iteration. The reconstructed depths can
be used to estimate the interaction matrix at each iteration. In order to robustly estimate
the depths of the projected points it is necessary to solve a system of non-linear equations.
This can be done numerically with a minimization algorithm which can be sensible to fall
into local minima. Nevertheless, the camera trajectory obtained is almost a straight line
and the task function shows an exponential decrease under ideal conditions.

Image points approach: the inputs of the control law are the image point coordinates
(y1,x2,y3,x4). The stability of the system is not ensured in presence of a displacement of
the laser-cross with respect to the camera center. Furthermore, the camera velocities are
non-monotonic.

Normalized area and angles approach: the input of the control law are the geomet-
ric image-based features (an, α13n, α24n), which have shown a strong robustness against
calibration errors both analytically (through the local asymptotic stability analysis) and ex-
perimentally. Simulations and experiments have shown that both the task function and the
camera velocities are monotonic. However, due to the complexity of the features no analytic
results concerning the global asymptotic stability have been provided.

Decoupled features approach: the input of the control law are the image-based features

s =
(
y−1

1 − y−1
3 , y−1

1 + y−1
3 , x−1

2 + x−1
4

)
(192)

This set of features decouples the rotational from the translational dof in all the workspace
and the interaction matrix can be entirely expressed in terms of the task function approach.
This is possible since these features are proportional to the object parameters γ, β and α.
It has been possible to demonstrate the global asymptotic stability under ideal conditions
when using both a constant control law based on L∗s and when using an estimation of Ls

(which does not require to reconstruct the object). When using the non-constant control
law a pure exponential decrease of the task function is obtained under ideal conditions. In
the case of the constant control law, a monotonic decrease is obtained for the visual features
controlling the rotational subsystem, and the behavior of the feature controlling the depth
is either monotonic or it presents a unique peak. The system is however quite sensitive to
laser-cross misalignment.

Corrected decoupled features approach: a simple planar transformation applied to
the image allows the robustness domain in presence of calibration errors to be enlarged.
The corrected set of visual features s′ has nice robustness properties and obtains the same
results than the uncorrected version under ideal conditions.
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Table 2: Stability analysis of the different approaches

Ideal system: Laser-cross misalignment: intrinsic
errors: local
asymptotic
stability

Visual
Features

stability local asymptotic stability

Global Local (tx, ty , tz) Rot(X,ψ) Rot(Y,θ) Rot(Z,φ)

(γ, β, α)
√ √

? ? ? ? ?

(y1, x2, y3, x4) ?
√

t2x + t2y < 2L2 √ √ √ √

(an, α13n , α24n) ?
√ √ √ √ √ √

s
√ √ |tx,y| < L restricted

√ √
?

s′
√ √ √ √ √ √ √

11 Conclusions
This paper presents a solution to the classic plane-to-plane positioning task from the com-
bination of visual servoing and structured light. The projection of structured light not only
simplifies the image processing but also allows the system to deal with low-textured ob-
jects lacking of visual features. A structured light sensor for eye-in-hand systems has been
proposed. The sensor is based on four laser pointers attached to a cross-structure. Such
a configuration has been chosen in order to obtain an optimal distribution of image points
which is invariant to depth once the camera is parallel to the object. A position-based
approach and several image-based approaches have been presented. The former is based
on reconstructing the parameters of the plane equation of the object and has shown pretty
decoupling and robustness against calibration errors. However, it requires to robustly re-
construct the parameters by solving a system of non-linear equations at each iteration. This
process may be sensible to image noise depending on the numeric algorithm used. On the
other hand, the image-based approaches have been analytically compared through stability
analysis in front of different types of misalignments and camera calibration errors.

Two of the image-based approaches have shown a pretty robustness against calibration
errors. The first is based on the area and several angles extracted from the polygon contain-
ing the four points in the image. Such features have been normalized in order to obtain a
linear mapping from the task function space to the camera velocities near the desired state.
Furthermore, they exhibit a nice decoupling near the desired state. The good performance
of these features has been experimentally demonstrated. However, the high complexity of
the analytic expressions of the features has avoided to obtain analytic results concerning
either the global asymptotic stability or the camera trajectory generated by the constant
control law based on the interaction matrix evaluated in the desired state.

On the other hand, a set of visual features based on non-complex non-linear combinations
of the image point coordinates has also obtained very good performance. The advantage of
these features is that they decouple rotational from translational dof in all the workspace
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(not only around the desired state as in the previous approach). This decoupling is possible
because these image-based features are proportional to the object plane parameters used in
the position-based approach. By evaluating the interaction matrix for the desired state it can
be seen that these features also produce a linear mapping from the task function space to the
camera velocities around the desired state, without needing any normalization. Thanks to
the decoupled form of the general interaction matrix, it has been possible to prove the global
asymptotic stability under ideal conditions (so that it is sure that the system converges for
any initial camera-object relative pose where the visibility constraint holds), and the analytic
expression of the camera trajectory in the space. The advantage of this control law is that
both the task function and the camera velocities are monotonic producing good camera
trajectories. The main drawback of this approach is its sensitivity to large calibration errors
like a large misalignment between the camera and the laser-cross. However, its robustness
has been improved (the analytic proof has been provided) by defining a corrected version of
the features based on a planar transformation applied to the image. The corrected visual
features have obtained the same robustness against large laser-cross misalignment that the
features based on the area and the angles. The camera velocities produced by these two
techniques in the simulations are almost the same, since both sets of visual features are
proportional when the camera is nearly parallel to the object. In the real experiments under
large calibration errors similar performances have been obtained.

An interesting characteristic of the image-based approach based on the decoupled fea-
tures and the position-based approach is that the interaction matrix can be estimated at
each iteration from the feature vector. Thus, a non-constant law based on the estimated
interaction matrix can be also used, obtaining a camera trajectory very similar to a straight
line even in presence of small calibration errors. The image-based approach has the advan-
tage that the feature vector is calculated only from image data and, unlike the position-based
approach, it does not require to solve a non-linear system of equations. Experiments have
shown that in presence of large calibration errors the robot is not always capable of reaching
the desired position since the velocities produced by the control law become strongly non-
linear. Therefore, it seems preferable to use the constant control law which produces almost
strictly monotonic velocities in presence of large calibration errors.

Finally, we remark that the level of decoupling achieved in this work is due to the fact
that the points are projected. Such decoupling has not been reached with visual features
extracted from the object itself.
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A Interaction matrix of µ
Samson et al. [48] modelled a general thin-field rangefinder which obtains a measure of the
depth to an object along a straight line. According to our notation, the case studied by
Samson et al. is represented in Fig. 37.

u
n

X

{R}

µ

Figure 37: Thin-field rangefinder schema

Note that n is the normal to the object at point X. The measure of the depth that the
sensor obtains is expressed in the rangefinder frame denoted as {R}. From the variation of
the distance µ due to the sensor motion found by Samson et al., we can extract the following
interaction matrix

RLµ = − 1

n>u

(
n> | µ (u× n)

>
)

(193)

where both n and u are expressed in the sensor frame.
In our case, when the system is composed by a camera and a laser pointer as shown in

Fig. 38, both n and u are expressed in the camera frame, as well as the interaction matrix
of µ.

n

�

�

�

�

�

�

� �

� �
� �= � �
� �
� �

{C}

u

X

{L}

µ

Figure 38: Our camera-laser system modelling

As shown in (13), the interaction matrix of µ expressed in the camera frame is

CLµ = − 1

n>u

(
n> | (X× n)

>
)

(194)
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In order to demonstrate the equivalence with the interaction matrix by Samson et al. it is
necessary to express X, n and u in a laser frame with origin equal to X0. Then from (4) we
have that point X in the laser frame is

X = µu (195)

so that (194) expressed in the laser frame becomes the same than the interaction matrix by
Samson et al.

Andreff et al. also formulated the interaction matrix of µ [4]. In their case, the laser
frame was chosen so that the Z axis coincides with the laser direction as shown in Fig. 39.

n

{C}

ZL=u

X

{L}

µ

Figure 39: Camera-laser system modelling by Andreff et al.

The interaction matrix presented by Andreff et al. was expressed in function of αx and
αy. The former is the angle between ZL and nx = (A, 0, C), being nx the projection of n
to the plane YL = 0. Similarly, αy is the angle between ZL and ny = (0, B, C) which is the
projection of n to the plane XL = 0. The geometric interpretation of αx and αy is shown in
Fig. 40. Taking into account the sign conventions of the angles and the constraint C > 0,
we have that

A = C tanαx

B = −C tanαy (196)

so that expressing C =
√

1−A2 −B2 the following relationship arise

A =
tanαx√

tan2 αx + tan2 αy + 1

B = − tanαy√
tan2 αx + tan2 αy + 1

(197)

The interaction matrix by Andreff et al. can be derived from the one by Samson et
al. in (193). If the parameters of this interaction matrix are expressed in the laser frame
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ZL

XL
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YL

A>0
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α
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YL
XL

ZL

ny

B<0

Figure 40: Geometric interpretation of αx and αy when they are positive.

proposed by Andreff et al. we have that u = (0, 0, 1) and

u× n =

∣∣∣∣∣∣

i j k
0 0 1
A B C

∣∣∣∣∣∣
=



−B
A
0




n>u = C (198)

Then, the formula by Samson becomes

Lµ =
(
−A/C −B/C −1 µB/C −µA/C 0

)
(199)

so that taking into account the relationships in (196) we obtain

Lµ =
(
− tanαx tanαy −1 −µ tanαy µ tanαx 0

)
(200)

which is the form of the interaction matrix proposed by Andreff et al. [4].

B Model considering laser-cross misalignment
This appendix presents the model parameters when the laser-cross center is displaced from
the camera origin and the orientation of the laser-cross frame is not the same that the
camera frame. The camera intrinsic parameters are supposed to be perfectly calibrated.
The laser-cross misalignment is modelled according to a homogeneous frame transformation
matrix of the form

CML =

(
CRL

CTL

03 1

)
(201)
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which passes from points expressed in the structured light sensor frame to the camera frame
(see Fig. 5).

First of all, the orientation vector and the reference point of every laser in the camera
frame must be calculated taking into account the misalignment. We start from the values of
these parameters in the laser-cross frame, which coincide with the ideal parameters shown
in Table 1. Then, in the camera frame we have that for every laser

Cu = CRL
Lu (202)

CXr = CRL
LX0 + CTL (203)

where Lu = (0, 0, 1). Note that CXr is a point belonging to the laser direction but it is not
the reference point of the laser according to our definition. Remember that the reference
point CX0 must lie on the plane ZC = 0. The equation of the line corresponding to the
laser direction can be expressed in function of CX0 as follows

CXr = µCu +C X0 (204)

so that since we impose that CZ0 = 0 then

µ =
CZr
Cuz

(205)

The calculation of the CX0 is then straightforward

CX0 = −
CZr
Cuz

Cu + CXr (206)

The model parameters taking into account the whole model of misalignment become too
complicated. Instead of this, we present the model parameters under individual types of
misalignment, namely a simple displacement of the laser-cross with respect to the camera
origin, and individual rotations of the laser-cross around the X , Y and Z axis, respectively.

Displacement In this case, the laser-cross frame has the same orientation that the camera
frame (CRL = I3), but its origin has been displaced according to the vector

CTL = (tx, ty, tz) (207)

The model parameters are then the ones shown in Table 3.

Rotation around the XC axis The laser-cross is centered in the camera origin, but the
laser-cross frame is rotated a certain angle ψ with respect to the X axis of the camera frame.
The rotation is restricted to the interval ψ ∈ (−π/2, π/2), otherwise the lasers projection is
out of the camera field of view. The rotation matrix CRL is then

Rot(X,ψ) =




1 0 0
0 cψ −sψ
0 sψ cψ


 (208)
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Table 3: Model parameters under a translational misalignment of the laser-cross.

Laser X0 Y0 x y Z

1 tx L+ ty tx/Z1 (ty + L)/Z1 −Atx +BL+Bty +D

C

2 −L+ tx ty (tx − L)/Z2 ty/Z2 −Atx −AL+Bty +D

C

3 tx −L+ ty tx/Z3 (ty − L)/Z3 −Atx −BL+Bty +D

C

4 L+ tx ty (tx + L)/Z4 ty/Z4 −Atx +AL+Bty +D

C

where cψ = cosψ and sψ = sinψ. The model parameters under this type of misalignment
are shown in Table 4.

Table 4: Model parameters when the laser-cross is rotated around XC .

Laser X0 Y0 x y Z

1 0
L

cψ
0 −Dsψ + LC

BL+Dcψ

BL+Dcψ

Bsψ − Ccψ

2 −L 0 −L(Bsψ − Ccψ)

cψ(D −AL)
−sψ
cψ

cψ(D −AL)

Bsψ − Ccψ
3 0 − L

cψ
0

LC −Dsψ
Dcψ −BL

−BL+Dcψ

Bsψ − Ccψ

4 L 0
L(Bsψ − Ccψ)

cψ(AL+D)
−sψ
cψ

cψ(AL+D)

Bsψ − Ccψ

Rotation around the YC axis. Let us present now the case where the laser-cross is
centered in the camera origin, but it is rotated an angle θ ∈ (−π/2, π/2) with respect to the
Y axis of the camera frame. The rotation matrix CRL has the following form

Rot(Y, θ) =




cθ 0 sθ
0 1 0
−sθ 0 cθ


 (209)
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where cθ = cos θ and sθ = sin θ. The model parameters are then the ones shown in Table 5.

Table 5: Model parameters when the laser-cross is rotated around YC .

Laser X0 Y0 x y Z

1 0 L
sθ

cθ
−L (Asθ + Ccθ)

cθ (BL+D)
−cθ (BL+D)

Asθ + Ccθ

2 − L
cθ

0
Dsθ + LC

−AL+Dcθ
0 −−AL+Dcθ

Asθ + Ccθ

3 0 −L sθ

cθ

L (Asθ + Ccθ)

cθ (−BL+D)
−cθ (−BL+D)

Asθ + Ccθ

4
L

cθ
0

Dsθ − LC
AL+Dcθ

0 − AL+Dcθ

Asθ + Ccθ

Rotation around the ZC axis In case that a rotation of φ occurs around the Z axis of
the camera frame, the rotation matrix is

Rot(Z, φ) =




cφ −sφ 0
sφ cφ 0
0 0 1


 (210)

where cφ = cosφ and sφ = sinφ. In this case, the model parameters are shown in Table 6.

C Kinematic screw frame transformation
The objective of this appendix is to define a frame transformation which allows the kinematic
screw typically expressed in the camera frame to be expressed in a frame attached to the
object. This can be done by using a transformation like

cv = cTo
ov (211)

where cv and ov are the kinematic screw expressed in the camera and the object frames,
respectively, and cTo is the 6× 6 transformation changing the basis frame. This transfor-
mation is then useful to express the interaction matrix Lx in the object frame, which can be
used to check which type of object motions can be detected in the camera image by using a
certain set of visual features. The time variation of the visual features can be expressed in
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Table 6: Model parameters when the laser-cross is rotated around ZC .

Laser X0 Y0 x y Z

1 −sφL cφL −Lsφ
Z1

Lcφ

Z1

AsφL− BcφL−D
C

2 −cφL −sφL −Lcφ
Z2

−Lsφ
Z2

AcφL+BsφL−D
C

3 sφL −cφL Lsφ

Z3
−Lcφ
Z3

−AsφL−BcφL+D

C

4 cφL sφL
Lcφ

Z4

Lsφ

Z4
−AcφL+BsφL+D

C

two ways

ṡ = cLs
cv (212)

ṡ = oLs
ov (213)

where cLs and oLs are the interaction matrices expressed in the camera and object frames,
respectively. Then, by plugging (211) into (212), we can write

ṡ = cLs
cTo

ov (214)

so that according to (213) the interaction matrix expressed in the object frame is

oLs = cLs
cTo (215)

The transformation matrix has the following form

cTo =

(
cRo [cPo]×cRo

03
cRo

)
(216)

where cRo is the rotation matrix from the camera frame to the object frame, and cPo is
the origin of the frame {O} expressed in the object frame {C}. [cPo]× is the antisymmetric
matrix associated to the vector cPo. In Fig. 41 the frame transformation is represented.

Let us now present how to obtain the analytic expression of the rotation matrix cRo and
the origin of the object frame cPo.

C.1 Rotation matrix
The constraint that is fixed to calculate the rotation matrix cRo is that Zo must be equal
to Zc after applying the rotation (both Zo and Zc are expressed in the camera frame). Note
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Xc

Yc

Zc

Xo

Yo

Zo

cRo

cPo
u

Figure 41: Frame transformation schema

that this constraint implies that a single rotation θ is made around an unitary axis u which
is orthogonal to Zc and Zo. The rotation axis u can be calculated as follows

u = Zc × Zo = (0, 0, 1)× (A,B,C) = (−B,A, 0) (217)

Therefore, the unitary vector u is

u =
1√

A2 +B2



−B
A
0


 (218)

The rotation θ can be calculated as follows

sin(θ) = ‖Zc × Zo‖ ⇒ sin(θ) =
√
A2 +B2

cos(θ) = Z>c · Zo ⇒ cos(θ) = C
(219)

According to the Rodrigues formula, a rotation matrix can be written as

cRo = cos(θ)I3 + sin(θ)[u]× + (1− cos(θ))u · u> (220)

with

[u]× =




0 −uz uy
uz 0 −ux
−uy ux 0


 (221)

which leads to the rotation matrix

cRo =




1− A2

1+C − AB
1+C A

− AB
1+C 1− B2

1+C B

−A −B C


 (222)
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C.2 Origin of the object frame
The origin of the object frame has been chosen to be equal to the projection of the focal
point along the optical axis of the camera onto the planar object. Such a point expressed in
the camera frame is

cPo =




0
0

−D/C


 (223)

C.3 Frame transformation
Given the chosen cPo in (223) and the calculated rotation matrix cRo in (222), the frame
transformation cTo has the following expression

cTo =




1− A2

1+C − AB
1+C A − ABD

C(1+C) −D(B2−1−C)
C(1+C)

DB
C

− AB
1+C 1− B2

1+C B D(A2−1−C)
C(1+C)

ABD
C(1+C) −ADC

−A −B C 0 0 0

0 0 0 1− A2

1+C − AB
1+C A

0 0 0 − AB
1+C 1− B2

1+C B

0 0 0 −A −B C




(224)

Then, the interaction matrix Lx expressed in the object frame is

oLx = cLx · cTo =
1

Π0




0 0 −X0

Z X0η X0ξ 0

0 0 −Y0

Z Y0η Y0ξ 0


 (225)

where

η =
1−A2

C
y +

A(Bx+ACy)

C(1 + C)

ξ =
1−B2

C
x+

B(Ay +BCx)

C(1 + C)

Π0 = A(X0 − xZ) +B(Y0 − yZ)− CZ

Therefore, according to ẋ = oLx
ov, if the object moved on oVx, oVy or oΩz , the image

coordinates of the projected points would not change.
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D Stability analysis of the decoupled approach with a
constant control law

This appendix presents different issues concerning the stability analysis of the set of visual
features

s =
(
y−1

1 − y−1
3 , y−1

1 + y−1
3 , x−1

2 + x−1
4

)
(226)

when using the constant control law based on the interaction matrix evaluated in the desired
state L∗s .

D.1 Sufficient conditions through the Lyapunov method
The global asymptotic stability analysis through the Lyapunov method is based on the
product of matrices M in the closed-loop equation of the system M = LsL̂s

+
which is the

following 3× 3 matrix

M =




1 BD
LC2

AD
LC2

0 B2+C2

C2
AB
C2

0 AB
C2

A2+C2

C2


 (227)

We remember that a necessary condition for the global asymptotic stability is that
det(M) 6= 0. In this case, we have that

det(M) =
1

C2
(228)

so that it is never 0. Then, a sufficient condition for the global asymptotic stability is that
the symmetric part S of M is positive definite.

Before calculating the eigenvalues of S let us reduce the number of parameters by using
the following change of variables

a = A
C , b = B

C , d = D
CL (229)

Then, M becomes

M =




1 bd ad
0 b2 + 1 ab
0 ab a2 + 1


 (230)

The symmetric part of M is

S =




1 bd
2

ad
2

bd
2 b2 + 1 ab
ad
2 ab a2 + 1


 (231)
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whose eigenvalues are

σ1 = 1

σ2 =
2 + a2 + b2 +

√
(a2 + b2)(a2 + b2 + d2)

2

σ2 =
2 + a2 + b2 −

√
(a2 + b2)(a2 + b2 + d2)

2

we can see that the two first eigenvalues are always positive real numbers. The third one is
also real, and imposing its positiveness, the following equation arises

4 + (a2 + b2)(4− d2) > 0 (232)

by naming X2 = (a2 + b2) and Y 2 = d2 we can write

V = 4 +X2(4− Y 2) > 0 (233)

Note that X ∈ [−1, 1] while the domain of Y is unrestricted. The plot of V is shown in
Fig. 42. In order to see which part of the surface corresponds to positive values of V , the

–10

–5

0

5

10

X

–10

–5

0

5

10

Y

–8000

–6000

–4000

–2000

0

V

Figure 42: Plot of V in function of X and Y .

intersections of the surface with the plane V = 0 are shown in Fig. 43. The positive part is
the one included between the intersections and the X and Y axis. Then, the interpretation
of the result is straightforward. The global asymptotic stability is ensured when X ≈ 0 or
Y ≈ 0, which, expressed in terms of the planar object pose

X = 0 ⇔ a2 + b2 = 0⇔ A2 +B2

C2
= 0⇔ 1

C2
− 1 = 0⇔ |C| = 1

Y = 0 ⇔ d2 = 0⇔ D2

C2L2
= 0
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–60

–40

–20

20

40

60
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–1 –0.5 0.5 1

X

Figure 43: Intersection of the surface with the plane V = 0.

Then, the global asymptotic stability is ensured when the camera and the object are near
parallel or when the distance between both is small. However, the relative orientation of
the camera and the object has more weight than its distance, as can be seen in Fig. 43.
Furthermore, increasing the parameter L the convergence domain also increases since Y
becomes smaller.

As can be seen, these sufficient conditions are very restrictive even when no calibration
errors have been taken into account. In the following subsection, we show that through the
direct analysis of the solutions of the differential system the exact convergence domain is
proved to be much larger.

D.2 Solution to the differential system
The closed-loop equation of the system corresponding to the set of visual features (115)
when using the constant control law based on L∗s can be written as the following differential
system

ė1(t) = − λ

4L

(
e1(t)

(
4L+ e2(t)2L+ e3(t)2L

)
+ 2Z∗

(
e2(t)2 + e3(t)2

))
(234)

ė2(t) = −λ
4

(e2(t)3 + 4e2(t) + e2(t)e3(t)2) (235)

ė3(t) = −λ
4

(e3(t)3 + 4e3(t) + e3(t)e2(t)2) (236)

The solutions of e1(t), e2(t) and e3(t) can be found as follows. As expected, both ė2(t) (235)
and ė3(t) (236) are not affected by e1(t) (234). Hence, we can start by searching the solutions
of e2(t) and e3(t), which control the rotational dof of the system. First, we obtain the
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expression of ë2(t) by deriving (235)

ë2(t)=−λ
4

(
ė2(t)

(
3e2

2(t) + e2
3(t) + 4

)
+ 2e2(t)e3(t)ė3(t)

)
(237)

Afterwards, plugging ė3(t) from (236) into (237)

ë2(t) =
λ

8

(
−ė2(t)

(
6e2

2(t) + 2e2
3(t) + 8

)
+

+λe2
3(t)e2(t)

(
e2

2(t) + e2
3(t) + 4

))
(238)

From (235) the expression of e2
3(t) can be expressed in function of ė2(t) and e2(t)

e2
3(t) =

−4ė2(t)− λe3
2(t)− 4λe2(t)

λe2(t)
(239)

then, by plugging it into (238) and after some developments we obtain

ë2(t)− ė2(t)

(
2λ+ 3

ė2(t)

e2(t)

)
= 0 (240)

which is a second order Liouville differential equation with two symmetric solutions

e2(t) = ±
√
λ√

−(C1 exp2λt +2C2λ)
(241)

where C1 and C2 are integration constants. By plugging (241) into (239) the solutions for
e3(t) are directly obtained

e3(t) = sgn(e2(t))

√
λ(8C2 − 1)√

−(C1 exp2λt +2λC2

(242)

where sgn(x) returns the sign of the given value. Then, by evaluating any of the two pairs
of solutions at time t = 0, C1 and C2 can be expressed in terms of the initial conditions
e2(0) and e3(0) leading finally to

e2(t) =
2e2(0)

a(t)
(243)

e3(t) =
2e3(0)

a(t)
(244)

with
a(t) =

√
(e2

2(0) + e2
3(0)) (exp2λt−1) + 4 exp2λt (245)
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Finally, let us plug (243) in the definition of ė1(t) in (234) and solving a first order differential
equation with non-constant coefficients the following solution arises

e1(t) =
2e1(0)

a(t)
−

2bZ∗ arctan
(
b(a(t)−2)
b2+2a(t)

)

a(t)L
(246)

with b =
√
e2

2(0) + e2
3(0).

We note that function a(t) has the following properties

a(0) = 2

lim
t→∞

a(t) = ∞

Furthermore, by looking at its derivative

ȧ(t) =
λ exp(2λt)

(
e2(0)2 + e3(0)2 + 4

)

a(t)
(247)

it is always positive. Therefore a(t) is monotonic in t ∈ [0, ∞) and is bounded in the interval
[2, ∞).

D.3 Study of the behavior of the depth vs. time
We now study the behavior of the depth control which depends on e1(t). We are interested
on identifying under which analytic conditions it becomes a monotonic function. In order to
achieve it, we are going to identify the extrema of e1(t) by studying when the first derivative
zeroes. Then, we will search for sufficient conditions which ensure that the derivative never
zeroes so that e1(t) is monotonic.

We remember that the expression of e1(t) is given by

e1(t) =
2e1(0)

a(t)
−

2bZ∗ arctan
(
b(a(t)−2)
b2+2a(t)

)

a(t)L
(248)

whose derivative

ė1(t) = − λ

4L

(
e1(t)

(
4L+ e2(t)2L+ e3(t)2L

)
+ 2Z∗

(
e2(t)2 + e3(t)2

))
(249)

From this expression it is evident that when b = 0 (e2(0) = 0 and e3(0) = 0 so that the
camera is already parallel to the object) a linear differential equation is obtained so that
e1(t) is monotonic. Otherwise, it is necessary to study the derivative of e1(t) which can be
rewritten as

ė1(t) = −
−2ȧ(t)

(
−bZ∗ arctan

(
b(a(t)−2)
b2+2a(t)

)(
b2 + a(t)2

)
+ e1(0)L

(
b2 + a(t)2

)
+ b2Z∗a(t)

)

L (b2 + a(t)2) a(t)2

(250)
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As shown in Appendix D.2, ȧ(t) is always positive and never zeroes, while the denomi-
nator of ė1(t) is also positive. Therefore, ė1(t) only zeroes when

−bZ∗ arctan

(
b (a(t)− 2)

b2 + 2a(t)

)(
b2 + a(t)2

)
+ e1(0)L

(
b2 + a(t)2

)
+ b2Z∗a(t) = 0 (251)

By setting the following change of variable

u(t) =
b (a(t)− 2)

b2 + 2a(t)
(252)

the expression in (251) can be rewritten as

arctan (u(t)) = f(u(t)) (253)

with

f(u(t)) =
u(t)2

(
e1(0)L

(
b2 + 4

)
− 2b2Z∗

)
+ u(t)bZ∗

(
b2 − 4

)
e1(0)L

(
b2 + 4

)
+ 2b2Z∗

bZ∗ ((b2 + 4)(u(t)2 + 1 ))
(254)

Note that the derivative of e1(t) only zeroes if and only if arctan (u(t)) intersects with f(u(t)).
Therefore, if we can find analytical conditions which avoid both functions to intersect, e1(t)
will be monotonic under those conditions since its derivative never will zero.

We first study the behavior of u(t). The following properties hold

u̇(t) = ȧ(t)
b
(
b2 + 4

)

(b2 + 2a(t))
2 (255)

u(0) = 0 (256)
lim
t→∞

u(t) = b/2 (257)

and since a(t) is strictly monotonic increasing then u(t) is also strictly monotonic increasing
when b 6= 0 and it is bounded in the interval [0, b/2] for t ∈ [0,∞).

The derivative of f(u(t)) is

ḟ(u(t)) = −u̇(t)
u(t)2

(
b2 − 4

)
+ u(t)8b+ 4− b2

(u(t) + 1) ((b2 + 4) (u(t)2 + 1))
(258)

since u̇(t) is always positive and so is the denominator of ḟ(u(t)), the sign of ḟ(u(t)) depends
on the following polynomial

p(u(t)) = u(t)2(b2 − 4) + u(t)8b+ 4− b2 (259)

which can be written as (
b2 − 4

)
(u− u1) (u− u2) (260)
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with u1 and u2 the roots of the polynomial

u1 = −b+ 2

b− 2

u2 =
b− 2

b+ 2

(261)

When p(u(t)) < 0 then f(u(t)) increases and inversely. Note that depending on if b < 2 or
b > 2 the sign of p(u(t)) is affected. Let us study the sign depending on these conditions.

b<2: in this case b2 − 4 is negative, and u1 > b/2 and u2 < 0 as shown hereafter

u1 >
1

2
⇔ 1

2
− u1 < 0 ≡ 1

2
+
b+ 2

b− 2
< 0 ≡ b2 + 4

2(b− 2)
< 0 (262)

u2 < 0⇔ b− 2

b+ 2
< 0 (263)

which means that when b < 2 there are no zero-crossings in the interval u ∈ [0, b/2]. Fur-
thermore, the sign of the polynomial in this interval is always

(
b2 − 4

)
︸ ︷︷ ︸

<0

(u− u1)︸ ︷︷ ︸
<0

(u− u2)︸ ︷︷ ︸
>0

> 0 (264)

b>2: in this case b2 − 4 is positive, and u1 < 0 and u2 ∈ [0, b/2] since

u1 < 0⇔ −b+ 2

b+ 2
< 0 (265)





u2 > 0⇔ b− 2

b+ 2
> 0

u2 <
b

2
⇔ b

2
− u2 > 0 ≡ b2 + 4

2(b+ 2)
> 0

(266)

Therefore p(u(t)) has a unique zero-crossing in the interval u ∈ [0, b/2] so that p(u(t)) is
always increasing in such interval because

p(u = 0) =
(
b2 − 4

)
︸ ︷︷ ︸

>0

(u1)︸︷︷︸
<0

(u2)︸︷︷︸
>0

< 0

p(u = b/2) =
(
b2 − 4

)
︸ ︷︷ ︸

>0

(b/2− u1)︸ ︷︷ ︸
>0

(b/2− u2)︸ ︷︷ ︸
>0

> 0 (267)

Then, the behavior of f(u(t)) is determined by the following two cases (we remember
that b >= 0 and when b = 0 e1(t) is always monotonic)

• b ∈ (0, 2]: f(u(t)) is monotonic decreasing when u(t) ∈ [0, b/2].
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a) b) c)

b/2

arctan(u(t))

u(t)0 b/2

f(u(t))

u(t)0 b/2

f(u(t))

u(t)0 (b-2)/(b+2)

Figure 44: Schema of arctan(u(t)) and f(u(t)) when u(t) ∈ [0, b/2]. a) arctan(u(t)). b)
f(u(t)) when b ∈ (0, 2]. c) f(u(t)) when b > 2.

• b > 2: f(u(t)) has a global maximum in the interval [0, b/2] when u(t) = (b−2)/(b+2).

In summary, the behavior of arctan(u(t)) and f(u(t)) in the interval [0, b/2] is represented
in Fig. (44).

Note that two sufficient conditions can be defined in order to avoid the intersection of
arctan(u(t)) and f(u(t)):

• min(f(u(t))) > max(arctan(u(t)))

• max(f(u(t))) < min(arctan(u(t)))

According to the first condition we need the following expressions

min(f(u(t))) = f(u = b/2) =
e1(0)L

b arctan(b/2)
(268)

max(arctan(u(t))) = arctan(b/2) (269)

so that the condition is
Z∗ < − e1(0)L

b arctan(b/2)
(270)

The second condition requires to distinguish between two cases

• b ∈ (0, 2]: max(f(u(t))) = f(u = 0) =
e1(0)L(b2 + 4) + 2b2Z∗

bZ∗(b2 + 4)

• b > 2: max(f(u(t))) = f
(
u = b−2

b+2

)
=
bZ∗ + 2Le1(0)

2bZ∗

while
min(arctan(u(t))) = 0 (271)
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Therefore, the second sufficient condition is

b ∈ (0, 2] → Z∗ < −e1(0)L(b2 + 4)

2b2

b > 2 → Z∗ < −2Le1(0)

b
(272)

If these sufficient conditions are true then no intersection between arctan(u(t)) and
f(u(t)) will occur, and therefore, e1(t) will be monotonic.

The sufficient conditions in (270) and in (272) are expressed in terms of the initial state
of the task function. They can be rewritten in terms of the initial object pose in the
camera frame obtaining two different cases. The first case corresponds to the condition
in (270) which is valid when the camera must go forward (Z∗ < −D(0)). In such a case, the
sufficient condition to ensure that e1(t) is monotonic is

Z∗ <
−2D(0)

C(0)

(
2 +

√
1− C(0)2 arctan

(√
1−C(0)2

2

)) (273)

On the other hand, from (272) we obtain the sufficient condition valid when the camera
must go backwards since Z∗ > −D(0)

b ∈ (0, 2] → Z∗ > − D(0)

C(0)3

b > 2 → Z∗ >
−2D(0)

2C(0)−
√

1− C(0)2
(274)

In summary, we have obtained sufficient conditions depending on the initial state (or
the initial camera-object pose) which ensure that e1(t) will be monotonic. Even if these
sufficient conditions are not ensured, we can al least ensure that e1(t) will present a unique
peak since a unique intersection of arctan(u(t)) and f(u(t)) occurs.
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