
Codesign methodology for computer vision applications

J. Albaladejoa,*, D. de Andrésa, L. Lemusa, J. Salvib

aFault Tolerant Systems Research Group, Department de Informatica de Sistemas y Computadores (DISCA), ETS Informática Aplicada,

Universidad Politécnica de Valencia, Campus de Vera #14, Valencia 46021, Spain
bComputer Vision and Robotics, Institut d’Informàtica i Aplicacions, Universitat de Girona, Campus Montilivi, E-17071, Girona, Spain

Received 20 October 2003; revised 19 February 2004; accepted 3 March 2004

Abstract

The work presented in this paper has been performed under a Spanish research project. The main aim of the tasks, we were responsible of,

was the development of a vision subsystem for 2D image preprocessing. These algorithms are the first step of a 3D reconstruction algorithm.

These algorithms have been improved by the addition of fault tolerance capabilities. To achieve this goal, the classical codesign methodology

has also been improved to allow for the fault tolerant system codesign. This paper presents the results obtained from this work.

q 2004 Elsevier B.V. All rights reserved.

Keywords: Codesign methodology; Field programmable gate arrays; Fault tolerance

1. Introduction

According to the evaluation of the United Nations

Economic Commission for Europe (UNECE) and the

International Federation of Robotics (IFR) [1], the inter-

national market of robots will have an increase of the 70% in

the period ranging from 2002 to 2005. Technological

advances will be more notorious in those application

domains that involve the use of robots. Among these

application fields are all the services areas. In particular,

surveillance services are of special interest since they will

suffer an increase greater than 500% (see Fig. 1).

Computer vision is one of the research areas that is very

closely linked to this increase in the robots production. The

different technological advances that have been developed

in 2D images and 3D structures recognition will be applied

to robotics [2]. Nowadays, there already exist several

applications that make use of 2D techniques. However, the

results obtained from the research in 3D techniques are

expected to be implemented on robotics by 2005.

Taking it into account, mobile robotics with 3D

recognition capabilities will be one of the most promising

research areas and most of the new developed application

will belong to this domain.

Several different research domains usually take part in

robotic applications, such as computer architecture, elec-

tronics and system control.

This paper presents the final results from a Spanish CICYT

project (Interministerial Commission of Science and Tech-

nology). Several Spanish research groups have taken part in

this project: Computer Vision and Robotics (VICOROB)

from the University of Girona (UdG), and three groups from

the Technical University of Valencia, Radio-Fibre Group

(FRG), Electronics Engineering Department (DIE) and Fault

Tolerant Systems research Group (GSTF).

The main aim of this project was ‘the development of a

reliable mobile robot for indoor surveillance tasks’.

One of the most important factors of this project was the

addition of fault-tolerant mechanisms in the different

subsystems the robot consists of in order to improve the

reliability and security of the system.

The GSTF was assigned the following tasks:

† The implementation of the fault tolerant distributed

control architecture of the mobile robot.

† The implementation of the vision subsystem on reconfi-

gurable hardware.

The analysis of this second task is presented in this paper.

It describes all the experiences that have been extracted

0141-9331/$ - see front matter q 2004 Elsevier B.V. All rights reserved.

doi:10.1016/j.micpro.2004.03.010

Microprocessors and Microsystems 28 (2004) 303–316

www.elsevier.com/locate/micpro

* Corresponding author. Tel.: þ34-963-87-7575; fax: þ34-963-87-7579.

E-mail addresses: jalba@disca.upv.es (J. Albaladejo); ddandres@

disca.upv.es (D. de Andrés); lemus@disca.upv.es (L. Lemus); qsalvi@

eia.udg.es (J. Salvi).

http://www.elsevier.com/locate/micpro

from the development of the project and that have led to a

PhD thesis [3]. This paper has been divided as follows. A

brief introduction to the whole project will be presented in

Section 2. The methodology that has been applied to the

development of the image preprocessing subsystem is

described in Section 3. Section 4 presents the implemen-

tation of the subsystem on reconfigurable devices. This

section describes further in detail the development of the

VHDL libraries of floating point operators and the library of

fault tolerant operators. Finally, Sections 5 and 6 present the

results, conclusions and future work.

2. The project tasks description

The different tasks of the project were divided into the

research groups according to their affinities. The computer

vision tasks that were leaded by the VICOROB [4] consisted

in:

† Obtaining a 3D map of the environment.

† Scene characterisation.

† Controlling some preselected objects in the scene.

Our work, under the supervision of the computer vision

group, has consisted in implementing on reconfigurable

hardware some image preprocessing algorithms:

† Image equalisation.

† Corner detection in 2D images.

The result obtained from the corner detection algorithm

is a list of coordinates ðx; yÞ that locates the corners in

the image. This list feeds the 3D map building algorithm

that has been developed by the VICOROB group [5]. Fig. 2

shows the control flow of the 3D map building algorithm

and the 2D image preprocessing algorithm that must be

implemented on reconfigurable hardware.

Apart from this one, there are two secondary aims:

† Improving the preprocessing algorithms performance

that are usually implemented on microprocessors.

† Designing an image processing architecture based on

reconfigurable devices such as Field Programmable Gate

Arrays (FPGAs).

† Obtaining a fault tolerant architecture by adding fault

tolerant capabilities to the operators implemented on

reconfigurable hardware.

The methodology that has been followed to achieve these

aims is presented in Section 3.

3. General methodology vs. proposed methodology

The classical design methodology is based on vertical

partitioning (see Fig. 3a). This design methodology makes

use of both hardware and software commercial components

(Commercial of the Shell or COTS). The starting point of

this methodology is a hardware platform that meets the

performance requirements for the system under design. The

operating system and the software application are built on

this platform. This methodology offers a very rigid solution,

since the performance of the system is usually constraint to

that the hardware platform can obtain. Improving the

performance of the system usually involves replacing

Fig. 1. Robots market evolution depending on the target applications [1].

J. Albaladejo et al. / Microprocessors and Microsystems 28 (2004) 303–316304

the hardware platform (microprocessor or microcontroller)

by a more competitive component.

The appearance of reconfigurable hardware com-

ponents in the market has led to the development of a

horizontal codesign methodology. This design method-

ology, like the classical one, takes performance require-

ments and system specifications as the starting point of

the design flow. In this case, the design flow is based on

a horizontal partitioning and not a vertical one (see

Fig. 3). This means that, although the hardware and

software parts of the system make use of COTS

components, they also make use of reconfigurable

hardware devices [6]. In this way, a hardware platform

with horizontal structure is established. As in the

classical methodology, the software is implemented on

this hardware platform. In case the performance of the

system must be improved, it is possible to program the

functions that must be sped up on reconfigurable

hardware [7]. The coupling level between the micro-

processor (microcontroller) and the reconfigurable hard-

ware device can be any of those proposed by K. Compton

and S. Hauk [8].

This section presents a horizontal codesign based

methodology that can be applied to the development of

fault tolerant microprocessor (microcontroller) based sys-

tems. The proposed methodology consists of including fault

Fig. 2. Control flow of the 3D algorithm and 2D image preprocessing algorithm [5].

Fig. 3. General codesign methodology (left), proposed methodology (right).

J. Albaladejo et al. / Microprocessors and Microsystems 28 (2004) 303–316 305

tolerant capabilities to the system when performing its

horizontal partition.

To achieve this goal, some fault tolerance software

techniques will be included in the application software [24]

and will run on the processor. In the same way, some fault

tolerance mechanisms will be developed for the reconfigur-

able hardware. Once all the fault tolerance mechanisms

have been included, it is necessary to validate them and

analyse the performance of the system.

3.1. Specifications and requirements of the system

In the first step of the methodology, the requirements and

high level specifications of the system are established.

Different domain related specification languages are used to

introduce the specifications [9]. These languages are based

on: system specification models, such as states oriented

models, finite states machines (FSM), Petri nets (PN) or

hierarchical and concurrent FSM (CFSM); activity oriented

models, such as data flow graphs (DFG) or control flow

graphs (CFG); structure oriented models, like the diagrams

of connectivity among components; data oriented models,

such as the diagrams of relationship among entities and

Jackson diagrams, and hybrid models, like control and data

flow graphs (CDFG) [10].

3.1.1. Specifications and requirements

The work our group has to face is: ‘the design of an

embedded vision subsystem that must be coupled with a

microprocessor for a mobile robot. The vision subsystem

will be in charge of accelerating the required preprocessing

for the 3D reconstruction. The final 3D map will be built by

means of the microprocessor.’

The specifications and requirements of this subsystem

reflect: the performance, results rate, functionality, power

consumed and kind of inputs and outputs of the system.

The functions that must be implemented are:

† A 3D map building algorithm that will run on the robot’s

embedded microprocessor.

† A corner detection algorithm for 2D images that will run

on reconfigurable hardware. To achieve this aim:

Some classical corner detection algorithms, such as

Harris–Stephens [11] and Förstner [12] algorithms,

will be used.

The outputs of these algorithms will be inputs for

the 3D vision algorithm.

The inputs and outputs of the vision subsystem are:

† Inputs: the digital (or analogue) video signal.

† Images are 256 £ 256 pixels wide and have a resolution

of 256 grey levels (8 bits per pixel).

† Outputs: the results from the image preprocessing

algorithm are the coordinates ðx; yÞ of the detected

corners. They will be sent to the microprocessor via

USB or Ethernet, or to an external SRAM memory. It

will also be possible to visualise the processed image

on a visual display unit. All these outputs must be

available depending on the user requirements.

The general requirements show that the main goal of the

robot is surveillance tasks and, therefore, it must be a

reliable platform. Thus, the vision subsystem design

specifications must include the dependability of the system.

This specification leads to the addition of fault tolerant

mechanisms to the design.

Dependability of the vision subsystem:

† The vision subsystem must be designed in order to

increase the dependability of the global system. Thus, the

vision subsystem will implement some fault tolerance

mechanisms.

3.1.2. Validation of the specifications and requirements

The second stage of the general methodology consists

validating the specifications using any of the formal

languages that are available in the market. Specification

models make use of formal languages with concrete

semantic rules. These rules are used to specify the

definitions, causes, actions and/or relationships that can be

established in a specific design area, like digital integrated

circuits. Some examples of application domains are

telecommunications, automation, domestic services, and

the industries related to transformation process, military

equipment and medicine. During the recent years, the

most important inversion has been performed in these

application fields, both in marketing and research and

development [13].

This second stage has been adopted in the following way.

First, the algorithms must be verified and validated by some

tool that allows for the simulation of the system behaviour

in an easy and quick way. This step must be done before

implementing the algorithm, both the hardware and soft-

ware modules. Therefore, the image preprocessing algor-

ithms are written by means of some high level language. In

our case, Matlabe [14] tool has been used to simulate and

validate the image preprocessing algorithms because it

offers several capabilities for image processing. In particu-

lar, the results obtained from the simulation using integer

numbers have been found to be invalid. It is necessary to

obtain valid results before implementing the corner

detection algorithms on FPGAs. Therefore, all the arith-

metic operations have been redesigned to use a floating-

point format derived from the standard IEEE-754 [15].

These new operators are validated again using Matlabe.

These results are then compared with the ones obtained

from the simulation using the double format from the

standard IEEE-754. In case the requirements were not met,

it would be necessary to modify the floating-point format

that is being developed (size of exponent and mantissa).

This new format needs to be verified again until

J. Albaladejo et al. / Microprocessors and Microsystems 28 (2004) 303–316306

the requirements are met. The validation using Matlabe has

been very useful to check data format and type and to

determine the correctness of the results.

3.2. Partitioning

Hardware (HW)–software (SW) horizontal partition is

performed in this stage of the methodology. The different

tasks of the simulated algorithms are usually divided into

two modules: those that need a faster execution time

(hardware modules) and those that do not need high

performance or their timing requirements are already met

(software modules).

Hardware components are synthesised on reconfigurable

hardware and software components are compiled to run on a

processor. Hardware modules are usually written on a high-

level hardware description language (HDL), such as Verilog

or VHDL. The hardware devices where they are usually

synthesised are FPGAs, CPLDs and FPSoCs, although they

can be synthesised on ASICs when they need high timing

performance. Software modules (functions), which do not

need high performance, are compiled to run on an auxiliary

microprocessor or microcontroller.

3.2.1. Synthesis

The horizontal partition of the system is performed once

the data format and type has been verified. Taking into

account the proposed system, hardware oriented in this case,

the algorithms are translated into hardware modules by

means of a HDL that could be synthesised.

Following this methodology, the image preprocessing

algorithms have been manually translated from Matlabe to

VHDL in order to implement them into a Xilinx FPGA.

In case of implementing a fault tolerant design, this paper

proposes the addition of a new stage in the traditional

horizontal codesign methodology. Software and hardware

fault tolerance mechanisms must be added in this new stage

(see Fig. 3b). If the design does not have any fault tolerant

capabilities, the designer will proceed to the cosimulation

phase.

3.2.2. Cosimulation and validation

In the traditional horizontal codesign methodology, the

design requirements are verified by means of the hardware

and software modules integration. Cosimulation tools are

used to perform this verification. In case the requirements

are not met, it is necessary to go back to optimise the HW

and SW partition. This process is known as refining.

Hardware optimisation usually consists in obtaining a

higher level of parallelism while software optimisation

tries to implement more efficient functions.

This stage follows the classical methodology but

includes the coverage analysis. The analysis of the system

coverage is related to the expected fault rate. The system

coverage must reach a required value. This requirement can

be satisfied by those systems with a high level of intrinsic

redundancy. If this is not the case, it is necessary to go back

to the synthesis phase and add some fault tolerance

capability. The new system will be more reliable than the

previous one.

The global system must be simulated and analysed to

obtain its coverage after implementing the fault tolerant

vision subsystem.

3.3. Prototyping and manufacturing

The last stage of the methodology involves the system

prototype assembly (hardware, software and their interface)

once the requirements and specifications are met.

After the prototype has been validated, it is all prepared

for the serial fabrication of the prototype.

4. Implementation

This section presents the different studies that have been

performed in order to implement the proposed vision

subsystem. It is divided into three subsections. Section 4.1

explains the corner detection algorithms. Section 4.2 details

the implementation and simulation of these algorithms.

Section 4.3 presents the VHDL design of the algorithms

once the data types were validated. This last section also

analyses the fault tolerance technique that has been

implemented.

4.1. Corner detection algorithms

The theoretical study of the search of maxima and

minima points on surfaces can be applied to the image

analysis. It makes use of the properties of spatial derivatives

on images (analysis of the partial derivatives matrix of a

surface or Hessian) to find the corner of the objects that

appear on the image. These characteristics are considered as

points of interest [16]. The points of interest of an image are

defined as those points that present a variation of the light

intensity in any direction.

Computer vision researchers have developed several

corner detection algorithms [17]. Among them appear two

classical algorithms: Harris – Stephens and Förstner

algorithms.

The VICOROB group has proposed these two algorithms

to be implemented on hardware.

Both algorithms are based on the study of the

autocorrelation matrix. It is calculated by the first order

partial derivatives in the x and y directions for an image I:

This matrix A is defined by:

A ¼
, Ix· p Ix . , Ix· p Iy .

, Ix· p Iy . , Iy· p Iy .

" #
ð1Þ

where Ii represents the partial derivative in i direction.

Symbol ‘ , … . ’ means that this operator has been

J. Albaladejo et al. / Microprocessors and Microsystems 28 (2004) 303–316 307

smoothed by using a spatial Gauss mask. ‘.*’ operations

represent point to point operations between derivatives and

not the classical matrix product [18].

The study of the diagonalisation of matrix A shows that

its eigenvectors are the directions of the maxima and

minima when light intensity changes.

The eigenvalues of matrix A: lmaxylmin shows that:

† It is a uniform point when: lmax £ lmin , 0:

† It is a corner point when: lmax £ lmin . 0:

† It is an edge point when: lmax £ lmin ¼ 0:

Harris–Stephens [11] proposed a function named

cornerness that is represented by R :

R ¼ detðAÞ2 0:04½TraceðAÞ�2 ð2Þ

where R measures the gradient variation in each point of an

image and the local maxima are reported as corners.

Another corner detection algorithm that has been

implemented is the Förstner algorithm [12]. It extracts the

corners of an image from the local maxima of another

function named C1 :

C1 ¼ detðAÞ=½TraceðAÞ� ð3Þ

4.2. Data types implementation and validation by means

of simulation tools

The previously presented algorithms have been simu-

lated by using the MatLabe tool. Their execution flow is the

following:

Step 1: Derivative in direction XðIxÞ:

Step 2: Derivative in direction YðIyÞ:

Step 3: Point to point X and Y derivatives product

ðIx·* IyÞ:

Step 4: Point to point X and X derivatives product

ðIx·* IxÞ:

Step 5: Point to point Y and Y derivatives product ðIy· p

IyÞ:

Step 6: Gaussian smoothing ð, Ix·* Iy .Þ of [Step 3]

results.

Step 7: Gaussian smoothing ð, Ix·* Ix .Þ of [Step 4]

results.

Step 8: Gaussian smoothing ð, Iy·* Iy .Þ of [Step 5]

results.

Step 9: Corners operator ðC1Þ
21:

Paso 10: for Y ¼ 1 to dimðIMG YÞ

for X ¼ 1 to dimðIMG XÞ

Obtain the minimum local neighbour of ðC1Þ

MinðX;YÞ ¼ Minimum Neighbour ðC1Þ

end for X

end for Y

Step 11: for Y ¼ 1 to dimðIMG YÞ

for X ¼ 1 to dimðIMG XÞ

if ðMinðX;YÞ ¼ C1ðX;YÞ then

Store ðX;Y ;C1ðX;YÞÞ

end if

end for X

end for Y

Step 12: Descending ordering of C1:

Step 13: Obtaining the best qualified n points (corners

coordinates).

The different steps of a simulation are shown in Fig. 4.

A first study was performed in order to validate the

data types that must be used in the implementation of

the algorithms in FPGAs. This work consisted in the

simulation of the algorithms using MatLabe and integer

data type.

The previously presented program flow has been

simulated using both integer data type (signed) and double

data type (64 bits). The different results have been compared

to determine the number of bits necessary to perform the

operations using integer data type. To perform the

operations with integer operands, it is necessary to scale

them to achieve a good precision in the results. Taking into

account the range of the numbers and coefficients implied in

the operations, it is possible to determine that the number of

bits required to represent the operands with a good

resolution is more than 64. The required size of the

operands is so large that it is not advisable to implement

them in FPGAs.

The following study consisted in the simulation of the

corner detection algorithms using different floating point

data types (modifying the exponent and mantissa length).

In this way, it was possible to determine the best data

format to fit in the FPGA taking into account its resources

limitation.

Floating point operators have been implemented on

reconfigurable devices in some works related to sound and

image processing algorithms. One of the first studies [19]

described the implementation of floating point vision

algorithms. A parametrizable floating point modules both

in exponent and mantissa length were implemented in Ref.

[20]. The design of floating point modules for computer

vision using images taken by a satellite was presented in

Ref. [21].

In all these papers, the format of the floating point

numbers is analogue to the standard IEEE-754 format [15]

(see Table 1). From these studies, it is possible to determine

that there are two common floating-point formats for FPGA

implementation [22]: a 16 bits format and a longer (more

bits) format (but less bits than the 32 bits simple precision

standard). Therefore, the format of the floating point

numbers is established according to the internal resources

of the FPGA.

The reconfigurable device that has been used to

implement the vision subsystem is a Virtex FPGA from

Xilinx. Thus, it is necessary to take into account the

internal resources of this circuit [23]. Among the internal

J. Albaladejo et al. / Microprocessors and Microsystems 28 (2004) 303–316308

components that are needed to implement the arithmetic

operators (such as the configurable logic blocks or SLICES)

appear several RAM blocks (SRAMB4_Sm_Sn). The

configuration of these RAM blocks is determined by

balancing the number of bits required by the floating-point

numbers and the optimal use of these memories. Finally, the

optimal solution is obtained by configuring the internal

RAM in order to use a word size of 16 bits.

Taking into account this restriction, a 16 bits format for

floating point numbers has been implemented. This format

is parametrizable: the number of mantissa and exponent

bits.

The validation of this data format has been performed by

simulating the algorithms using floating point format. The

results obtained have been compared to the ones obtained

from the simulation using the MatLabe 64 bits double

format (this format has been called ideal in this work).

MatLabe allows for the selection of the data format

to work in an application domain by using the

Simulinke tool. This tool allows the user to choose

among integer format and different fixed point formats,

but it is restricted to applications in the system control

domain, i.e. applications that work in the frequency

domain, such as discrete transformations like FFTs,

DCTs, etc. and their inverse transformations.

The problem arises because the operations involved in

the corner detection algorithms belong to the spatial

domain, like Prewitt spatial derivates convolution and

Gauss filtering (see Eqs. (2) and (3)). To solve this

problem, it is necessary to develop some new classes to

allow the simulation of the operations with this 16 bits

floating point format using MatLabe.

A new MatLabe floating point arithmetic operators

library (@float16 class) has been designed to allow this

simulation. The results from these new simulations are

compared to the ideal results. All the operations involved

in the corner detection algorithms have been

implemented: addition, subtraction, product and division.

After this study, the size of the exponent and mantissa of

the new floating point format (@float16) can be seen in

Table 2: 1 bit for the sign, 6 bits for the exponent and 9 bits

for the mantissa. The greatest value that can be obtained as

intermediate result in the involved operations is around

Fig. 4. Corner detection algorithm simulation with Matlabe.

Table 2

Structure of the designed class for floating point numbers: @float16

Precision Sign (bit) Exponent (bits) Mantissa (bits) Bias

@float16 1 (15) 6 (14:9) 9 (b8:0) 31

Table 1

Floating point numbers standard format IEEE-754 [IEEE-754]

Precision Sign (bit) Exponent (bits) Mantissa (bits) Bias

Double 1 (63) 11 (62:52) 52 (b51:0) 1023

Simple 1 (31) 8 (30:23) 23 (b22:0) 127

J. Albaladejo et al. / Microprocessors and Microsystems 28 (2004) 303–316 309

4 £ 109. Taking into account that any floating point number

can be described by Eq. (4), the maximum value that can be

represented using 6 bits for the exponent is 8581545984.

value ¼ ð21Þs £ 2E231 £ ð1 MÞ ð4Þ

As it can be seen, it is enough to represent the maximum

and minimum values for the intermediate results. Matlabe

has been used to perform several simulations to determine

whether a mantissa of 9 bits offers a good precision for the

related operations. Several simulations have been per-

formed and the comparison among the results obtained

using the IEEE-754 double precision format and the floating

point format presented here shows that the algorithms find

exactly the same corners in the 99% of the cases. Therefore,

we have chosen this floating point format since it has less

bits than the IEEE-754 format and obtains nearly the same

results.

4.3. VHDL implementation of the floating point operators

(@float16 class)

Once the format of data and the floating point operators

have been validated by MatLabe simulation, the next step

in the design is the implementation of this components in

hardware. This is usually done by using some HDL. VHDL

has been selected in this case. The translation of the

@float16 operators into VHDL modules has been manually

performed. The design process involved several refine-

ments. The design has followed a Down–Top methodology,

implementing each operator in first place and, after that,

assembling the required operators to implement the

proposed algorithms.

The VHDL floating point operators have been

implemented by using the arithmetic operators already

existing in the standard IEEE-1164 libraries: IEEE_std_lo-

gic_arith.ALL and IEEE_std_logic_unsigned.ALL. The

implementation of the operations of addition (plus_float),

subtraction (minus_float), product (multiplic_float) and

division (division_float) and the convolution operator

(2D_convol) has made use of the operands the development

tool can synthesise. The basic arithmetic operations

implemented follow the IEEE-754 standard [15] adapted

to the @float16 data type.

The design of the basic floating point operators in VHDL

is based on the IEEE algorithms. According to this idea, the

addition has been implemented following to this algorithm

assuming that the operands are already in the floating-point

format:

Result ¼ X þ Y ¼ ðXm £ 2XeÞ þ ðYm £ 2YeÞ involves the

following steps:

1. Align binary point:

Initial result exponent: the larger of Xe, Ye

Compute exponent difference: Ye 2 Xe

If Ye . Xe Right shift Xm ‘exponent difference’

positions to form Xm 2Xe2Ye

If Xe . Ye Right shift Ym ‘exponent difference’

positions to form Ym 2Ye2Xe

2. Compute the addition of aligned mantissas:

i.e. Xm2Xe2Ye þ Ym ðorÞ Xm þ Ym2Ye2Xe

3. If the result must be normalised, then a normalisation

step follows:

Left shift the result and decrement its exponent (e.g. if

result is 0.001xx…) or

Right shift the result and increment its exponent (e.g.

if result is 10.1xx…)

Continue until MSB of data is 1 (hidden bit in IEEE-

754 Standard)

4. Check result exponent:

If larger than maximum exponent allowed return

exponent overflow

If smaller than minimum exponent allowed return

exponent underflow

5. If result mantissa is 0, it will be necessary to set the

exponent to zero by a special step to return a proper

zero.

The floating point subtraction operation has been

implemented using the addition operator and the two

complement of the second operand.

The floating point product operation performs several

shiftings and additions to obtain the right result.

Finally, the floating point division follows a restoration

algorithm that makes use of the previously implemented

floating point subtracter.

The convolution operation has been implemented using

the previously developed product, addition and subtraction

operators as building blocks. It has been designed following

the MatLabe algorithm named valid. This algorithm

consists in multiplying the elements of a mask ðn £ mÞ by

the pixels of an image [16]. The result is an image with

intðn=2Þ less rows and intðm=2Þ less columns than the original

image.

The data path has been designed according to the

VHDL modules previously implemented. In this case, the

data path follows a predefined strategy to access external

memories where data are stored. Both images and results

are stored on these external (left and right) SRAMs (see

Fig. 5).

Data (images) in the floating point format are initially

stored into the external SRAMs. The ‘mask_3 £ 3’

operators are in charge of performing convolution oper-

ations to obtain the gradients ðIx; IyÞ in the x and y

directions. After that, the autocorrelations are carried out

ðIx·* Ix; Iy·* Iy; Ix·* IyÞ: A Gaussian smoothing is applied to

the autocorrelation results ðGxx; Gyy; GxyÞ: At last, corners

are extracted by means of Harris–Stephens or Förstner

algorithms (see Fig. 5). The detailed analysis of the data

path is presented in Ref. [3].

The next step is the validation of the algorithms

implemented on the FPGA. The results obtained from

J. Albaladejo et al. / Microprocessors and Microsystems 28 (2004) 303–316310

these algorithms are compared to the results of the

simulation.

Once the results have been validated, it is necessary to

add fault tolerant capabilities to the system if needed.

In this case, the requirements of the project specify that it

must be a reliable system. Therefore, the image preproces-

sing subsystem must present a lower failure rate than the

simple one.

The fault tolerant vision subsystem has been

implemented following a classical software fault tolerance

technique known as ‘N-Version Programming’ [24]. The

arithmetic operators that are used in the corner detection

algorithms have been replicated by using different

implementations of the same algorithm.

There exist two different versions for each arithmetic

operator: a simple version and a 3-versions. In the simple

version each operator has been replicated three times (same

functionality and same structure). In the three-versions, the

replicated modules performed the same function but do not

have the same structure.

† The three-versions floating point adder implements three

different adders: Carry-Look-Ahead, Carry-Select and

Ripple-Carry adders.

† The three-versions floating point subtracter implements

three different subtracters by using the previously

presented adders (data in two-complement format).

† The three-versions floating point multiplier also

implements three different versions by using the adders

components (shifting and addition).

† The three-versions floating point divisor (restoring

algorithm) implements three different versions based

on the previously presented subtracters.

All these operators implement the treatment of the

special cases such as infinity, zero and not-a-number

(NaN).

The simple arithmetic operators are substituted by their

fault tolerant version in order to increment the dependability

of the system. The fault tolerant ones have a structure known

as Shift-Out Redundancy (SoR) that allows for the verifica-

tion of the results. This structure consists of a comparator, a

detector and a collector (see Fig. 6). This module checks the

result of each operator. The result is valid when the majority

of the result is equal. The module detects which operators are

not properly working and they are removed.

Fig. 6 shows the block diagram of the mixed SoR floating

point adder that implements three different components:

Ripple-Carry, Carry-Select and Carry-Look_Ahead.

Fig. 5. Data paths of the corner detection algorithms.

J. Albaladejo et al. / Microprocessors and Microsystems 28 (2004) 303–316 311

The coverage analysis begins with the specification of

the theoretical model of the system. This model is usually

described by means of Markov chains, PN or any other

systems modelling techniques. Experimental results are

obtained by means of fault injection campaigns both in the

model or the prototype of the system.

The Markov chain model of the SoR components is shown

in Fig. 7. It is to note that each replicated module is

implemented in a different way but with the same functionality

and, therefore, the fault tolerant module implements three-

versions with SoR. The failure rates (l1; l2; l3) of the

components that appear in the model are usually different. In

this case, the logic resources (SLICES) that each implemented

component uses are nearly the same (Look-AheadSlices ¼ 208,

Ripple-CarrySlices ¼ 207, Carry-SelectSlices ¼ 210). Thus, the

failure rate of each module ðl ¼ l1 ¼ l2 ¼ l3Þ has been

considered to be the same (see Fig. 7).

The initial state of this model (3) represents that all the

three modules of the system are fault free. There are two

possible alternatives in case a module fails: it is possible to

reach states (2D) and (2ND). The state (2D) represents that

the system has detected the error and continues working

properly. The state (2ND) represents that the error has not

been detected and the system continues working. The final

states of the system represent a safe failure (SF) and a non-

safe failure (NSF).

The SF state is reached when two of the modules

have failed and the system has detected both errors. The

NSF state is reached when one of the errors has not been

detected and is represented by the transitions 2lð1 2 CÞ

y 3lð1 2 CÞ: The system is also working in the state

(2ND) but the error has not been detected. Then, a

failure in any of the other two modules will lead to the

NSF state through the transition 2l:

The differential equations that can be deduced from

the three-version with SoR model and the probability

of the different states are shown in the following

equation [25]:

The analytical solution for the reliability of the system

appears in:

RðtÞ ¼ p3ðtÞ þ p2DðtÞ þ p2NDðtÞ ¼ 3e22lt 2 2Ce23lt ð6Þ

The security of the system is represented by:

SðtÞ ¼ RðtÞ þ pSFðtÞ

¼ C2 þ 2ð1 2 C2Þe23lt
2 3ð1 2 C2Þe22lt ð7Þ

Eqs. (6) and (7) are dependent on l; C and t (time). The

failure rate ðlÞ is provided by the manufacturer. Then, it is

necessary to obtain the coverage ðCÞ of the fault tolerance

mechanisms of the system.

The coverage of the system can be obtained by the

injection of faults into the system. There exist different

fault injection techniques [26,27]. A simulation-based fault

injection technique has been used in this work. In particular,

faults will be injected in the VHDL model of the system.

Three different fault models have been used:

† Bit-Flip. It represents a change in the logic level of

memory cells (flip-flops, registers, memory).

_p3ðtÞ

_p2DðtÞ

_p2NDðtÞ

_pSFðtÞ

_pNSFðtÞ

2
6666666664

3
7777777775

¼

23l 0 0 0 0

3lC 22l 0 0 0

3lð1 2 CÞ 0 22l 0 0

0 2lC 0 0 0

0 2lð1 2 CÞ 2l 0 0

2
6666666664

3
7777777775
£

p3ðtÞ

p2DðtÞ

p2NDðtÞ

pSFðtÞ

pNSFðtÞ

2
6666666664

3
7777777775
;

p3ðtÞ ¼ e23lt

p2DðtÞ ¼ 3Ce22lt 2 3Ce23lt

p2NDðtÞ ¼ 3ð1 2 CÞe22lt 2 3ð1 2 CÞe23lt

pSFðtÞ ¼ C2 þ 2C2e23lt 2 3C2e22lt

pNSFðtÞ ¼ ð1 2 C2Þ þ 2ð1 2 C2Þe23lt

23ð1 2 C2Þe22lt

8>>>>>>>>>>><
>>>>>>>>>>>:

ð5Þ

Fig. 6. Block diagram of a hybrid TMR floating point adder.

Fig. 7. Markov model of the TMR components with fault rate l and

coverage C.

J. Albaladejo et al. / Microprocessors and Microsystems 28 (2004) 303–316312

† Pulse. It represents a change in the logic level in

combinational circuits (signals).

† Stuck-at. It represents a permanent change in the logic

level of both sequential and combinational circuits.

Fault injection campaigns have consisted in the injection

of 3000 faults following a uniform distribution on the

VHDL modules that have been synthesised. Fig. 8 shows the

levels where faults have been injected:

† At component ports.

† At component signals.

† At component FSM.

The campaigns have been performed both on the fault

tolerant and non-fault tolerant components.

The Section 5 presents the results obtained from this

work.

5. Results

This section details the results obtained from the

simulations, the VHDL implementation and the reliability

study of the image preprocessing subsystem that has been

designed.

The main results that can be extracted form MatLabe

simulations are:

† The operators must use more than 64 bits to work with

integer numbers in order to avoid any loss in the

precision of the results [28].

† Having in mind the size of these operands, a new

floating point format was developed (@float16). This

class allows for the simulation of the algorithms in

MatLabe. This new format takes into account the

internal resources of the reconfigurable circuit where

the algorithms will be implemented (Virtex FPGA

from Xilinx).

† These algorithms have been simulated varying the size

of the exponent and mantissa. The results from these

experiments are compared to the results obtained from

the simulation of the algorithms with double data type

(64 bits).

This comparison shows that the implementation of the

Harris–Stephens and Förstner corner detection algorithms

using double and @float16 data types detect nearly the same

amount of corners. An example of this comparison can be

seen in Fig. 9.

The algorithms execution time depends on the operating

system and the processor where they are running.

This study has used images of 256 £ 256 pixels and 256

grey levels. The algorithms were written in C/Cþþ . They

were executed on different microprocessors running under

Windows and Linux. The VHDL implementation was

simulated with ModelSim tool [29].

Table 3 shows that the execution time of the algorithms

running on an FPGA at 35.7 MHz was 50 times faster than

the result obtained from the PowerPC 823 at 50 MHz.

It must be taken into account that:

† The PowerPC is a fixed point microprocessor and,

therefore, most of the time is used in the emulation of

floating point operations. This microprocessor is in

Fig. 8. Fault injection levels for the synthesised VHDL modules.

Fig. 9. Corner detection results from: (A) Förstner algorithm, (B) Harris–Stephens algorithm.

J. Albaladejo et al. / Microprocessors and Microsystems 28 (2004) 303–316 313

charge of processing the 3D-map building algorithm and

programming the FPGA. The FPGA is coupled to this

processor in order to accelerate the images preprocessing

(corner detection algorithms).

† The Pentiume Pro has a floating point unit and therefore,

it obtains very low execution times. There is a difference

of 25 ms of execution time between the Förstner

(division operation) and Harris – Stephens (only

additions, subtractions and products) algorithms. This

microprocessor has been used because it is widely used

in applications with very intensive computing.

† Athlone processors from AMD obtained the lowest

execution times. It is a very common platform for

standard computing.

† The execution of the algorithms on the FPGA is 20 times

slower than the execution on the Athlone processors.

However, it is to note that the processing frequency of

these processors is 35 times faster than the frequency of

the FPGA.

† Although, it could seem that the use of a high

frequency commercial processor would be the best

solution it is not advisable in our case. The

implementation of software fault tolerant techniques,

such as N-Version Programming, in this kind of

processors will produce a great decreasing of the

processor performance. The implementation of these

techniques on reconfigurable hardware has no real

impact on the performance of the system and, there-

fore, these devices are well suited for that purpose.

Several fault injection campaigns were performed to

determine the coverage of the system. The following results

(see Table 4) can be extracted from these campaigns:

† The fault tolerant VHDL modules are obviously

more reliable than the non-fault tolerant ones (without

Table 3

Execution times for the Förstner (time(F)) algorithm and Harris–Stephens

(time(H-S)) algorithm using the @float16 class for the processing of images

(256 £ 256 pixels) on different platforms

Platform MHz time(F) ns time(H-S) ns

Athlone 1333 40 41

Athlone 1000 52 52

Pentiume Pro 400 68 43

PowerPC MPC823E 50 29244 30691

XCV3200EFG1156 35.7 660 633

Table 4

Failure rate and coverage of simple module replicated three times with SoR

and three-versions module with SoR

Component % Non detected

errors (a)

% Detected

errors (b)

% Coverage

ðc ¼ b=ða þ bÞÞ

Carry-select 5 16 76.2

Look-ahead 7 20 74.1

Ripple-carry 6 18 75.0

SoR 5 19 79.2

Fig. 10. Reliability comparison between the fault tolerant and non-fault tolerant components.

J. Albaladejo et al. / Microprocessors and Microsystems 28 (2004) 303–316314

coverage). These non-fault tolerant components have an

average failure rate of 34%.

† The fault tolerant modules behave in the following way

in the presence of faults:
* A simple component replicated three times with SoR:

the average failure rate is of 6% (column a), the

average error detection is of 18% (column b) and the

average coverage for these components is of 75.1%

(column c).
* A three-versions with SoR component: the average

failure rate is of 5% (column a), the

average error detection is of 19% (column b) and the

average coverage for these components is of 79.2%

(column c).

† Fig. 10 shows the results obtained from the reliability

equation (see Eq. (5)) when the variable C is substituted

by the previously calculated coverage. The fault rate ðlÞ

clairvoyance of the components has been supposed to be

of 0.0001 faults per time unit.

6. Conclusions and future work

From the presented work, it is possible to conclude that:

† It is necessary to follow a proper codesign methodology

(like the one presented here) to obtain the desired results.

It allows, for example, for the validation of the data types

of the operands before implementing the design into a

FPGA. In this way, it can obtain an optimal use of the

internal resource of the device.

† It is advisable to use a reconfigurable device (FPGA-like)

as coupled coprocessor to the main processor. The tasks

that need a faster execution time can be implemented on

this device.

† Simulations allow for the validation of hardware

components before their implementation on reconfigur-

able hardware.

† The library of arithmetic synthesisable floating

point operators allows for the reusability of

components.

† In case of dependable system requirements, it will be

necessary to add fault tolerance mechanisms to the

components.

It is to note that this work has used a software fault

injection technique (N-Version Programming) to develop

fault tolerant components that are implemented on real

hardware. This fact provides better performance than the

software-implemented technique. It supports both software

faults (in design of the modules) and hardware faults (those

that appear in the hardware where the algorithms are

running). In particular:

† A fault tolerant floating point arithmetic operators library

has been implemented.

† These components have a SoR structure:

Simple components replicated three times have an

average failure rate of 6% and an average coverage of

75.1%.

three-versions components have an average failure

rate of 6% and an average coverage of 79.2%.

† These components can be reused in any design to

improve its dependability.

† Obviously, the fault tolerant system is more reliable than

the non-fault tolerant one.

† The three-versions with SoR components have a lower

failure rate than the other SoR components. Each

component implementation takes different area and

resources from the FPGA. A fault that affects a particular

component with great probability will be very dangerous

for the version with three identical simple components.

The three-versions components will be more robust in

the presence of this kind of fault (the other two modules

will work fine).

† However, these fault tolerant implementations use a huge

number of FPGA resources. It will be neglected as more

logic reconfigurable blocks could be integrated on

reconfigurable circuits.

The future work will consist of:

† The fault tolerant components library will be expanded

by the addition of more floating point operators such as

exponentiation, trigonometric functions, etc. This will

allow for the implementation of new fault tolerant

computer vision algorithms.

† A new fault injection technique will allow for the

injection of faults into FPGAs [30].

† It could also be possible to use the reconfiguration

capabilities of the FPGA to implement a faulty module

on a fault free area of the device.

† New FPGA are also including microprocessor cores into

the reconfigurable logic. Thus, it will be very interesting

the improvement of the codesign methodology to use

these capabilities to implement both the fault tolerant

hardware and software partitions inside the same Field

Programmable System on Chip (FPSoCs).

References

[1] United Nations Economic Commission for Europe (UNECE) and

International Federation of Robotics (IFR), http://www.unece.org/

stats/robotics/.

[2] G. Hirzinger, Why robots are just around the corner, Pictures of the

Future Magazine, Siemens, 2002, 62–65.

[3] J. Albaladejo, Codesign of a real time image processor, PhD thesis (in

Spanish), Computer Engineering Department, Technical University of

Valencia, 2003.

[4] Computer Vision and Robotics, University of Girona, http://iiia.udg.

es/English/VICOROB_english.html.

[5] X. Armagué, Modelling stereoscopic vision systems for robotic

applications, PhD thesis, Universitat de Girona, Spain, 2003.

J. Albaladejo et al. / Microprocessors and Microsystems 28 (2004) 303–316 315

http://www.unece.org/stats/robotics/
http://www.unece.org/stats/robotics/
http://iiia.udg.es/English/VICOROB_english.html
http://iiia.udg.es/English/VICOROB_english.html

[6] G. de Micheli, M. Sami, Hardware–software co-design, Kluwer

Academic Pub., Dordrecht, The Netherlands, 1996.

[7] COSYnthesis for eMbedded Architectures, http://www.ida.ing.tu-bs.

de/general/start.e.shtml, 2003.

[8] K. Compton, S. Hauck, Reconfigurable computing: a survey of

systems and software, ACM Computing Surveys, ACM Press, USA,

2002, p. 171–210.

[9] R. Lauwereins, M. Engels, Specification languages, PhD course, K.U.

Leuven: ESAT/ACCA, and IMEC-DESICS, 2001.

[10] ESAT-K.U. Leuven, http://lesbos.esat.kuleuven.ac.be/courses.

[11] C. Harris, M. Stephens, A combined corner and edge detector, Alvey

Vision Conference, Rovaniemi, Finland (1988) 189–192.

[12] W. Förstner, A feature based correspondence algorithm for image

matching, International Archives of Photogrammetry and Remote

Sensing, Rovaniemi, Finland XXVI-3/3 (1986) 150–166.

[13] F. Balarin, M. Chiodo, P. Giusto, H. Hsich, A. Jurecska, L. Lavagno,

C. Passerone, A. Sangiovanni-Vincentelli, E. Sentovich, K. Suzuki, B.

Tabarra, Hardware–software co-design of embedded systems: the

POLIS approach, Kluwer Academic Pub, Dordrecht, The Nether-

lands, 1997.

[14] Matlabe, MathWorks, http://www.mathworks.com/.

[15] IEEE Standard for Binary Floating-Point Arithmetic (#754), Piscat-

away NJ, 1985.

[16] R.C. Gonzalez, P. Wintz, Digital image processing, Addison-Wesley

Pub, Boston, MA, 1987.

[17] L. Kitchen, A. Rosenfeld, Gray-level corner detection, Pattern

Recognition Letters 1 (9) (1982) 95–102.

[18] R. Garcı́a, A proposal to estimate the motion of an underwater vehicle

through visual mosaicking, PhD thesis, Universitat de Girona (Spain),

2001.

[19] N. Shirazi, A. Walters, P. Athanas, Quantitative analysis of floating

point arithmetic on FPGA based custom computing machines,

Workshop on FPGAs for Custom Computing Machines.Napa, USA

(1995) 155–163.

[20] A. Jaenicke, W. Luk, Parameterised floating-point arithmetic on

FPGAs, IEEE International Conference on Acoustic, Speech, and

Signal Processing (2001).

[21] P. Belanovic, Library of parameterised hardware modules for floating

point arithmetic with an example application, Ms thesis, Northeastern

University, Boston, USA, 2002.

[22] A.A. Gaffar, W. Luk, P.Y.K. Cheung, N. Shirazi, J. Hwang,

Automating customisation of floating-point designs, field-program-

mable logic and applications, Reconfigurable Computing Is Going

Mainstream, Springer-Verlag (2002) 523–533.

[23] Virtex 2.5 V field programmable gate arrays, Xilinx DS003-2, v 2.6,

2001.

[24] B. Randel, Systems structures for software fault tolerance, IEEE,

Transactions on Software Engineering 1 (2) (1975) 220–232.

[25] D.P. Siewiorek, R.S. Swarz, Reliable computer systems: design and

evaluation, A K Peters Ltd, 1998.

[26] P. Gil Fault tolerant system with watchdog processor: validation with

physic fault injection. PhD thesis (in Spanish), Technical University

of Valencia, 1992.

[27] D. Gil, Validation of fault tolerant systems with fault injection in

VHDL models, PhD thesis (in Spanish), Technical University of

Valencia, 1999.

[28] J. Albaladejo, D. de Andrés, L. Lemus, P. Gil, Reconfigurable fault

tolerant image processor (in Spanish), Workshop on Reconfigurable

Computing and Applications, Alicante, Spain, 2001.

[29] ModelSim SE PLUS 5.5e, Mentor Graphics, 2001.

[30] D. de Andrés, J. Albaladejo, L. Lemus, P. Gil, FPGA dynamic

reconfiguration for speeding up the simulation based fault injection (in

Spanish), Workshop on Reconfigurable Computing and Applications,

Madrid, Spain (2003) 39–46.

J. Albaladejo. José Albaladejo graduated

in Physics in the University of Valencia in

1984. He joined the Fault Tolerant Sys-

tems Group in 1996 and obtained the PhD

in Computer Engineering in December

2003. At the present, he is an assistant

professor in the Computer Engineering

Department of the Technical University of

Valencia. His current interests are related

to the field of codesign, reconfigurable

systems, and fault tolerant systems design.

D. de Andrés. David de Andrés obtained

the degree in Computer Science in the

Technical University of Valencia in 1998.

He joined the Fault Tolerant Systems

research Group in the Technical Univer-

sity of Valencia, where he received the MS

degree in Computer Engineering in 2000.

At present, he is an assistant professor in

the Computer Engineering Department of

the Technical University of Valencia and

is working on his PhD. His main research

interests are fault tolerant systems and digital systems design.

L. Lemus. Lenin Lemus obtained the

degree of Electrical Engineer in 1987 by

the National Polytechnical Institute of

Mexico (IPN). In 1991, he received the

MS degree on Computer Engineering by

the Advanced Studies and Research

Institute of the National Polytechnic

Institute of Mexico (CINVESTAV). In

2001 He obtained the PhD in Computer

Engineering at the Technical University

of Valencia (UPV) Spain. His research

interests are computer architecture and dependability benchmarking.

J. Salvi. Joaquim Salvi graduated in Com-

puter Science in the Polytechnical Univer-

sity of Catalunya in 1993. He joined the

Computer Vision and Robotics Group in

the University of Girona, where he received

the MS degree in Computer Science in July

1996 and the PhD in Industrial Engineering

in January 1998. He received the best thesis

award in Industrial Engineering of the

University of Girona. At present, he is an

associate professor in the Electronics,

Computer Engineering and Automation

Department of the University of Girona. His current interests are in the

field of computer vision andmobile robotics, focusingonstructured light,

stereovision and camera calibration.

J. Albaladejo et al. / Microprocessors and Microsystems 28 (2004) 303–316316

http://www.ida.ing.tu-bs.de/general/start.e.shtml
http://www.ida.ing.tu-bs.de/general/start.e.shtml
http://lesbos.esat.kuleuven.ac.be/courses
http://www.mathworks.com/

	Codesign methodology for computer vision applications
	Introduction
	The project tasks description
	General methodology vs. proposed methodology
	Specifications and requirements of the system
	Partitioning
	Prototyping and manufacturing

	Implementation
	Corner detection algorithms
	Data types implementation and validation by means of simulation tools
	VHDL implementation of the floating point operators (@float&/i;&inf;16&/inf; class)

	Results
	Conclusions and future work
	References

