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Abstract: Even though the commercial wheeled mobile robot Pioneer is very
important to the scientific community, there is not much information available
about its dynamical model. In this paper this model is deduced, including the
effect of the free wheel. The result is a complex equation of motion that depends
on several physical parameters. Some of them are provided by the manufacturer;
others can be directly measured and the rest of them are identified applying the
Least Square Method to the integral of the uncoupled motion equation for each
degree of freedom. After few assumptions, the whole model is obtained.
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1. INTRODUCTION

A dynamical model relates the motion parameters
of the mobile robot to the applied forces and
torques. While forward dynamics is used to ana-
lyze the response of the robot to a given command,
the inverse dynamic model is used in the design
of the controller; so a good dynamical model is a
key issue towards the appropriate control design
and towards the simulation of the behavior of the
hardware in the control loop.

The dynamics equations of motion of a mo-
bile robot can be deduced using the Newton-
Euler method (Pereira et al., 2000), (Rajagolapan
and Barakat, 1996) or the Lagrangian formula-
tion (D’Andréa-Novel et al., 1991), (Campion et
al., 1991), (D’Andréa-Novel et al., 1992), (Tounsi
et al., 1995b), (Tounsi et al., 1995a), (Leroquais,
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1998), (Thuilot, 1995). In this paper, the Lagrange
formalism is used to formulate the dynamics equa-
tion of motion of the well-known Pioneer mo-
bile robot manufactured by ActivMedia Robotics.
This equation depends on several physical param-
eters: some of them are provided by the robot
specifications, others can be measured in an easy
way and the rest of them should be estimated
through identification.

Although the complete equation of motion is a
complex nonlinear equation, it would be shown
that, when uncoupled experiments are carried out
(only one degree of freedom is in motion), the
equation can be simplified and can be formulated
as a linear equation in the vector of unknown
parameters. Hence, Least Square (LS) identifica-
tion method can be applied to the integral of this
equation and the unknown parameters can be esti-
mated. This method, that presents a good statisti-
cal behavior can be used for off-line (simulation)
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Fig. 1. Mobile Robot

or on-line identification (control) (Tiano, 2002).
It has been successfully applied to the parameters
identification of an unmanned underwater vehicle
(Tiano, 2002) (Carreras, 2003) and of a Sony
SCARA robot (Ha et al., 1989), (Chan, 2001).

This paper is organized as follows. In Section
2, the robot dynamic model is deduced. A brief
description of the identification method is given
in Section 3. The results of the identification are
shown in Section 4. And finally, the conclusions
are drawn in Section 5.

2. DYNAMICAL MODEL OF A WHEELED
MOBILE ROBOT

The dynamical model object of study, is for a
three wheeled mobile robot shown in Figure 1. It
has two driving wheels fixed in the front, with
the same axis of rotation, motorized with DC
motors. The third one, a free wheel, is connected
to the platform by a rigid structure and can rotate
around its vertical axis. The robot moves on the
horizontal plane and it is assumed that the wheels
- ground contact point satisfies the conditions of
pure rolling and non slipping.

Table 1 shows all the parameters involved in the
robot model, their significance and their units.
Next sections presents the deduced equations for
the robot model and the motor model.

2.1 Robot Model

Let consider an earth fixed reference frame {0, Xw,

Yw} in the plane of motion and robot fixed refer-
ence frame {Q,Xr, Yr} (see Figure 1). The vec-
tor of generalized coordinates that completely de-
scribes the robot motion is:

q(t) = (x, y, θ, β, φ1, φ2, φ3) (1)

Since this system has 5 independent constraints,
it can be proved that it has 2 degrees of free-
dom (D’Andréa-Novel et al., 1991). As proposed

Table 1. Parameters

Symbol Description Units

x, y origin of robot fixed frame [m]

θ robot heading [rad]

β orientation of the free wheel [rad]

φ1 angular position wheel 1 [rad]

φ2 angular position wheel 2 [rad]
φ3 angular position wheel 3 [rad]

η1 linear velocity of robot [m/s]

η2 angular velocity of robot [rad/s]

M mass of the robot [kg]
m2 mass of driving wheel 2 [kg]

m3 mass of driving wheel 3 [kg]
m1 mass of free wheel [kg]

R radius of wheels 2 and 3 [m]

R1 radius of wheel 1 [m]

L distance from robot frame to driv-

ing wheels

[m]

l1 distance from robot frame to the

moving bar of the free wheel

[m]

d distance of the moving bar of the

free wheel

[m]

Va armature voltage [V]

ia armature current [A]

xm, ym coordinates of the center of mass [m]

I0 inertia robot [kg.m2]

Ir1 inertia free wheel [kg.m2]
Ir2 inertia driving wheel 2 [kg.m2]

Ir3 inertia driving wheel 3 [kg.m2]
Ip1 inertia free wheel [kg.m2]
Cs1 coulomb friction torque [N.m]

Cv1 viscous friction coefficient [kg.m2/s]
Cs coulomb friction torque [N.m]

Cv viscous friction coefficient [kg.m2/s]

by other authors (D’Andréa-Novel et al., 1991),
(Tounsi et al., 1995b), (Campion et al., 1991),
the dynamics equations can be deduced from the
Lagrangian formulation:

d

dt

[

∂[L(q, q̇)]

∂q̇

]

−
∂[L(q, q̇)]

∂q
=

A(q)T λ + B(q)τ − Fr

(2)

Where L(q, q̇) is the system’s Lagrangian func-
tion, equal to the kinetic energy minus the po-
tential energy. In this particular case, a wheeled
mobile robot, the potential energy is zero, so
L(q, q̇) = Ec (kinetic energy). As kinetic energy
is:

Ec =
1

2
q̇T M(q)q̇ (3)

it can be found (Campion et al., 1991), (Tounsi et
al., 1995b) that:

M(q)q̈ + C(q, q̇)q̇ = A(q)T λ + B(q)τ − Fr (4)

Where

• M(q) is a 7x7 positive symmetric inertia
matrix,

• C(q, q̇)q̇ represents the centrifugal and Cori-
olis forces and torques,

• A(q) is the constraints matrix,



• λ is 5-vector of Lagrangian multipliers as-
sociated to the independent kinematic con-
straints,

• B(q) is the matrix of external torques or
forces applied to the robot,

• Fr is the vector of friction forces.

Because of the constraints, there exists a matrix
S(q) that satisfies:

q̇ = S(q)η (5)

Where η =
[

η1, η2

]T
.

An important property of S(q) (Campion et al.,
1991), is that

S(q)T A(q)T = 0 (6)

This equation allows the elimination of La-
grangian multipliers. Through time differentiation
of Equation 5, we get:

q̈ =
d[S(q)η]

dt
=

∂[S(q)η]

∂q
q̇ + S(q)η̇ (7)

Pre-multiplying Equation 4 by S(q)T and replac-
ing q̈ by Equation 7, we obtain:

S(q)T M(q)S(q)η̇ + S(q)T M(q)∂S(q)
∂q

S(q)η2 +

S(q)T C(q, q̇)S(q)η = S(q)T A(q)T λ+S(q)T B(q)τ−
S(q)T Fr

And the dynamical model written in the space
state form is (Campion et al., 1991):

{

J(q)η̇ + g(q, η) = G(q) · τ − fr

q̇ = S(q)η

}

(8)

Where:

J(q) = S(q)T M(q)S(q) (9)

g(q, S(q)η) = S(q)T M(q)∂S(q)
∂q

S(q)η2+

S(q)T C(q, q̇)S(q)η

G(q) = S(q)T B(q) (10)

fr = S(q)T Fr (11)

And:

S(q) =
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(12)

M (q) =

[

R(θ)TM (β)R(θ) R(θ)TV (β) 0

V (β)TR(θ) I (β) 0
0 0 I (φ)

]

(13)

R(θ) =





cos(θ) sin(θ) 0
−sin(θ) cos(θ) 0

0 0 1



 (14)

M(β) =





M(β)11 0 M(β)13
0 M(β)22 M(β)23

M(β)31 M(β)32 M(β)33



 (15)

M(β)11 = M(β)22 = M + 2 · m + m1

M(β)13 = M(β)31 = M · ym + m1 · l1 + m1 · d · cos(β)

M(β)23 = M(β)32 = M · xm + m1 · d · sin(β)

M(β)33 = M(x2
m + y2

m) + 2 · m · L2 + m1 · l2
1

+ m1 · d2

+ 2 · m1 · l1 · d · cos(β) + I0 + Ip1

V (β) =





m1 d cos(β)
m1 d sin(β)

Ip1 + m1 d2 + m1 l1 d cos(β)



 (16)

Iφ =





Ir1 0 0
0 Ir2 0
0 0 Ir3



 (17)

Iβ =
[

m1 d2 + Ip1

]

(18)

C(q, q̇)q̇ =
d[M(q)]

dt
q̇ −

1

2

∂[q̇T M(q)q̇]

∂q
(19)

B =

[

05x2

I2x2

]

(20)

Fr =
[

03x1 F1 0 F2 F3

]T
(21)

Fj = Cssign(φ̇j) + Cvφ̇j , (j = 2, 3) (22)

F1 = Cs1sign(β̇) + Cv1β̇ (23)

Fj and F1 are the friction forces or torques of
the wheels (Tounsi et al., 1995b). As pure rolling
and non-slipping conditions are assumed, these
friction torques are due to the shaft friction of
the wheels.

2.2 Motor Model

In the case of the Pioneer robot, we can only
measure the voltage applied to the motors, so a
relation between the voltage and the torque must
be found.

The torque generated by each motor is:

τm = KT ia (24)

While the torque applied to the wheels is:

τ = trµ{τm − τfr
} (25)

The applied armature voltage is:

Va = Raia + La

dia

dt
+ KEtrφ̇i (26)



Being φ̇i the speed of the wheel.

Neglecting the inductance La:

ia = Va − KEtrφ̇i

Ra

(27)

And the torque applied to the wheels is:

τ = trµ{KT (
Va − KEtrφ̇i

Ra

) − τfr
} (28)

Parameters are referenced in Table 2.

Table 2. Motor parameters provided by
the manufacturer.

Symbol Parameter Value Units

KT Torque con-

stant

0.023 [N.m/A]

KE Back-EMF

constant

0.023 [V/rad/s]

Ra Resistance 0.71 [Ω]

La Inductance Negligible [Hy]

tr gear ratio 19.7:1 -
µ gearbox effi-

ciency

73 %

τfr
friction

torque

5.6 ∗ 10−3 [N.m]

So in Equation 8 we have to replace τ of each
motor by Equation 28.

3. IDENTIFICATION METHOD

3.1 Basic Concepts

If the equation of a model can be expressed as:

η̇ = Ψ(η, τ)Θ (29)

then the parameters vector can be estimated using
the Least Square Method, as the system is linear
respect to the parameters vector (Tiano, 2002),
being Ψ(η, τ) a matrix which values only depends
on the state and control vectors and Θ the vector
of unknown parameters. The objective of Least
Square method is to minimize the cost function
of the quadratic error. It can be proven (Tiano,
2002) that integrating both sides of Equation 29
between tk−1 and tk:

η(tk) − η(tk−1) =

tk
∫

tk−1

[Ψ(η(t), τ(t))dt]Θ (30)

the values of the parameters that minimizes the
cost function are obtained as:

Θ(N) = (F (N)T F (N))−1F (N)T Y (N) (31)

Where:

F (N) =



































t1
∫

t0

[Ψ(η(t), τ(t))dt]

t2
∫

t1

[Ψ(η(t), τ(t))dt]

...
tN
∫

tN−1

[Ψ(η(t), τ(t))dt]



































Y (N) =
[

(η(t1) − η(t0)) ... (η(tN ) − η(tN−1))
]T

Using this algorithm we avoid the noise in-
troduced by the calculation of the acceleration
(Chan, 2001).

3.2 Mobile Robot Application

To identify the parameters, Equation 8 can be
rewritten as:

η̇ = J(q)−1[G(q) · τ − g(q, S(q)η) − fr] (32)

Or in a compact form:

η̇1 = a11 · F + a12 · Γ − a13 · η2

1
− a14 · η2

2
− a15 · η1−

a16 · η2 − a17 · η1 · η2 − a18 · sign(η1) − a19 · sign(η2)

η̇2 = a21 · F + a22 · Γ − a23 · η2

1
− a24 · η2

2
− a25 · η1−

a26 · η2 − a27 · η1 · η2 − a28 · sign(η1) − a29 · sign(η2)

(33)

Where coefficients aij are a non-linear combina-
tion of the physical parameters of the robot.

In order to simplify the identification process,
experiments can be carried out for each degree
of freedom. For the linear movement (η2 = 0 and
β = 0), Equation 33 becomes:

η̇1 = a11 · F − a15 · η1 − a18 · sign(η1) (34)

And:

F = tr·µ·KT ·(V2+V3)
R·Ra

a11 = 1

(M+2·m+m1+
Ir1

R2

1

+ 2·Ir

R2
)

a15 =
2·(t2r·µ·KT ·KE+Ra·Cv)

R2
·Ra

· a11

a18 = 2·[Cs+tr·µ·τr]
R

· a11

For the angular movement (η1 = 0 and β = −90o),
Equation 33 becomes:

η̇2 = a22 · Γ − a26 · η2 − a29 · sign(η2) (35)

Where:

Γ = L·tr·µ·KT ·(V2−V3)
R·Ra



a22 =
1

[M ·(x2

M
+y2

M
)+I0+2·Ip+2·m·L2+m1·l

2

1
+

l2
1
·Ir1

R2

1

+ 2·L2
·Ir

R2
]

a26 =
(2·L2

·t2r·µ·KT ·KE+Cv1·R
2
·Ra+2·L2

·Cv·Ra)
R2

·Ra
· a22

a29 = (2·L·tr·µ·τr+Cs1·R+2·L·Cs)
R

· a22

Equations 34 and 35 are linear respect to aij , then
the method explained in 3.1 can be applied.

The unknown parameters to be identified are: I0,
Ir1, Ir = Ir2 = Ir3, Ip1, Cs1, Cv1, Cs and Cv.

4. RESULTS

The method has been applied to the Pioneer
robot. Some known characteristics are:

Parameter Value Unit

R 0.0825 m

R1 0.035 m
L 16.89 m

l1 0.18 m
d 0.03 m
xm 0 m

ym -0.07 m
M 15.5 [kg]
m 0.35 [kg]

m1 0.35 [kg]

Measured variables: Voltage applied to the motors
V2, V3 and linear η1 and angular η2 speeds. Veloci-
ties are provided directly from the software of the
robot, while for voltages an external board was
used to adapt them to the analog inputs of the
micro-controller.

The inputs used, are STEP and PRBS signals.
The gathered data is validated in order to elimi-
nate outliers and trends and filtered to reduce the
effects of noise.

For each degree of freedom, 3 experiments at
different speeds were carried out. In the case of
linear movement, results found are shown in Table
3. Last row represent the mean value for each
estimated parameter.

Table 3. Translational movement.

Exp. 1/a11 Cv Cs Input

1 17.83 0.0441 0.3349 PRBS

2 16.49 0.0445 0.3287 PRBS
3 16.89 0.0446 0.2921 STEP

Mean 17.07 0.0444 0.3186

In order to validate the results, another set of
experiments were carried out. Figure 2 depicts
the input signal used for one experiment, a step
forward and backward. Figure 2 a) shows the
input voltage applied to each motor; Figure 2 b)
the total force applied to the robot and Figure 2 c)
the linear speed of the vehicle. The performance
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Fig. 2. Input and output signals from the robot.
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Fig. 3. Speed response of the robot and the model.

Fig. 4. Residuals, their histogram and their auto-
correlation.

of the model is presented in Figure 3; while
the statistical validation is shown in Figure 4.
Figure 4 a) shows the residuals, Figure 4 b) the
histogram of the residuals, that have a mean value
of −1.4864e−4, a standard deviation of 0.0367 and
are approximately gaussian. Figure 4 c) shows the
autocorrelation of the residuals.

Applying the same ideas to the rotational move-
ment, we obtain Table 4.

Table 4. Rotational movement.

Exp. 1/a22 Cv1 Cs1 Input

1 0.4301 0.000429 0.004535 STEP

2 0.4127 0.000389 0.004532 PRBS

3 0.4292 0.000469 0.004541 PRBS

Mean 0.424 0.000429 0.004536



With this method we found values for the combi-
nation of the model parameters. As the purpose
of this work is to find the model suitable for
simulation, the exact value of these parameters
have been deduced from the theoretical one. For
example:

M + 2 · m + m1 +
Ir1

R2

1

+
2 · Ir

R2

= 15.5 + 2 · 0.35 + 0.35 +
2.144 · 10−4

0.0352
+

2 · 0.0012

0.08252

= 17.0750

that is quite similar to the value found empirically.

The estimated parameters for both degree of free-
dom are shown in Table 5. It is worth to mention
that, even though an uncoupled identification of
the parameters has been carried out, all the coef-
ficients of the coupled model are found.

Table 5. Estimated parameters

Symbol Value Units

I0 0.3 [kg.m2]
Ir1 2.144 ∗ 10−4 [kg.m2]

Ir2−3 0.0012 [kg.m2]
Ip1 1.072 ∗ 10−4 [kg.m2]
Ip 5.95 ∗ 10−4 [kg.m2]

Cs1 0.004536 [N.m]
Cv1 0.000429 [N.m.s]
Cs 0.3184 [N.m]
Cv 0.0444 [N.m.s]

As it can be seen from Figure 4 that the residuals
are gaussian and the mean value is approximately
zero. These results can be considered statistically
acceptable. The parameters’ value shown in Table
5 is the mean of all the different values obtained
in each experiment.

5. CONCLUSION

In this paper we have found the mathematical
model of a 3 wheeled mobile robot, based on
the Lagrangian formulation. We have used an
integral algorithm to identify the motion param-
eters, avoiding, thus, the need of measure the
acceleration and reducing the number of inputs
to the identification algorithm. Parameters have
been estimated by making uncoupled experiments
in both degrees of freedom. The results obtained
with the integral identification method are sta-
tistically good and the model will be used for
simulation purposes.
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