
STEREO RIG GEOMETRY DETERMINATION BY 
FUNDAMENTAL MATRIX DECOMPOSITION   

Carles Matabosch, Joaquim Salvi and Josep Forest  

Universitat de Girona,  Institut d'Informàtica i Aplicacions  
17071 Girona, Catalonia (Spain) 

email: {cmatabos, qsalvi, forest}@eia.udg.es 

Abstract 

Computer vision plays an important role in many automatic applications, such 
as surface measurement, industrial inspection, reverse engineering and even 
mobile robot navigation. All these applications might be solved by means of a 
stereovision system formed by at least two cameras if the geometry of such 
stereo rig is previously known. So, camera calibration is based on computing 
the intrinsic parameters, which determine the internal geometry and optics of 
the camera, and the extrinsic parameters, which determine the camera position 
and orientation with respect to a world coordinate system.  In this paper, we 
present experimental results of computing the camera parameters without the 
knowledge of 3D information, which leads to the so-called self-calibration 
problem. 

1    Introduction 

Camera calibration is the first step towards computational computer vision. Some authors 
proposed many methods to obtain intrinsic camera parameters and the rigid movement 
between two cameras from the knowledge of a set of 3D points, which are considered the 
calibrating pattern (Salvi et al. 2002). However, depending on the visual application, the use 
of a calibrating pattern is not always available. In all these situations, a self-calibration 
method is recommended. Self-calibration is based on the properties of the projection on the 
image plane of the absolute conic. The absolute conic is a special conic that lies in a plane 
located in the infinity, having the property that its image projection depends on the intrinsic 
parameters only. This fact is expressed mathematically by the so-called Kruppa equations. 
The resolution of such equations leads to the computation of the intrinsic camera parameters, 
which are then used to get the extrinsic ones.  
Hartley proposed a method that solved the Kruppa equations with a non-iterative algorithm. 
However, only a few number of all the intrinsic parameters are obtained, the others are 
considered previously known (Hartley 1992). Other authors expressed the same equations in a 
different form in order to extend the computation to the estimation of all the intrinsic 
parameters. For instance, Faugeras et al. used a method based on the estimation of the 
epipolar constraints of the image of the absolute conic (Faugeras et al. 1992). The same idea 
was described in (Luong & Faugeras 1993) where the authors calculated the rigid movement 
between both images up to a scale factor; and in (Zang et al. 1993) where even a projective 
reconstruction was given. 
In all these methods, extreme accuracy is required in the segmentation of the 2D image points 
and the methods can hardly handle more than 4 views. In order to overcome this problem, 



Hartley (Hartley 1993) proposed a technique that is suitable to a large numbers of views.  
Hartley proposed a Levenberg-Marquard algorithm to find the Projective reconstruction of a 
scene up to an unknown scale factor. A year latter, Hartley calculated the intrinsic parameters 
of a single camera taking several images from the same position, but rotating the camera 
(Hartley 1994). The author explained that it is possible to estimate intrinsic parameters with 
only two views, but some assumptions are required, i.e. orthogonal axis of the image plane 
(θ = π/2) and square pixels (αu = αv). Besides, Song De Ma (De Ma 2000) used a method to 
compute the intrinsic parameters with six pure translations leading to a linear minimization. 
Mohr et al.(Mohr & Triggs 1996) and  Hartley (Hartley 1997) introduced the SVD (Single 
Value Decomposition) of the fundamental matrix with the aim of simplifying the Kruppa 
equations. Moreover, he analysed the difficulty of finding a solution because of the 
complexity of the equations, i.e. the multivariable quadratics in the coefficients of the Kruppa 
matrix. Lourakis et al. (Lourakis & Deriche 1999) used simplified Kruppa equations 
considering the constraints of Huang-Faugeras and Trivedi to find a more robust solution 
against noise. These constraints are based on the general rank-2 constraint of the Essential 
matrix. Although Lourakis et al. (Lourakis & Deriche 2000) introduced a method to solve the 
case of varying intrinsic parameters, most of the proposed methods are based on constant 
intrinsic parameters.  
Once the intrinsic parameters are known, it is possible to obtain the extrinsic ones by the 
decomposition of the Essential Matrix (Huang & Faugeras 1989). The Essential matrix 
represents the rotation and translation between both views and it can be easily computed from 
the Fundamental and both Intrinsic matrices.  
In this paper, we discuss a known method to find the camera parameters by means of self-
calibration. Section 2 describes the geometry of a pinhole camera and the given parameters. 
Then, section 3 explains the self-computation of the intrinsic parameters from the Kruppa 
equations. Moreover, section 4 deals with the computation of the extrinsic parameters from 
the Essential matrix. Finally, section 5 analyses the experimental results obtained from 
synthetic images under Gaussian noise. The paper ends with the conclusions. 

2 The pinhole camera model 

A model is a mathematical formulation that approximates the behaviour of any physical 
device by using a set of mathematical equations. Camera modelling is based on 
approximating the internal geometry and the position and orientation of the camera in the 
scene with a set of parameters. The pinhole model defines such relationship using equation 
(1).  
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where s is a nonzero scale factor, m are the coordinates of a point in a camera image in pixels, 
M are the metric coordinates of a 3D point, R and t represent respectively the rotation matrix 
and the translation vector defining the rigid movement between the camera and the world 
coordinate system. A is the matrix of the intrinsic parameters of the camera. The parameters 
αu and αv correspond to the focal distances in pixels along the axis of the image, θ (skew 
angle) is the angle between both image axis (usually near to π/2) and (u0,v0) are the 
coordinates of the projection of the focal point in the image plane (principal point). 
Considering a pair of images of a given scene taking by two different cameras, points on both 
image planes are related by the epipolar geometry described by equation (2). 



  m’t F m = 0                         (2) 
where F is known as the Fundamental matrix (Armangué & Salvi 2003) and m and m’  are 
both projections of a given 3D point in the image planes. If only a single camera is used or 
many with the same intrinsic parameters, the Fundamental matrix is decomposed as follows, 

  [ ] 1
x

* RAtAF −=                                 (3) 
where A* = (A-1)t is the adjoint matrix of A and [t]x denotes the antisymmetric matrix of the 
vector t that is associated with the cross product, and R is the rotation matrix between both 
cameras. 

3     Kruppa equations 

Several authors proposed different methods to decompose F to obtain the intrinsic and 
extrinsic parameters. Most of these methods are based on the Kruppa equations, which are 
obtained from a geometric interpretation of the absolute conic (AC). The absolute conic is a 
virtual conic that lies on a plane located in the infinity, a representation is shown in figure 1.  
 

 
Figure 1 :The absolute conic (located in the plane 

 at infinity) and its projection in both image planes. 
 

 
Figure 2. The Kruppa equations impose that the 
image of the absolute conic satisfies the epipolar 

constraint. 

The image of the absolute conic (IAC) is invariant to rigid transformations so that its 
projection on the image plane do not depend on the position nor on the orientation of the 
camera. Therefore, IAC depends only on the intrinsic parameters of the camera. As can be 
seen in the figure 2, there exist two planes tangent to AC and containing the focal point of 
both cameras. These two planes intersect both image planes at two pairs of epipolar lines, 
which are tangent to IAC. The two IAC projected on both images are self-dual objects 
meaning that both IAC have the same coordinates in both camera planes, leading to equal 
projecting points and epipolar lines. Moreover, if we consider a single moving camera with 
fixed intrinsic parameters as a stereo rig system, the two intrinsic matrices, which define the 
IAC, are equal. Then, the property of the epipolar lines tangent to a dual conic is the 
following: 

 lT AAT l = 0                                       (4) 
As l is an epipolar line in any of both image planes (we have supposed the second one), it can 
be decomposed by: 
 0)'()'( tt =×× meAAme                                                                       (5) 



Where e’ is the epipol in the second camera in pixels. Moreover, the eipolar line Ftm 
corresponding to m in the first image is also tangent to ω. Therefore, the invariance of ω 
under rigid transformations yields: 
 0)()( tttt =mFAAmF                      (6) 
Equation (5) and (6) can be transformed to: 
 [ ] [ ] 0)'()'( tt =×× meAAem                                    (7) 
and 
 0ttt =mFFAAm                                        (8) 
Using equations (7) and (8), the following relationship is given: 
 [ ] [ ]( ))'()'(β tttt

××= eAAeFFAA                                               (9) 
Then, the product AAT is expressed as a single matrix K, 
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so that, 

 [ ] [ ]( ))'()'(β tt
××= eKeFKF         (11) 

Both parts of equation (11) are defined by a 3x3 symmetric matrix. Therefore, every 
component on left must be equal to its homologue on the right. Then, the following 6 
equalities are determined, 
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Equations (12) are known as the Kruppa equations and express the geometrical constraint that 
the epipolar lines in both image planes are tangent to ω (see fig.2).  However, equation (12) 
can be simplified with the aim of avoiding the use of the epipole e’, since its accurate 
estimation is difficult in the presence of noise. Furthermore, the simplified Kruppa equations 
are only three reducing the self-calibration problem. In order to extract the simplified Kruppa 
equations (Hartley 1997)(Lourakis & Deriche 1999), the Singular Value Decomposition 
(SVD) of the Fundamental matrix is employed: 
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As F is of rank 2, the diagonal matrix D only have two non-null eigenvalues. Therefore, e’ 
can be deduced from equation (14). 

  == 'e'e ttt UVDF  0        (14) 
Using equation (14), the following solution for e’ is obtained: 
   e’ =δUm, δ≠0        (15) 
 
where m=[0,0,1]t is the origin of the fisrt camera in the plane (principal point). Equation (15) 
can be validated by substituting e’ in equation (14). 
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Therefore, equation (17) is satisfied. 
   [e’]x= µUMUt        (17) 
where µ is an nonzero scale factor and M=[m]x. 
By substituting equation (17) into equation (12), a new expression for the Kruppa equations is 
obtained: 

 FKFt = µUMUtKUMtUt          (18) 
Since U is an orthogonal matrix, left and right multiplication of equation (18) by Ut and U 
respectively, yields to the simplified expression of the Kruppa equations: 
 DVtKVDt = µMUtKUMt          (19) 

Operating these matrix, we obtain the following equation 
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In order to satisfy equation (20), every component on the left must be equal to its homologue 
on the right, obtaining equation (21). 
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These equations were first presented by Hartley. However, the complexity of finding the 
proper solution caused by the existence of multiple solutions in a non-linear system and the 
complexity of solving redundant systems, leads to the lack of experimental results (Hartley 
1997). Then, Hartley assumed that there is no skew parameter (that means θ = π/2) and the 
image of the principal point is in the image centre. In this case, both images lead to a pair of 
quadratic equations with two unknowns, which can be solved as explained in the following 
paragraphs. 
First, equation (21) is represented as equation (22). 

 
3
3

2
2

1
1

φ
ρ

φ
ρ

φ
ρ

==                         (22) 

Then, an approximation of K is done to find an initial solution, then an iterative non-linear 
method is used to minimize to the global solution. 
 

4.1 Initial solution by Hartley 

In order to find an initial solution, the skew angle θ is assumed equal to π/2, and the position 
of the principal point in the image is assumed to coincide with the centre of the image. Using 
both simplifications, the number of unknowns is reduced to two, namely k1 and k4, which are 
related to the focal lengths αu and αv. Then, an initial solution is obtained solving equation 
(23). 
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However, the system is of second order, which doesn’t have an implicit solution. Then, the 
initial solution is found numerically. 



4.2 Minimization criteria by Lourakis 

Once an initial solution is found, it is possible to converge to a more accurate solution 
minimizing the following function. 
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 is the derivative of πij at SF, and 

FSΛ is the covariance matrix. 

Although a classical Levenberg-Marquardt algorithm can be used in the minimization, we 
have obtained a proper convergence of the method using the criteria proposed by Triggs and 
explained in the following paragraphs. 
 

4.3 Minimization criteria by Triggs 

The method proposed by Triggs (Triggs 1997) is a general numerical scheme for optimizing 
smooth non-linear cost functions under smooth non-linear constraints. The goal is to minimize 
a scalar cost function f(x) subject to a vector of constraints c(x) = 0. 
 ( ) 0xwithzf ==∇⋅+∇ c0c                      (26) 
An exact linear solution can be solved with the following equation 
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where we have to solve for δx from the initial solution x0 and then compute x1 = x0 + δx, 
compute again the derivatives at x1, and iterate to convergence. 

Equation (23) is derivate by k1, k2, k3, k4 and k5 in order to obtain ∇ , and again to obtain 2∇ . 
In our application, three images are used in order to find three pairs of simplified Kruppa 
equations like the ones shown in equation (23). Then f is one of these six equations, and any 
four of the other five equations are used as constraints. Note that always one of the six 
equations is a linear combination of the others. Furthermore, another constraint, see equation 
(28) and equation (11), is used in order to improve the robustness of the minimization against 
noise. 
 0kkk 532 =−                                     (28) 
If the Gaussian noise is null, any combinations of the six equations (see equation (23)) leads 
to the correct solution. However, in the presence of Gaussian noise, some combinations lead 
to better results than others. Then, the proper way is to solve the system for all the 
combinations and then choose the one that the minimize the constraint of Huang-Faugeras 
shown in equation (29). 
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Equation (29) determines that the essential matrix have to be rank two. 



 
4. Determination of the rigid movement 
The determination of the rigid movement is given by computing the rotation matrix and 
translation vector between both cameras, which can be obtained by the decomposition of the 
fundamental matrix of equation (30) 

 F=A*EA-1                        (30)  
where E = [t]xR. Then, once the intrinsic parameters are determined using the algorithms 
detailed in section 3, the extrinsic parameters can be extracted as using equation (31) or (32).  
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where U and V are obtained by decomposition of E=UDVT. The right solution is the one that 
locates the 3D points in front of both cameras. 
 
5. Experiments results 
The algorithm explained in section 3 and 4 has been programmed in Matlab. Experimental 
results are obtained from a set of 25 synthetic points, which defines a 3D scene. Three 
different views of the 3D scene are taken by using a single moving camera. The camera has 
been modelled as a pinhole camera and the intrinsic and extrinsic parameters are fixed in 
order to compute the 2D projections in pixels of the 3D scene. Then, three fundamental 
matrices are calculated by means of eigen analysis from the three projections. 
These fundamental matrices are used to estimate the intrinsic parameters using the method 
discussed in section 3. In order to observe the robustness of this method, Gaussian noise were 
introduced in the pixel coordinates. Figure 3 shows the robustness of the proposed method in 
the presence of such noise. 
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Figure 3: The error in the intrinsic parameters estimation in the presence of noise 



6      Conclusions 
Camera calibration is a requisite and a crucial problem in a lot of vision task. In some 
applications, calibration can be determinated off-line as a previous step in the vision task. 
However, in other applications this step is not always possible. Then, self-calibration methods 
are used in order to calibrate the camera using the same views acquired by the vision system 
on-line. In this paper, a method to resolve this problem is described. The method is based in 
the constraints of the image of the absolute conic, which are expressed in the so-called 
Kruppa equations. Since the obtained equation system is non-linear, iterative methods are 
used in minimization. Furthermore, some constraints are introduced in the minimization 
process with the aim of converging to the proper solution. Once the intrinsic parameters are 
known from minimization, a method to find the extrinsic parameters is shown in order to find 
the rigid movement between both cameras. Then, a projective reconstruction can be generated 
by using the set of intrinsic and extrinsic parameters. Experimental results are given which 
show the robustness of the method in the presence of Gaussian noise. Moreover, the whole 
algorithm is available in the webpage of the authors.  
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