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Abstract

Euclidean reconstruction from two uncalibrated stereoscopic views is achievable from the knowledge of geometrical con-
straints about the environment. Unfortunately, these constraints may be quite di2cult to obtain. In this paper, we propose an
approach based on structured lighting, which has the advantage of providing geometrical constraints independent of the scene
geometry. Moreover, the use of structured light provides a unique solution to the tricky correspondence problem present in
stereovision. The projection matrices are %rst computed by using a canonical representation, and a projective reconstruction
is performed. Then, several constraints are generated from the image analysis and the projective reconstruction is upgraded
into an Euclidean one—as we will demonstrate, it is assumed that the sensor behaviour is a2ne without loss of generality so
that the constraints generation is simpli%ed. The method provides our sensor with adaptive capabilities and permits to be used
in the measurement of moving scenes such as dynamic visual inspection or mobile robot navigation. Experimental results
obtained from both simulated and real data are presented.
? 2003 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

The perception of the three-dimensional structure of the
environment is an important task in computer vision. In mo-
bile robotics, it forms the basis of obstacle detection, map
building, scene analysis, etc. The challenge is to infer 3D in-
formation of a scene by starting from at least two images of
it [1]. From two images, the reconstruction is thus possible
but we need to calibrate the cameras, i.e. determining its op-
tical parameters and internal geometry (focal distance, prin-
cipal point, pixel adjustment) and its geometrical parameters
(position and orientation with respect to a reference frame).
The correspondence among the 3D object points and their
projections has to be established; the obtained matrix makes
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possible to relate each point to its line of sight [2]. This tech-
nique is named hard-calibration and is carried out oA-line
by using a calibrating pattern whose 3D points co-ordinates
of interest are precisely known. This process has to be re-
peated each time that one of the parameters of the camera
is modi%ed. Hard-calibration is exclusively adapted to ap-
plications that keep the sensor unchanged during the mea-
suring process. Nevertheless, a visual adaptation to the en-
vironment is essential in the measurement of moving scenes
such as dynamic visual inspection or mobile robot naviga-
tion. Then, the visual adaptation permits to use a camera
with auto-focus (to increase the quality of the image), zoom
(to concentrate on relevant regions of the image) and aper-
ture (in case of illumination changes), which is the %rst step
to develop strategies of observation and/or exploration.

It is well known that the major drawback of stereoscopy
is the correspondence problem, i.e. the matching of homo-
logue points among the images. With the aim of reducing
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Fig. 1. The structured light system: (a) the geometrical principle; (b) the colour-encoded pattern.

this problem, coded structured light techniques have been
developed [3]. In a structured light system, the second cam-
era is replaced by a light source that projects a known pat-
tern of light onto the scene, as shown in Fig. 1a. Since a
projector can be seen as a camera acting in reverse, it can
be modeled in the same way a camera is.

Our pattern is composed by a set of vertical and horizontal
slits, uniquely colour-encoded in a single pattern projection
(Fig. 1b). The reader is pointed to Salvi et al. [4] to get
deeper into the pattern design. The coloured codi%cation
permits to solve the correspondence problem %nding out for
each imaged point, its corresponding point in the projecting
plane.

The main goal of this paper is, %rstly, to provide adaptive
capabilities to our structured light vision sensor and, sec-
ondly, to adapt the techniques of uncalibrated reconstruc-
tion to structured light. Our contribution is to demonstrate
how the projection of a grid of light and the analysis of the
coded images permit to generate Euclidean constraints for
a three-dimensional reconstruction of the scene and, more
generally, to show how to self-calibrate a structured light
sensor. It is assumed throughout the paper that the cam-
era and the projector behaviour can be approximated by an
a2ne model. However, no assumption on the scene geom-
etry is imposed, although a planar piece-wise environment
ensures a major number of constraints.

The next points summarize our approach:

• Extraction of the image points by a speci%c image pro-
cessing (see the section experimental results).

• Projective reconstruction from one view and one pattern
projection using the canonical representation.

• Automatic generation of constraints in order to reach an
Euclidean reconstruction of the scene.

This article is organized as follows. Section two presents
the related work about reconstruction methods that could be
adapted to a structured light system. Then, section three de-

tails the Euclidean reconstruction through structured light-
ing, which contains the major contribution of this paper.
Furthermore, section four deals with some experimental re-
sults considering both simulated and real scenes. The article
ends with conclusions.

2. Reconstruction and structured light system

This section goes deeper into what has been proposed on
structured light, taking advantages of the speci%cities of pro-
jection and pattern structure and considering that the princi-
ple of calibration is known. For instance, Salvi et al. [4] pro-
posed to model the projector like a camera acting in reverse.
First, they calibrate the camera by using a calibrating plane
and then an image of the projected pattern on the calibrating
plane is grabbed and used to get the 3D points to calibrate the
projector. Proesmans et al. [5] proved that the reconstruction
could be performed whether the angle between directions of
projection and capture is known, assuming an orthographic
model. This particular way to calibrate consists in observ-
ing a blank calibration pattern whose angle, made up by the
two planes that compose it, is precisely known. Sotoca et al.
[6] proposed a calibration method adapted to large surface.
Beforehand, the pattern is projected onto a base plane and
onto a reference plane and an image is grabbed for each of
these planes. By positioning the object to analyze between
these planes, the authors show that it is possible to obtain
a depth image through some simple calculations based on
the similarity of triangles. Finally, let us conclude by the
method developed by Huynh et al. [7] which has been pro-
posed for light plane projections but it can be generalized to
pattern projections. Four sets of three coplanar points, whose
coordinates are precisely known, are positioned on the two
planes of a calibration pattern, depicting four lines on it.
While the light plane intersects these lines, a fourth point
is obtained on each of them: the cross-ratio of these points
is equal to the cross-ratio of the images of these points. It
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provides a 3D measurement of the lighted traces fairly pre-
cise (up to the stability of cross-ratios). A classical calibra-
tion process is performed from these measurements.

Uncalibrated vision has generated an increasing num-
ber of publications since the end of the 1980s. Aware of
the drawbacks of hard-calibration for some applications in
which the sensor has to adapt its behaviour to the variations
of the environment and to the strategy of observation, many
authors looked into the problem that consists of inferring 3D
structure of the scene from the pixel coordinates only. It is
proved that an Euclidean reconstruction cannot be obtained
without calibrating but, at best, a projective one [2]; this re-
construction has to be constrained by means of additional
information or assumptions (about the intrinsic parameters,
the movement of the sensor, the scene geometry) to achieve
the self-calibration of the sensor, i.e. the Euclidean recon-
struction of the scene.

Koenderink and Van Doorn [8] can be regarded as pio-
neers. In 1989, they proposed a method which allows to
recover the a2ne scene structure from at least two images
of it, by using a shape invariant computed from a reference
plane. Later, Faugeras [2] and, independently, Hartley et al.
[9] proved that from a weakly calibrated sensor (i.e. which
epipolar geometry is known) a projective reconstruction is
possible. Mohr et al. [10] reached similar results through a
global estimation of the unknowns by minimizing the resid-
ual errors between image points and their back-projections.
However, these methods do not allow to compute the
Euclidean structure of the environment. With this aim,
Faugeras et al. [11] proposed a method that takes advantage
of the invariance under similarities of the absolute conic
(in other words, the image of the conic only depends on
intrinsic parameters of the camera). By such performing,
the authors have rediscovered the Kruppa equations. Be-
sides, Hartley [12] demonstrated that these equations could
be explicitly obtained through the singular value decompo-
sition of the fundamental matrix F. In order to solve them,
three fundamental matrices have to be computed, which are
given from a single displacement of the stereo head.

A second class of methods assumes that intrinsic param-
eters remain constant during the measuring process. A pro-
jective reconstruction is %rst performed. Then, the constancy
assumption leads to an equation solvable from three views
of the scene; the reader can refer to the work of Hartley
[13] or Heyden and AstrLom [14]. At last, if the constancy
of intrinsic parameters cannot be assumed, it is possible to
upgrade a projection reconstruction into an Euclidean one
by generating Euclidean constraints grabbed from the scene
geometry. Boufama et al. [15] pioneered this method; Zhang
et al. [16] later on proposed a similar method.

Some considerations have to be taken in mind when struc-
tured light is used. Any movement of the sensor, and partic-
ularly of the projector, produces a sliding of the projected
points on the observed surfaces. That is to say, the points
illuminated before the movement are diAerent than the ones
illuminated after the movement. As a consequence, stere-

ovision algorithms using more than two views cannot be
adapted to structured light vision. Besides, due to the het-
erogeneity of the sensor, composed by a camera and a pro-
jector, the constancy of intrinsic parameters cannot be as-
sumed either. Hence, methods based on Kruppa’s equations
and methods based on constant intrinsic parameters are un-
suited to structured light vision.

There is only one choice left: performing a projective re-
construction %rst and rectifying it by using Euclidean con-
straints grabbed from the scene geometry. It is shown in the
next section what kind of projective reconstruction method
may be used and how to generate constraints by using the
geometry of light patterns.

3. Uncalibrated reconstruction and structured light
system

This section details a method that permits to locate a point
in the three-dimensional space from a pair of uncalibrated
perspective views (which is equivalent to one view from a
camera and a known projected pattern). First, the method
performs a reconstruction in a projective frame. Then, the
reconstruction of the scene is transformed to an Euclidean
frame by using some a priori knowledge between the view
of the scene and the projected pattern, less restrictive than
point co-ordinates, such as parallelism, orthogonality, an-
gles, length ratio, and so on.

The following section presents the theoretical basis and
methods about the uncalibrated reconstruction adapted to
structured light. Then, Section 3.5 details the proposed al-
gorithm that describes the whole process.

3.1. Projective reconstruction

It is known, since the work of Luong and Vieville about
the canonical representation of the geometry of multiple
views [17], that it is possible to estimate the camera pro-
jection matrices from the knowledge of epipolar geometry.
Then, considering two 2D images (an image of the scene
and the projected pattern), we have:

Pproj = [M e]; P′
proj = [I 0]

with M =− 1
‖e‖2 [e]×F; (1)

where F denotes the fundamental matrix and e the epipole of
the %rst image, P is the camera matrix and P′ the projector
matrix. Subscript proj denotes matrices, vectors or scalars
expressed in a projective frame, in contrast with eucl which
will denote matrices, vectors or scalars expressed in an
Euclidean frame.

Whereas FTe = 0, so that the coordinates of the epipole
are given by the eigenvector of the matrix FFT associated
with the smallest eigenvalue. Numerically, better results are
obtained by normalizing the epipole in the way that ‖e‖=1.
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Fig. 2. Reference frames and projection matrices for the projective
reconstruction.

This formulation satis%es the epipolar constraint and %xes
the projective basis on the camera frame; where the projec-
tion matrices are computed so that the 3D observed points
could be reconstructed with respect to that frame. We will
perform it in two steps: %rst, by a linear method, fast but
not accurate enough; then, by a non-linear method initial-
ized with the results of the linear method. We describe the
two steps in the following notations and reference frames
are depicted in Fig. 2.

3.1.1. Linear method
Given a pair of points in correspondence, m = [u v 1]T

and m′ = [u′ v′ 1]T, and their corresponding 3D point in
space Mproj = [x y z t]T expressed in the projective frame,
it is obtained:

�[u v 1]T = Pproj[x y z t]T (2)

�′[u′ v′ 1]T = P′
proj[x

′ y′ z′ t′]T (3)

where � and �′ are two non-zero scale factors. Eliminat-
ing the scale factors and re-arranging equations (2) and (3)
yields to

QMproj = 0: (4)

Q is a 4× 4 matrix given by

Q= [p1 − up3 p2 − vp3 p′1 − u′p′3 p′2 − v′p′3]; (5)

where pi and p′i are the vectors corresponding to the ith row
of P and P′, respectively. AsMproj is de%ned up to a scale
factor, we can impose ‖M‖=1. The solution is given by the
eigenvector of the matrix QTQ associated to the smallest
eigenvalue.

3.1.2. Non-linear method
It seems di2cult, in the previous approach, to give a

good physical interpretation to the criterion that is mini-
mized. Besides, the accuracy of the results can be signi%-
cantly improved. A way to alleviate these drawbacks is to

use a non-linear iterative method of minimization. The error
to minimize is the diAerence between the observation and
the back-projection of the reconstructed points or residual
error; in other words:(
u− p

T
1Mproj

pT3Mproj

)2

+
(
v− p

T
2Mproj

pT3Mproj

)2
+
(
u′ − p

′T
1 Mproj

p′T3 Mproj

)2

+

(
v′ − p

′T
2 Mproj

p′T3 Mproj

)2

: (6)

In practice, a traditional algorithm of minimization like
Levenberg–Marquardt is used [18]. The results provided by
the direct method are used to initialize the algorithm.

3.2. Towards an Euclidean reconstruction

It is known that the Euclidean geometry is a particular case
of the projective geometry. In other words, a collineation
exists which brings the solution to an Euclidean one. Finding
this collineation, it is thus possible to recover the Euclidean
structure of the scene.

Let us considerMproj , a point with projective co-ordinates,
and Meucl the same point with Euclidean co-ordinates.

Mproj =




xproj′

yproj

zproj

tproj


 ; Meucl =




xeucl

yeucl

zeucl

1


 : (7)

The problem is to determine W such as

Meucl =W ·Mproj: (8)

With the aim of computing the collineation, geometrical
knowledge about the scene is translated into constraints on
the entries of W.

We have to %x a2ne or Euclidean constraints, which re-
ports geometrical properties of the scene extracted from the
images.W has 15 degrees of freedom; therefore 15 indepen-
dent and coherent constraints have to be found. Hereafter,
a non-exhaustive list of constraints with their mathematical
formulations is given and it is shown how the use of struc-
tured light leads to generate such constraints.

3.3. Euclidean constraints from grid coding

As described in Section 1, grid coding is the way a grid
of light is projected onto the scene to be analyzed. It is the
sub-class of structured light techniques that used a grid pat-
tern. It is shown in this section how geometrical knowledge
about the scene can be obtained analyzing the grid-coded
images. This knowledge can be used as constraints to bring
a projective reconstruction to an Euclidean one.

3.3.1. Plane detection in space
The elementary cell of a grid is a square. Each cell pro-

jected onto a planar surface is captured by the camera as a
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Fig. 3. Some of the geometrical constraints used in Euclidean reconstruction: (a) Parallelogram constraint; (b) Horizontal and vertical plane;
(c) Orthogonality.

quadrilateral. Quadrilaterals can theoretically either be cap-
tured as squares, rectangles, rhombuses, parallelograms or
trapezoids, depending on the position and orientation of the
camera and projector, and the planar surface observed. Al-
though quadrilateral detection within the image is not equiv-
alent to plane detection in 3D space (there are con%gurations
of curved surfaces that can yield quadrilaterals in the im-
age), it is quite probable that a quadrilateral within the image
corresponds to a plane in space: the equivalence is assumed
throughout the paper and, moreover, this can be veri%ed,
thanks to the test of coplanarity we propose in Section 4.1.

3.3.2. Parallelogram constraints
Assuming that the projector have an approximately a2ne

behaviour, we obtain that if a square is projected onto a
planar surface, the more generic quadrilateral formed on
the surface is a parallelogram. Furthermore, a parallelogram
captured by an a2ne camera forms a parallelogram onto the
retina. Hence, a parallelogram within the image corresponds
to the image of a parallelogram on a 3D plane. Geometrical
knowledge about the scene can thus be deduced.

Relative positioning of the four points A, B, C and D of
the parallelogram (see Fig. 3a) in space is such as

AB = CD; AC = BD; (9)

(AB)==(CD); (AC)==(BD): (10)

It leads to a redundant set of constraints on W . Besides,
knowing Eq. (11), parallelism constraints can be simpli%ed

as shown in Eqs. (11) and (12):

(AB)==(CD) ⇔
−→
AB

‖
−→
AB‖

=

−→
CD

‖
−→
CD‖

; (11)

(xB − xA)
2 + (yB − yA)

2 + (zB − zA)
2

=(xD − xC)
2 + (yD − yC)

2 + (zD − zC)
2;

(xC − xA)
2 + (yC − yA)

2 + (zC − zA)
2

=(xD − xB)
2 + (yD − yB)

2 + (zD − zB)
2; (12)

(xB − xA) = (xD − xC); (yB − yA) = (yD − yC); (zB − zA)

= (zD − zC);

(xC − xA) = (xD − xB); (yC − yA) = (yD − yB); (zC − zA)

= (zD − zB): (13)

Since projective geometry keeps unchanged the alignment
and the coplanarity, Eqs. (12) and (13) determine the same
con%guration of points (redundant constraints). Note that a
parallelogram completely determines a 3D plane. Therefore,
for each plane composing the scene, a unique set of paral-
lelogram constraints is su2cient.

Now, let us consider the two con%gurations of points
shown in Fig. 4. Whether the points oi, pi, qi, ri and si
(i=1 or 2) are projected onto a plane, the cross-ratio within
the pattern is equal to the c ross-ratio of the %ve points
formed onto this plane; moreover, the cross-ratio of the
homologue points within the image is equal to both. The
change from projected points to imaged points is obtained
by two successive homographies. It can be deduced that if
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Eq. (14) is veri%ed, the corresponding object points O, P,
Q, R and S are coplanar.

{oi;pi; qi; ri; si}= {o′i ;p′
i ; q

′
i ; r

′
i ; s

′
i} with i = 1 or 2:

(14)

3.3.3. Horizontal and vertical plane
If a point P belongs to the horizontal plane passing

through the origin, then zP = 0, which permits to obtain the
following linear constraint (Fig. 5):

w31xP′ + w32yP′ + w33zP′ + w34tP′ = 0: (15)

Replacing w3i by w2i or w1i, the homologue constraints
for yP=0 or xP=0, respectively, are expressed. Noting that
each projected horizontal line of the pattern generates a light
plane in space, which can be considered as a 3D horizontal
plane in the projector co-ordinate system (see Fig. 3b). And
each projected vertical line of the pattern generates a light

plane in space, which can be considered as a vertical 3D
plane in the projector co-ordinate system (considering either
an a2ne or projective camera model). Their corresponding
lines captured by the camera can be used to generate such
kind of constraints. Indeed, what it is imaged by the camera
are the intersections of the projecting planes of light with
the scene surfaces, therefore points belong to horizontal or
vertical planes.

Furthermore, an arbitrary distance can be set between
two successive horizontal or vertical planes. If the distance
between two points A and B is assumed to be d. Then,
(xA − xB)2 + (yA − yB)2 + (zA − zB)2 = d2 and, as a conse-
quence, the following non-linear constraint is obtained:(
w11xA′ + w12yA′ + w13zA′ + w14tA′
w41xA′ + w42yA′ + w43zA′ + w44tA′

−w11xB′ + w12yB′ + w13zB′ + w14tB′
w41xB′ + w42yB′ + w43zB′ + w44tB′

)2

+
(
w21xA′ + w22yA′ + w23zA′ + w24tA′
w41xA′ + w42yA′ + w43zA′ + w44tA′

−w21xB′ + w22yB′ + w23zB′ + w24tB′
w41xB′ + w42yB′ + w43zB′ + w44tB′

)2

+
(
w31xA′ + w32yA′ + w33zA′ + w34tA′
w41xA′ + w42yA′ + w43zA′ + w44tA′

−w31xB′ + w32yB′ + w33zB′ + w34tB′
w41xB′ + w42yB′ + w43zB′ + w44tB′

)2
= d2: (16)

This constraint permits to assign a metric to the 3D space.
It is possible to give an arbitrary value to d but the recon-
struction will be achieved up to a scale factor.

Without particular knowledge, a plane can be arbitrarily
chosen as a horizontal or vertical plane; in this case, the
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reconstruction will be performed up to a rotation and a trans-
lation along the z-axis.

3.3.4. Fixing the origin
If the Euclidean co-ordinates of a point p in space are

known, it is obtained that

xp =
w11xp′ + w12yp′ + w13zp′ + w14tp′

w41xp′ + w42yp′ + w43zp′ + w44tp′
;

yp =
w21xp′ + w22yp′ + w23zp′ + w24tp′

w41xp′ + w42yp′ + w43zp′ + w44tp′

zp =
w31xp′ + w32yp′ + w33zp′ + w34tp′

w41xp′ + w42yp′ + w43zp′ + w44tp′
: (17)

Then, these equations give three linear constraints. As we
said before, this knowledge is barely available; nevertheless,
we can %x the origin of the Euclidean co-ordinates frame
by equaling these equations to zero. The cross-point (which
appears in the image as the intersection of two light stripes)
of the planes y= 0 and x= 0 is considered to be the origin
of the Euclidean co-ordinate frame.

3.3.5. Orthogonality constraint
Orthogonality is an important feature in Euclidean recon-

struction. The detection of orthogonal planes permits to de-
%ne, at least partially, a 3D Euclidean frame of the scene.
Let us consider again an a2ne model for the projector. The
projection of a line produces a light plane in space. The pro-
jection of two orthogonal lines (AB) and (AC) produces two
orthogonal light planes (Fig. 3c). When the projecting light
planes intersect planar surfaces, they produce light stripes
on them which will be imaged by the camera. We have
thus two lines (A′B′) and (A′C′) in space, which belong
to orthogonal planes. Since A′ and B′ belong to the same
horizontal plane and A′ and C′ belong to the same vertical
plane, considering the world co-ordinate system is %xed at
the projector, it is obtained

xA′ = xB′ ; yA′ = yC′ ; (18)

−−→
A′B′ ·

−−→
A′C′ = (xA′ − xB′)(xA′ − xC′)

+ (yA′ − yB′)(yA′ − yC′)

+ (zA′ − zB′)(zA′ − zC′)

= (zA′ − zB′)(zA′ − zC′): (19)

So

(A′B′) ⊥ (A′C′) ⇔ zA′ = zB′ or zA′ = zC′ : (20)

If the conditions imposed by (21) are satis%ed, we obtain
an orthogonality constraint, otherwise we obtain a reduced
orthogonality constraint:

(xA′ − xB′)(xA′ − xC′) + (yA′ − yB′)(yA′ − yC′) = 0:
(21)

3.4. Resolution of the system

The projective reconstruction is %rst performed by
solving the set of equations (1) previously described. In
a least-squares optimization, it leads to minimize the
following error:

(Â; P̂) = argmin
A;P

(p− AP)TC−1(p− AP); (22)

where Â and P̂ are the estimated values of A and P, respec-
tively; and C is the covariance matrix. As the location of
points within the images is the major factor of noise, all the
other factors are neglected. Then, C is a diagonal matrix
and its elements are all equal to the variance since imprecise
location induces decorrelated noise.

The Levenberg–Marquardt algorithm [18] is used to solve
this set of non-linear equations. As 3D points and projective
matrices can only be known up to a scale factor, a scale
constraint must be added for each point and each matrix in
order to lead to a unique solution. Eq. (23) is the constraint
for points and Eq. (24) for matrices:

x2i + y2
i + z2i + t2i − 1 = 0; (23)

m( j)
34 = 1; j = 1; : : : ; s: (24)

Once the projective reconstruction is performed, the
matrix W has to be estimated to obtain the Euclidean re-
construction. The Levenberg–Marquardt algorithm is also
used. Equations which should be minimized are the ones
that provide Euclidean constraints (Eqs. (14)–(18) and
(22)). The scale constraint that has to be added is given by
Eq. (25).∑
i; j

(wij)
2 = 1: (25)

3.5. Algorithm

Let us now summarize the steps that are necessary to
perform an Euclidean reconstruction without any a priori
knowledge about the observed scene, but a single image.

1. Image processing
Input: camera image and projected pattern
Output: the two sets of matched points (Uij , Vij , the

co-ordinates of the ith point in the jth image)

• Segmentation and decoding.
• Solve the correspondence problem decoding the pattern.

2. Projective reconstruction (Section 3.1):
Input: matching points
Output: 3D reconstructed points in a projective frame

• Estimation of the fundamental matrix.
• Estimation of the projection matrices.
• 3D reconstruction by linear method.
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• 3D reconstruction by iterative method (using the previous
method as initialization).

3. Euclidean reconstruction:
Input: 3D projective points and projection matrices, seg-

mented and decoded lines and cross-points.
Output: 3D reconstructed points in a Euclidean frame.

• Fix an arbitrary point as the origin of the world co-ordinate
system (Section 3.3.4)

• Fix the horizontal (in the pattern) line to which it belongs
as the y = 0 plane in space (Section 3.3.3).

• Fix the vertical (in the pattern) line to which it belongs
as the x = 0 plane in space (Section 3.3.3).

• Extract parallelograms within the image and generate par-
allelogram constraints, if the test of coplanarity is ok (Sec-
tion 3.3.2).

• Extract crossing lines within the image and generate (re-
duced) orthogonality constraints (Section 3.3.5).

• Fix an arbitrary distance d between two points in space
(Section 3.3.5).

• Compute the collineation in order to upgrade the projec-
tive reconstruction into Euclidean one (Section 3.2).

4. Experimental results

First of all, the stability of cross-ratio is discussed in order
to evaluate the e2ciency of our test of coplanarity and some
results are presented. Then, experiments on reconstruction
have been performed with simulated data. A set of 3D points
is %xed with respect to a world co-ordinate system and these
points are observed by two virtual cameras. Five of these
points are chosen as the reference basis; all the other ones
are reconstructed using the method previously described, i.e.
by using only their pixel coordinates and the matching in
both images. Euclidean reconstruction by adding geomet-
rical constraints is obtained and results validated. Further-
more, we have performed the reconstruction method with
real images using our structured light sensor. In the follow-
ing, we detailed the implementation of the algorithm and
we summarize the experimental results obtained. Quantita-
tive results are given for the experiments performed with
simulated data; since we do not have reliable measurements
of the real scenes, only qualitative results are given for the
experiments with real data.

All the experiments have been performed by using Mat-
lab, so time consuming is not very signi%cant. The test of
coplanarity and the linear method for projective reconstruc-
tion, based on matrix algebra, are achieved in less than one
second. In contrast, the Euclidean reconstruction (i.e. the
Levenberg–Marquardt algorithm) is performed in a few
iterations (from 5 to 20, depending on the Euclidean
constraints), that is, in a few minutes. Of course, by pro-
gramming the algorithm in C/C++ code, it is possible to
considerably improve time consuming (a set of non-linear

equations can be solved in less than one second
in C/C++).

4.1. Test of coplanarity

We have tested the stability of the cross-ratio for the con-
%gurations of points required by the test of coplanarity. We
took %ve points separated by the distance d (on Fig. 4, d
is the distance o1p1; o2p2, etc.) A gaussian noise, varying
from 0 to 0:5× d, is added on the points co-ordinates. The
results are depicted by Fig. 6. The left part shows the sta-
bility of cross-ratio with a noise of ±5% for 100 computed
values (theoretically, cross-ratio is 2 in this example). The
right part shows the evolution of the error against the noise
level (which depends on d).

To be able to compare the theoretical cross-ratios with the
cross-ratios computed from the images (i.e. to compute the
error) we used a projective distance based on the method
of the random cross-ratios, detailed in Ref. [19]. The tol-
erance error is empirically %xed to 5 × 10−3. Under these
conditions, a noise up to 15% is allowed to well discrimi-
nate con%gurations of coplanar points. Obviously, as it can
be deduced from the results of Fig. 6: the larger the distance
d is, the more robust the measure of cross-ratio will be. The
left part of Fig. 6 shows that, with a moderate noise (±5%),
the measured cross-ratio is very near to the theoretical one.
Hence, the stability of cross-ratio is good enough for appli-
cations of uncalibrated reconstruction.

We have tried out the test of coplanarity by performing
three experiments. In the %rst one, a planar con%gura-
tion of points is detected (theoretical cross−ratio = 2,
measured cross−ratio=1:96, projective error=2:2×10−3).
In the second one, the pattern is projected onto an irregular
surface and the test classi%es these points as non-coplanar
(theoretical cross−ratio=2, measured cross−ratio=2:186,
projective error = 5:9 × 10−3). Finally, in the last ex-
periment, the points are projected onto a cube corner
(clearly not coplanar) and the points are well-classi%ed
(theoretical cross−ratio=2, measured cross−ratio=2:2055,
projective error = 9:9 × 10−3). As this test is only
based on cross-ratio computing, its time computing is
near-instantaneous.

4.2. Simulated data

4.2.1. Five known points
It is assumed here that %ve points of the scene are taken

as landmarks whose Euclidean co-ordinates are known. Let
us assume that the camera is set at the origin of the world
co-ordinate system. Only four independent parameters have
to be estimated in order to obtain the projection matrix of the
camera. The co-ordinates of the principal point are initialized
with the co-ordinates of the geometrical image centre. The
3D point co-ordinates are initialized as the co-ordinates of
the barycentre of the points to be reconstructed. Obviously,
with simulated data and no noise, the discrepancy between
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Fig. 6. Cross-ratio stability. 100 computations with a 5% noise level (left) and measuring error with a noise varying from 0% to 50% (right).

the real 3D points and the reconstructed 3D points is nearly
zero. The error is due to round oA in digital computation.
So, in order to analyze the robustness of the method, noise
is added on pixel co-ordinates. In a structured light system,
the projected image is perfectly known so that error is not
present when the point co-ordinates are measured. Then,
noise is only added on the pixel co-ordinates of the camera.

The reconstruction was performed on 40 points. Table 1
presents the result for 10 of these 40 points with a uniform
noise of ±1%.

It has to be noticed that using %ve known 3D points re-
sults degrade quickly. This method appears to be very sen-
sitive to the location of the %ve points used as landmarks:
better results are obtained if no noise is added on landmarks
co-ordinates even if noise is added on the co-ordinates of
the rest of points.

4.2.2. Euclidean constraints
The reconstruction is performed in two steps: a pro-

jective reconstruction assigning the reference points to an
arbitrary projective basis and then an Euclidean reconstruc-
tion performed from the previous projective reconstruction
to which geometrical knowledge about the scene is added.
Projective reconstruction provides projection matrices and
3D co-ordinates with respect to a projective frame. In or-
der to validate this reconstruction, the 3D co-ordinates are
back-projected onto the image planes through the projec-
tion matrices and the residual error is evaluated (see Fig. 7,
where projection parameters are given by Pproj and P′

proj).
Our conclusion is that projective reconstruction performed
well in most cases. However, in order to ensure conver-
gence of the algorithm, the relative positioning of the 3D
points must correspond more or less to the con%guration of
the chosen basis i.e. the Euclidean reference points must be
in adequacy with the projective co-ordinates given to them.

We have used diAerent Euclidean constraints as %x-
ing the origin, parallelism, distance, etc. Re-scaling and

re-positioning the computed reconstruction, it is possible
to validate Euclidean reconstruction. In a representative
example of our experimental results, we found that mean
absolute error is less than 8 mm and max absolute error
is about 45 mm; the standard deviation is 7.42, 4.76, and
27:08 mm for, respectively, the x-, y- and z-component.
The range of each component is [100; 1000 mm] for x,
[− 400; 1000 mm] for y and [500; 4000 mm] for z.

4.3. Real data

Hereafter, we present some results achieved from real
images. The image processing method is described in Ref.
[20]. Let us recall the key points. The original coloured
image is %rst converted into the CIE-Lab space. Within
the L-image, a self-adaptive thresholding is performed, fol-
lowed by a morphological squeletization, a Hough trans-
form and the recovering of intersecting points. Within the
ab-image, a process to determine the projected colours from
the apparent ones is performed which permits to decode the
pattern.

The structured light system is composed by an RGB
camera, a computer and an electronic slide projector. The
coloured pattern is shaped in a 512×512 RGB image which
is projected on the measuring scene using the projector, and
the scene is then captured by the camera into the computer
memory. The reader is pointed to Refs. [4,20] to focus on
pattern segmentation and decoding.

In the following, we go on to the reconstruction results,
giving some qualitative results.

4.3.1. Scene I
The scene is composed by three geometric and achromatic

objects illuminated by the coloured pattern, as shown in
Fig. 8. We proceeded in two steps: %rst a projective re-
construction using the canonical representation, and then a
Euclidean reconstruction by adding constraints obtained
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Table 1
Errors on reconstruction with uniform noise ±1

Real co-ordinates Errors on estimate co-ordinates

X Y Z TX TY TZ

100 −50 4000 0.518 −0:267 3.95
300 −50 2000 −0:65 −0:242 −1:5
700 −50 4000 0.614 −0:33 6.43
500 −400 4020 −1:132 −1:768 −4:332
300 50 4000 0.091 0.397 2.597
500 50 2000 0.076 −0:119 0.449
900 50 4000 0.13 0.171 2.007
300 −430 3000 0.505 −0:911 5.079
450 75 2500 0.76 −1:154 4.016
705 −120 1000 0.603 −0:827 0.829

Mean relative error (%) 0.518 1.539 0.169
Standard deviation 0.610 0.655 3.222
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Fig. 7. Validation of the projective reconstruction, left and right image planes. Circles represent real image points and crosses represent
projectively reconstructed ones.

Fig. 8. Structured lighted image of the %rst scene.

from image analysis (note that, at the time, the constraints
are generated manually).

In Fig. 9, we present the back-projection of the projec-
tive reconstruction onto the image plane and the projec-
tor plane obtained with the linear method (through Pproj
and P′

proj). Circles represent the real 2D points and crosses
the back-projected ones. The projection matrices and the
3D projective points computed with the linear method are
used as initializations for the iterative method: the results
are clearly improved as shown in Fig. 10 and quanti%ed in
Table 2 (this time Pproj and P′

proj are given by the non-linear
method). The maximum absolute 2D error is 3.069 pixels
and the mean absolute 2D error is 0.204 pixels in the pro-
jector plane and 2.715 pixels and 0.169 pixels, respectively,
in the image plane.

At this point, the projective reconstruction is validated
(the point 2 in Section 3.5 is performed). We now have to
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Fig. 9. Back-projection of the linear reconstruction method. Image plane (left) and projector plane (right).

Fig. 10. Back-projection of the non-linear reconstruction method. Image plane (left) and projector plane (right).

Fig. 11. Two views of the reconstructed scene (I).
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Table 2
Residual 2D error

Max. absolute Mean absolute
error (pixels) error (pixels)

Linear Camera 50.084 18.428
method Projector 88.143 32.751

Iterative Camera 3.069 0.204
method Projector 2.715 0.169

rectify it into the Euclidean space by following the steps of
point 3 in Section 3.5: %x the origin, %x horizontal and ver-
tical planes, generate parallelogram and orthogonality con-
straint, %x an arbitrary scale factor, etc. The results obtained
are shown in Fig. 11. It can be seen that the three objects
are globally well-reconstructed. Parallelism and orthogonal-
ity are recovered with a su2cient precision and proportions
seem to be preserved.

4.3.2. Scene II
The goal of this experimentation is to validate the recon-

struction method on a more realistic scene. The one shown
in Fig. 12 is grabbed under real conditions of illumination;
its size is about 1 m × 1 m. It is in an o2ce environment,
the image has been shot under the desk.

The highlighted lines of the %gure have been recon-
structed; the results are presented in Fig. 13. An arbitrary
metric has been assigned, parallelogram and orthogonality

Fig. 12. Structured lighted image of the second scene.

constraints have been generated. Vertices of highlighted
polygons are the reconstructed points and the lines which
compose it show the geometrical constraints (parallel lines
give parallelism constraints, orthogonal lines give orthogo-
nality constraints, etc.)

Similarly to the previous scene, it can be noticed that par-
allelism and orthogonality are satisfactorily reconstructed,
as well as the image proportion.

5. Conclusions

This article presents a method to perform Euclidean re-
construction from an uncalibrated structured light sensor
independently of the scene geometry, by assuming that the
sensor behaviour is a2ne or that it can be approximated by
an a2ne camera model. Through pixel correspondences and
without knowing neither extrinsic nor intrinsic parameters
of the sensor, a projective reconstruction is %rst computed
by choosing %ve arbitrary points of the scene as a reference
frame. Such a reconstruction is only possible up to a projec-
tive transformation, which depends on the world reference
frame that it has been chosen. Since Euclidean geometry is a
particular case of projective geometry, a collineation exists
which brings projective reconstruction to Euclidean recon-
struction. This collineation can be assessed by translating
geometrical information about the scene into constraints on
the elements of the collineation matrix. Besides, we show
that projecting a known grid pattern of light onto the scene
permits to retrieve intrinsic geometrical knowledge about
this scene as parallelism and orthogonality. The major
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Fig. 13. Two views of the reconstructed scene (II).

contribution of the paper is to show that structured light
can be used to deduce geometrical constraints of the
scene, which are used to reconstruct the scene without any
previous calibration. As no constraint is required on the
projection matrices, this approach allows us to reconstruct
without considering potential change of the focus, the aper-
ture and the zoom of both the camera and the projector.
Structured lighting permits to ensure there is known scene
structure which can be used to upgrade the reconstruction
to Euclidean and provides numerous constraints which
are useful for the convergence of non-linear optimisation
methods as Levenberg–Marcquardt algorithm.

Experimental results validate the method. However, the
automation of the whole process is necessary. A particu-
lar care has to be taken in image segmentation, e.g. straight
lines, parallels, crossing lines and parallelograms must be
accurately extracted from the image. As a further work, we
intend to automate the constraints generation, that is, to for-
mulate them mathematically and to solve them from the
image segmentation and decoding.

6. Summary

This paper deals with uncalibrated reconstruction through
structured lighting. In a structured light system, unlike clas-
sical stereovision, the second camera is replaced by a light
source that projects a known pattern of light onto the scene.
The main goal of this work is to provide adaptive capabili-
ties to this kind of sensor which allows to use it in mobile
robotics or dynamic visual inspection. First, we present a
survey of the most relevant techniques of uncalibrated recon-
struction. It is shown that, due to the fact that any movement
of the light source produces a movement of the pattern (i.e.
of the 3D points), the reconstruction has to be performed
from a single camera shot and a single pattern projection.

Thus, we %rst focus on a projective reconstruction method
based on the canonical representation of views, which re-
quires only pixel correspondences, one view and one pattern
projection. The reconstruction is performed in a projective
frame, up to a projective transformation.

An Euclidean reconstruction can be recovered from
a projective one since Euclidean transformations are a
sub-group of projective transformations. In other words,
there exists a collineation matrix which permits to pass
from projective to Euclidean. This matrix can be assessed
by constraining its entries with geometrical knowledge
grabbed from the scene. We describe how the pattern
projection is used to acquire geometrical knowledge
as parallelism, orthogonality, horizontality and verti-
cality. Moreover, structured lighting permits to ensure
there is known scene structure which can be used to
upgrade the reconstruction to Euclidean and provides
numerous constraints which are useful for the conver-
gence of non-linear optimisation methods as Levenberg–
Marcquardt algorithm. Experimental results, performed
both on simulated and real data, are presented and
discussed.
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