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Abstract

Epipolar geometry is a key point in computer vision and the fundamental matrix estimation is the only way to compute it. This article is a

fresh look in the subject that overview classic and latest presented methods of fundamental matrix estimation which have been classified into

linear methods, iterative methods and robust methods. All of these methods have been programmed and their accuracy analyzed in synthetic

and real images. A summary including experimental results and algorithmic details is given and the whole code is available in Internet.

q 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

The estimation of three-dimensional (3D) information is

a crucial problem in computer vision. At present, there are

two approaches to accomplish this task. The first approach

is based on a previous camera calibration. So that, the

imaging sensor model that relates 3D object points to their

2D projections on the image plane is known. A thorough

survey on camera modelling and calibration was presented

by Ito in 1991 [1] and this subject has been widely studied

during the last decades. Actually, basic methods model

the imaging sensor through a single transformation matrix

[2,3]. Other methods fix geometrical constraints in such

matrix introducing a set of intrinsic and extrinsic camera

parameters [4]. Moreover, lens distortion introduces two

non-linear equations, which model the image curvature

obtaining a more accurate model. Some authors have

considered only radial lens distortion [5], while others

considered tangential distortion [6], depending basically on

the focal distance and lens curvature (see this camera

calibration survey [7]). Finally, once the system is

calibrated, the camera model can be used either to

estimate the 2D projection of an object point or to

compute the 3D optical ray passing through a given 2D

image projection. Therefore, at least two optical rays are

needed to compute the 3D position of the object point by

means of triangulation.

Calibration cannot be used in active systems due to its

lack of flexibility. Note that in active systems, the optical

and geometrical characteristics of the cameras might change

dynamically depending on the imaging scene and camera

motion. The second approach then is based on computing

either the epipolar geometry between both imaging sensors

[8] or an Euclidean reconstruction [9]. Euclidean recon-

struction is achieved through previous knowledge of the

scene [10] such as projective basis and invariants. However,

this assumption is difficult to integrate into many computer

vision applications, while epipolar geometry is based only

on image correspondences.

An application of scene reconstruction using Epipolar

geometry was first published by Longuet-Higgins in 1981

[11]. Since that time, a great deal of effort has been done

increasing the knowledge [8,12]. Many articles have been

presented on self-calibrated and uncalibrated systems as a

result of the boom in the 1990s. For instance, in 1992

Faugeras published a brief survey on self-calibration and the

derived Kruppa equations which are used to estimate the

camera parameters from the epipolar geometry [13].

Basically, intrinsic parameters of both cameras and the

position and orientation of one camera related to the other

can be extracted by using Kruppa equations [14]. In the

same year, Faugeras also gave an answer to the question

“What can be seen in three dimensions with an uncalibrated
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stereo rig?” [15]. Hartley also did a lot of work with

geometry and how it is contained in the essential and the

fundamental matrix [16] as well as the estimation of the

camera pose [17]. Two years later, Deriche et al. presented

a robust method for recovering epipolar geometry based on

a matching by correlation and detecting the outliers [18]. As

a result, Hartley studied the geometry involved in a rotating

camera [19] while Li studied the geometry of a head-eye

system [20] and Luong et al. introduced a canonic

representation [21]. Also, in 1994, Luong and Faugeras

published an interesting article on analyzing the stability of

the fundamental matrix due to uncertainty in the epipole

computation, noise in the image point localization, camera

motion, and so on [22].

Some applications of epipolar geometry are the simplifi-

cation of the image matching in stereoscopic systems [23],

the estimation of camera motion [24] and scene reconstruc-

tion [25]. It is important, therefore, to develop accurate

techniques to compute it. Classic linear methods are mainly

based on least-squares minimization [26] and eigen values

minimization [27]. Other methods are based on optimizing

linear methods by means of iteration [28]. Robust methods

are based on computing a more accurate geometry detection

and removing false matchings [26,29]. Robust computation

is still a subject for wide research focusing mainly on

proposing new estimators to improve the accuracy of the

fundamental matrix and on reducing computation expenses

[30–32].

This article surveys up to 19 of the most widely used

techniques in computing the fundamental matrix such as the

seven-point, least-squares and eigen analysis linear tech-

niques among others and robust techniques such as

M-Estimators, LMedS, RANSAC and so on. All these

techniques have been programmed and their accuracy

analyzed in synthetic and real scenarios. This article is

divided as follows. First, a brief introduction to epipolar

geometry is presented. Then, all the surveyed methods are

described in Section 4 analyzing their advantages and

drawbacks with respect to the previous methods, presenting

an overview of every surveyed technique in terms of the

algorithmic point of view. Section 5 deals with the

experimental results obtained with both synthetic and real

images including the obtained epipolar geometry. Finally,

the article ends with conclusions.

2. Epipolar geometry

Given a 3D object point M ¼ ðW X;W Y ; WZ; 1ÞT

expressed with respect to a world coordinate system {W};

and its 2D projection on the image plane in pixels m ¼

ðIX; IY ; 1ÞT; both points are related to a projective

transformation matrix as shown in Eq. (1),

sm ¼ IPW M ð1Þ

in which s is a scale factor and IPW is a 3 £ 4 matrix, which

can be decomposed as

IPW ¼ IAC
CKW ð2Þ

in which IAC is a 3 £ 4 matrix relating the metric camera

coordinate system located at the focal point OC to the image

coordinate system located at the top-left corner of the image

plane in pixels, that is the optical and internal geometry of

the camera. Moreover, CKW is a 4 £ 4 matrix which relates

the camera coordinate system {C} to the world coordinate

system {W}; that is the position and orientation of the

camera in the scene.

CKW ¼

CRW
CtW

0 1

 !
ð3Þ

Then, epipolar geometry defines the geometry between the

two cameras creating a stereoscopic system or geometry

between two different positions of a mobile camera. Given

an object point M and its 2D projections m and m0 on both

image planes, the three points define a plane P; which

intersects both image planes at the epipolar lines lm0 and l0m;

respectively, as shown in Fig. 1. Note that the same plane P

can be computed using both focal points OC and OC0 and a

single 2D projection, which is the principle to reduce the

correspondence problem to a single scanning along the

epipolar line. Moreover, the intersection of all the epipolar

lines defines an epipole on both image planes, which can

also be obtained by intersecting the line defined by both

focal points OC and OC0 with both image planes.

All the epipolar geometry is contained in the so called

fundamental matrix as shown in Eq. (4).

mTFm0 ¼ 0 ð4Þ

The fundamental matrix F contains the intrinsic parameters

of both cameras and the rigid transformation of one camera

related to the other, which depends on which camera has

been considered as the origin of the world coordinate

system. In Eq. (5), the origin of the world coordinate system

coincides with the coordinate system of the second camera,

located at OC0 :

F ¼ IA2T
C ½CtC0 � £ CRC0

I 0A21
C0 ð5Þ

A particular case of the fundamental matrix is the essential

matrix. When the intrinsic camera parameters are known, it

is possible to simplify Eqs. (4) and (5) obtaining

qTEq0 ¼ 0 ð6Þ

where

q ¼ IA21
C m; E ¼ ½CtC0 � £ CRC0 ; q0 ¼ I 0A21

C0 m0 ð7Þ

The matrix E is called essential [12].
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3. Estimating the fundamental matrix

In the last few years, several methods to estimate the

fundamental matrix have been proposed, which can be

classified into linear, iterative and robust methods. Linear

and iterative methods can cope with bad point localization

in the image plane due to noise in image segmentation.

Robust methods can cope with both image noise and

outliers, i.e. wrong matching between point correspon-

dences in both image planes. All of these methods are based

on solving a homogeneous system of equations which can

be deduced from Eq. (4) rewriting it in the following way:

Uf ¼ 0 ð8Þ

where

f ¼ ðF11;F12;F13;F21;F22;F23;F31;F32;F33Þ
T ð9Þ

U ¼

IX1
IX0

1
IX1

IY 0
1

IX1
IY1

IX0
1

IY1
IX0

1
IY1
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1 1

..

. ..
. ..

. ..
. ..

. ..
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IX0
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IY 0
n 1

0
BBBB@

1
CCCCA

ð10Þ

It is important to note that there are only seven independent

parameters and nine unknowns. The seven independent

parameters are given by two independent columns

and the scale factor forcing the fundamental matrix to be

rank-2 [26].

3.1. Linear methods

The linear method of the seven points is based on

computing the fundamental matrix by using only seven

point correspondences [26]. Due to the homogeneity of

the equations, the solution is a set of matrices of the

form

F ¼ aF1 þ ð1 2 aÞF2 ð11Þ

By forcing the rank of the matrix to be equal to 2 and

using the expression det½aF1 þ ð1 2 aÞF2�; a cubic

polynomial is obtained which has to be solved to obtain

a and then F: The main advantage of this method is that a

fundamental matrix can be estimated by using only seven

points. However, this fact becomes a drawback when

some points are poorly located. Moreover, the seven-

points method cannot be applied in the presence of

redundancy. Hence, it cannot be applied using n points

where n . 7:

Another interesting method is the eight-points method, in

which the redundancy of points permits the minimization of

the error in estimating F: The equation to minimize in the

eight-points method is the residual of Eq. (4), that is:

min
F

X
i

ðmT
i Fm0

iÞ
2 ð12Þ

The classical method to solve such an equation is the least-

squares technique of forcing one of the components of F to

be the unity [33]. This simplification can be assumed

because F is always defined up to a scale factor. Then, the

equation to solve is

f 0 ¼ ðU0TU0Þ21U0Tc9 ð13Þ

in which U0 is a matrix containing the first eight columns of

U; c9 is the last column of U (see also Eq. (10)) and f 0 is a

vector containing the first eight elements of f. Note that the

last element of f is 1.

A variant of the eight-points method can be applied if

Eq. (12) is solved by using eigen analysis, also called

orthogonal least-squares technique [27]. In this case F can

Fig. 1. The geometric relation between two pinhole cameras.
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be determined from the eigen vector corresponding to

the smallest eigen value of UTU: The difference between

this method and the classical least-squares resides in the

form of calculating the error between correspondences and

epipolar lines so that an orthogonal minimization is much

more realistic.

The last linear method we surveyed is the analytic

method with rank-2 constraint which imposes the rank-2

constraint in minimization [26]. Then, the matrix U0 is

defined as the composition of the first seven columns

of U and c8 and c9 are defined as the eighth and

ninth columns of U; respectively, so that F can be

computed as

f 0 ¼ 2f8ðU
0TU0Þ21U0Tc8 2 f9ðU

0TU0Þ21U0Tc9 ð14Þ

in which f 0 is the vector containing the first seven

elements of f, and f8 and f9 are the eighth and ninth

elements of f. In order to obtain the values of f8 and f9; F

is computed by using the seven points algorithm. Then, f

is computed by selecting from any choice of pairs of F;
the one which minimizes kf k ¼ 1: Although the analytic

method with rank-2 constraint obtains a rank-2 matrix, it

does not greatly improve the results of the previously

explained methods.

Concluding, the linear methods present an interesting

reduced computing time (see Section 5) but their accuracy

is rather poor in the presence of false matching or if the

points are only badly located due to image noise. In order

to obtain better results, iterative algorithms have to be

considered.

3.2. Iterative methods

Iterative methods can be classified into two groups: those

that minimize the distances between points and epipolar

lines and those that are based on the gradient.

In the first classification, the iterative methods minimiz-

ing the distances between points and epipolar lines are based

on solving the following equation

min
F

X
i

ðd2ðmi;Fm0
iÞ þ d2ðm0

i;FmiÞÞ ð15Þ

A first approach consists of directly applying an iterative

method as Newton–Raphson or Levenberg-Marquardt in Eq.

(15)[34]. Another possibility consists of applying an iterative

linear method as was proposed by Luong and Faugeras

(1993) [26], in which Eq. (15) has to be rewritten as

min
F

X
i

w2
i ðm

T
i Fm0

iÞ
2 ð16Þ

where

wi ¼
1

l1
2 þ l2

2
þ

1

l01
2 þ l02

2

 !1=2

ð17Þ

Fm0
i ¼ ðl1; l2; l3Þ

T ð18Þ

FTmi ¼ ðl01; l
0
2; l

0
3Þ

T ð19Þ

The iterative linear method is based on computing the weight

value wi equivalent to the epipolar distances by using

the previous F (in the first iteration wi ¼ 1) and then

minimize by using least-squares in each iteration. Neither

approach imposes the rank-2 constraint. However, the non-

linear minimization in parameter space [26] can solve this

situation. This method is based on parameterizing the

fundamental matrix, keeping in mind that it has a rank-2 in

the following way,

F¼

a b 2axe2bye

c d 2cxe2dye

2axe02cye0 2bxe02dye0 ðaxeþbyeÞxe0 þðcxeþdyeÞye0

0
BB@

1
CCA

ð20Þ

in which ðxe;yeÞ and ðxe0 ;ye0 Þ are the coordinates of the epipole

in the first image plane and second image plane, respectively.

Eq. (20) is just one of the multiple parameterizations of F
which must be computed. Finally, the estimated F becomes

the parameterization which maximizes the following

equation,

ðad2bcÞ2
ffiffiffiffiffiffiffiffiffiffiffiffi
x2

eþy2
eþ1

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

e0
þy2

e0
þ1

q
ð21Þ

Theiterationof thismethod allowscomputing better rank-2F:

Besides, the minimization of Eq. (12) is not accurate

enough to obtain a good estimation because the variance

of points is not analogous and the least-squares technique

assumes they are comparable. In order to overcome this

drawback, the second group of methods has to be

considered.

The second group of methods is based on the gradient-

based [35]. In this case, the equation to solve is

min
F

X
i

ðmT
i Fm0

iÞ
2
=g2

i ð22Þ

where gi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l1

2 þ l2
2 þ l01

2 þ l02
2

q
:

This method has to potential minimizations: least-

squares and eigen analysis. Besides, Chojnacki et al. [36]

recently proposed two new iterative methods based on an

approximate maximum likelihood estimate which can be

applied to several computer vision applications. Such

methods are called Fundamental Numerical Scheme (FNS)

and Constrained Fundamental Numerical Scheme (CFNS).

Both methods are based on Newton–Raphson minimiz-

ation technique. Then, in order to estimate the funda-

mental matrix F the following minimization has to be

overcome,

JAML ¼
X

i

ðmT
i Fm0

iÞ
2

mT
i FFTmi þ m0

iTFFTm0
i

ð23Þ

so that ›f JAMLðf Þ is the row vector of partial derivatives

of JAML with respect to f. The minimization forces such

vector to zero so that ›f JAMLðf Þ ¼ 2Xf f : Then, arranging
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the terms of this equation,

Xf f ¼ 0 ð24Þ

where

Xf ¼
Xn

i¼1

Ai

f TBif
2
Xn

i¼1

f TAif

ðf TBif Þ
2

Bi ð25Þ

Ai ¼ uiu
T
i ð26Þ

Bi ¼ ›muiLm›muT
i ð27Þ

›m represents the partial derivative of the corresponding

points, Lm is the symmetric covariance matrix that relates

the point uncertainty [37,38]. Then, FNS is based on

solving Eq. (24) by means of an initial seed to search for

an local minimum.

The CFNS [36] improves FNS by including in the

optimization method an ancillary constraint obtained from

the minimization function. In such a case, the Xf matrix is

replaced to a more complex one, i.e. Zf :

Zf ¼ Pf Xf Pf ð28Þ

where

Pf ¼ I 2 kaf k
22

af af a
T
f ð29Þ

af ¼ ›ffðf Þ
T ð30Þ

and fðf Þ ¼ 0 is the ancillary constraint.

The gradient-based technique obtains better results when

compared with linear methods and iterative methods which

minimize the distance between points and epipolar lines.

Although iterative methods are more accurate than linear

methods, they compute intensively and cannot cope with

potential outliers.

3.3. Robust methods

In this section we present five robust methods: M-

Estimators, Least-Median-Squares (LMedS), Random

Sampling (RANSAC), MLESAC and MAPSAC which

can be used both in the presence of outliers and in bad

point localization.

M-Estimators [35] reduces the effect of outliers weight-

ing the residual of each point. Consider ri the residual of

mT
i Fm0

i: Then, M-Estimators are based on solving the

following expression

min
F

X
i

wiðm
T
i Fm0

iÞ
2 ð31Þ

in which wi is a weight function. A lot of different weight

functions have been proposed so a new M-Estimator is

obtained for each one. A common weight function proposed

by Huber [39] is the following

wi ¼

1 lril # s

s=lril s , lril # 3s

0 3s , lril

8>><
>>: ð32Þ

Another interesting weight function is proposed by Turkey

[40],

wi ¼
1 2

ri

4:6851

� �2
 !2

lril # 4:6851s

0 otherwise

8>><
>>: ð33Þ

In order to obtain s; the robust standard deviation can be

used (see Ref. [26]).

s ¼ 1:4826ð1 þ 5=ðn 2 7ÞÞmedianilril ð34Þ

There are a lot of weight functions and for each one we

obtained different results. The results given by this method

are quite good in the presence of gaussian noise in image

point localization, but they are rather limited in outlier

detection.

LMedS [26] and RANSAC [27] techniques are quite

similar. Both techniques are based on randomly selecting the

set of points used to compute an approximation of F by using

a linear method. The difference between both techniques is

in the way use to determine the chosen F: LMedS calculates

for each F the median distance between the points and

epipolar lines, in which the chosen fundamental matrix has

to minimize this median. RANSAC calculates for each F the

number of inliers, in which the chosen F is the one that

maximizes it. Once the outliers are removed, F is

recalculated with the aim of obtaining a better approach.

Another difference between both methods is that LMedS

is more restrictive than RANSAC, so that LMedS removes

more points than RANSAC. However, the principal

constraints of both techniques are their lack of repetitivity

due to the aleatory way of selecting the points. Although

experimental results show that LMedS gives better results in

terms of accuracy, it does not always model the epipolar

geometry properly.

Recently some other methods based on RANSAC has

been proposed. The MLESAC [32] (Maximum LikElihood

SAmple Consensus) is a generalization of RANSAC based

on the same point selection strategy and the solution is the

one that maximizes a likelihood, so that the shape of a

normal distribution instead of the number of inliers.

Besides, MAPSAC [41] (Maximum A Posteriori SAmple

Consensus) improves MLESAC being more robust against

noise and outliers including Bayesian probabilities in

minimization.

3.4. Algorithmic overview

This section gives an algorithmic point of view of the

surveyed methods to estimate the fundamental matrix

X. Armangué, J. Salvi / Image and Vision Computing 21 (2003) 205–220 209



described in Sections 4.1–4.3. The main objective of this

section is to present an overall schema to make agile the

comparison among the different methodologies.

Fig. 2 summarizes the algorithmic methodology of the

linear methods. Besides, Fig. 3 abstracts the methodology

used by the iterative methods to minimize the distance

between points and the corresponding epipolar lines.

Moreover, Fig. 4 illustrates the schema of the iterative

methods based on minimizing the gradient and the

approximate maximum likelihood. The two foremost

schemas are two different implementations of the

gradient technique, that is, linear-squares and eigen

analysis. The two aftermost schemas are based on FNS

and CFNS which methodology are quite similar. Note

that Zf ¼ 0 is equivalent to ZT
f Zf ¼ 0 obtaining a

symmetric matrix which is replaced to Xf in the

algorithm. Finally, Fig. 5 deals with robust methods.

The first schemas are three different implementations of

the M-Estimator technique, that is the minimization of

Eq. (31) by using least-squares and eigen analysis, and

the implementation proposed by Torr [27] in which the

fundamental matrix is forced to be rank-2 in every

iteration (explained in detail in Section 4.5.2). The last

methods shown in Fig. 5 correspond to LMedS and

RANSAC, respectively.

3.5. Considerations in F estimation

3.5.1. Normalizing data

Data normalization is a key point in fundamental matrix

estimation. It has been proved that the computation should

not be applied directly to raw data in pixels due to potential

uncertainties given by huge numbers. The process of

normalization consists of scaling and translating the data

so that points mi and m0
i are transformed to (m̂i ¼ Tmi and

m̂0
i ¼ T0m0

i) by using two transformation matrices T and T0;

respectively. Then, the F̂ matrix is estimated from the

normalized points and, finally, it has to be restored to obtain

F using the following equation

F ¼ TTF̂T0 ð35Þ

Basically there are two different methods of data normal-

ization. The first method [26] normalizes the data between

[21,1].Thesecondwas proposedby Hartley [42] and isbased

on two transformations. First, the points are translated so that

theircentroid isplacedat theorigin.Then, thepointsarescaled

so that the mean of the distances of the points to the origin isffiffi
2

p
: It has been proved that Hartley’s method gives more

accurate results than normalizing between [21,1].

3.5.2. Rank-2 constraint

In most circumstances, the estimated F should be a rank-

2 matrix in order to model the epipolar geometry with all the

epipolar lines intersecting in a unique epipole. Although the

rank-2 constraint is not imposed in most of the surveyed

methods, there is a mathematical method which transforms

a rank-n square matrix to the closest rank-ðn 2 1Þ matrix

[35]. The F is decomposed in

F ¼ USVT ð36Þ

by using singular value decomposition, where Ŝ ¼

diagð
ffiffiffi
l1

p
;
ffiffiffi
l2

p
;
ffiffiffi
l3

p
Þ: The component with the smallest

weight is removed obtaining Ŝ ¼ diagð
ffiffiffi
l1

p
;
ffiffiffi
l2

p
; 0Þ: Then,

F is recalculated in the following way:

F̂ ¼ UŜVT ð37Þ

Fig. 2. Linear methods flow schemes.
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Fig. 3. Flow schemes of the iterative methods minimizing the distances between points and epipolar lines.

Fig. 4. Flow schemes of the iterative methods minimizing the gradient.
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However, transforming the obtained F to a rank-2 matrix

will give worse results because the obtained optimized

matrix is rank-3. Besides, a rank-3 matrix gives an

additional degree of freedom that usually reduces the

distance between points and epipolar lines.

Overall, we suggest the use of any method which imposes

a rank-2 matrix in the computation of F because rank-2

matrices models more accurate the epipolar geometry.

4. Experimental results

The surveyed methods have been programmed1 and their

accuracy analyzed with synthetic images varying the

gaussian noise and the number of outliers. Moreover, the

surveyed methods have been tested by using real images in

different scenarios, that is urban scenes, mobile robot indoor

environment, seabed, road images, aerial and images of a

potential kitchen. The correspondence problem between

images have been solved by using the algorithm proposed

by Zhang2 [43] and the obtained results are shown in Fig. 6.

The corresponding points have normalized by the method

proposed by Hartley [42] described in Section 4.5.1.

Table 1 shows the accuracy of each method computed

as the mean and standard deviation of the distances

between points and epipolar lines.

The seven points algorithm obtains a solution using only

seven points. However, the accuracy depends greatly on the

points used. The least-squares technique is based on using at

least eight points and its accuracy depends on the amount of

badly located points used, usually obtaining better results by

increasing the amount of points. The eigen analysis is the

linear method that obtains the best results because an

orthogonal least-squares minimization is more realistic than

the classic one. However, all these methods obtain a rank-3

fundamental matrix, which means that the epipolar

geometry is not properly modeled. The analytic method

with rank-2 constraint obtains a rank-2 fundamental matrix

in which distances between points and epipolar lines are

worse than in the linear methods and it is more expansive in

computing time (see Fig. 7).

The iterative linear method improves considerably the

least-squares technique but cannot cope with outliers. The

iterative Newton–Raphson algorithm gets even better

results than the previous method if the presence of outliers

is not considered. Although the non-linear minimization in

parameter space also obtains a rank-2 matrix, the distances

of points to epipolar lines are the worst and sometimes the

method diverges obtaining a false solution. The eighth and

Fig. 6. Correspondences used in real images: (a) urban scene; (b) mobile robot scene; (c) underwater scene; (d) road scene; (e) aerial scene; (f) kitchen scene.

1 FNS, CFNS, MLESAC and MAPSAC implementations have been

provided by the original authors.
2 Available at http://www-sop.inria.fr/robotvis/demo/f-http/html.
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Table 1

Synthetic and real image results of methods. Every cell show the mean and standard deviation of the discrepancy between points and epipolar lines

Methods Linear Iterative Robust

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

s ¼ 0:0 outliers 0% 14.250 0.000 0.000 1.920 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.100 0.011

13.840 0.000 0.000 1.143 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.079 0.009

s ¼ 0:0 outliers 10% 25.370 339.562 17.124 30.027 161.684 20.445 Infty 187.474 18.224 17.124 16.978 273.403 4.909 4.714 0.000 0.000 16.457 19.375 0.115

48.428 433.013 31.204 59.471 117.494 30.487 Infty 197.049 36.141 31.204 29.015 360.443 4.493 2.994 0.000 0.000 26.923 70.160 0.115

s ¼ 0:1 outliers 0% 135.775 1.331 0.107 0.120 1.328 0.107 1.641 1.328 0.112 0.107 0.110 0.355 0.062 0.062 1.331 0.107 0.107 0.139 0.168

104.671 0.788 0.088 0.091 0.786 0.088 0.854 0.786 0.092 0.088 0.091 0.257 0.042 0.041 0.788 0.088 0.088 0.123 0.155

s ¼ 0:1 outliers 10% 140.637 476.841 19.675 70.053 158.961 32.765 146.955 183.961 15.807 14.003 14.897 73.354 4.876 4.130 0.449 0.098 2.389 21.784 0.701

104.385 762.756 46.505 63.974 124.202 67.308 94.323 137.294 40.301 38.485 39.388 59.072 4.808 2.997 0.271 0.077 5.763 97.396 0.740

s ¼ 0:5 outliers 0% 163.839 5.548 0.538 0.642 5.599 0.538 7.017 5.590 0.554 0.538 0.543 2.062 0.392 0.367 5.548 0.538 0.538 0.550 0.762

178.222 3.386 0.362 0.528 3.416 0.361 3.713 3.410 0.361 0.362 0.368 1.466 0.237 0.207 3.386 0.362 0.362 0.377 0.618

s ¼ 0:5 outliers 10% 140.932 507.653 19.262 26.475 161.210 31.740 Infty 217.577 19.409 22.302 22.262 143.442 3.887 3.147 47.418 0.586 18.942 23.859 0.629

109.427 1340.808 49.243 54.067 136.828 59.126 Infty 368.061 51.154 59.048 59.162 111.694 3.969 2.883 29.912 0.434 53.098 79.890 0.452

s ¼ 1:0 outliers 0% 65.121 21.275 1.065 1.319 20.757 1.068 345.123 21.234 1.071 1.065 1.066 8.538 0.794 0.814 21.275 1.065 1.065 1.089 1.072

58.184 12.747 0.744 0.912 12.467 0.772 294.176 12.719 0.745 0.744 0.748 6.306 0.463 0.463 12.747 0.744 0.744 0.768 0.785

s ¼ 1:0 outliers 10% 128.919 429.326 21.264 61.206 158.849 37.480 1 152.906 18.730 18.374 19.683 120.012 3.921 4.089 25.759 1.052 14.076 19.298 1.041

100.005 633.019 53.481 64.583 120.461 52.762 1 120.827 38.644 39.993 42.112 122.436 3.752 4.326 15.217 0.803 30.274 65.149 0.822

Urban scene 51.633 1.724 0.440 1.023 1.102 0.468 2.974 1.109 0.446 0.437 0.437 1.668 0.309 0.279 1.724 0.319 0.440 0.449 0.440

35.724 1.159 0.334 1.012 0.796 0.341 3.066 0.803 0.368 0.333 0.334 0.935 0.228 0.189 1.159 0.269 0.334 0.373 0.348

Mobile robot scene 119.439 35.525 4.080 16.511 46.216 5.611 24.010 18.665 4.787 4.080 3.199 5.775 0.274 0.593 24.835 1.559 3.855 2.443 1.274

46.268 64.175 7.684 18.964 35.011 8.729 22.270 22.170 9.255 7.684 5.541 50.701 0.192 0.524 38.434 2.715 6.141 5.629 2.036

Underwater scene 97.977 4.683 1.725 5.242 3.068 1.752 5.575 2.949 1.581 1.599 1.609 0.557 0.650 0.475 2.439 0.847 1.725 3.678 1.000

66.223 3.941 2.138 4.286 2.804 2.249 4.337 2.798 2.056 2.019 2.010 0.441 0.629 0.368 2.205 0.740 2.138 12.662 0.761

Road scene 27.668 0.825 0.609 1.078 0.511 0.559 1.920 0.512 0.809 0.466 0.595 0.373 0.136 0.310 0.825 0.609 0.609 0.427 0.471

39.688 1.144 0.734 2.118 0.422 0.709 2.498 0.427 0.986 0.419 0.543 0.635 0.113 0.256 1.144 0.734 0.734 0.410 0.403

Aerial scene 99.635 0.179 0.149 1.480 0.179 0.149 0.497 0.179 0.342 0.149 0.209 0.099 0.085 0.161 0.179 0.149 0.149 0.216 0.257

62.162 0.158 0.142 0.979 0.158 0.143 0.472 0.158 0.339 0.142 0.178 0.063 0.058 0.106 0.158 0.142 0.142 0.186 0.197

Kitchen scene 16.956 5.014 2.623 2.681 3.217 2.966 7.563 3.176 1.901 2.623 1.892 0.584 0.280 0.263 1.350 0.545 2.623 0.864 0.582

16.696 5.177 3.327 4.175 2.476 3.310 5.576 2.508 1.499 3.327 2.504 0.425 0.207 0.191 1.200 0.686 3.327 3.713 0.717

Methods: (1) seven points; (2) least-squares (LS); (3) orthogonal LS; (4) rank-2 constraint; (5) iterative linear; (6) iterative Newton–Raphson; (7) minimization in parameter space; (8) gradient using LS; (9)

gradient using eigen; (10) FNS; (11) CFNS; (12) M-Estimator using LS; (13) M-Estimator using eigen; (14) M-Estimator proposed by Torr; (15) LMedS using LS; (16) LMedS using eigen; (17) RANSAC; (18)

MLESAC; (19) MAPSAC.
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Fig. 7. Computing time of methods: (1) seven points; (2) least-squares (LS); (3) orthogonal LS; (4) rank-2 constraint; (5) iterative linear; (6) iterative Newton–

Raphson; (7) minimization in parameter space; (8) gradient using LS; (9) gradient using eigen; (10) FNS; (11) CFNS; (12) M-Estimator using LS; (13) M-

Estimator using eigen; (14) M-Estimator proposed by Torr; (15) LMedS using LS; (16) LMedS using eigen; (17) RANSAC; (18) MLESAC; (19) MAPSAC.

Fig. 8. Underwater scene and matchings: (a) set of initial correspondences; and the matchings kept by: (b) M-Estimators; (c) LMedS; (d) RANSAC.
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Fig. 9. Points and epipolar lines in the underwater scene: (a) left and (b) right views obtained by M-Estimator; (c) left and (d) right views obtained by LMedS;

(e) left and (f) right views obtained by RANSAC.

X. Armangué, J. Salvi / Image and Vision Computing 21 (2003) 205–220216



ninth methods are two different versions of the gradient-

based method using least-squares and orthogonal least-

squares, respectively. Both methods obtain better results

than their equivalent linear methods. Nevertheless, the eigen

analysis once more obtains better results than the other

linear methods. Results obtained and computing time spent

by the method FNS are quite similar to the gradient

technique. Besides, CFNS improve slightly the results

obtained by FNS spending more computing time, though.

Summarizing, iterative methods improve the computation

of the fundamental matrix but they cannot cope with

outliers.

The last surveyed methods are classified into robust (see

in Table 1 columns 12–19), which means that they might

detect and remove potential outliers and compute the

fundamental matrix by using only inliers. Three versions of

the M-Estimators based on the Huber weight function have

been programmed: least-squares, eigen analysis and the

method proposed by Torr [27]. The three methods start from

a linear initial guess and become fully dependent on the

linear method used to estimate it. Moreover, least-squares

and eigen values get a rank-3 matrix, while Torr forces a

rank-2 matrix in each iteration giving a more accurate

geometry. Besides, two different versions of LMedS using

again least-squares and eigen analysis have been studied.

Although the accuracy of LMedS seems worse compared to

M-Estimators, LMedS removes the outliers more efficiently

so that the epipolar geometry is properly obtained.

RANSAC is the last surveyed method. However, RANSAC

does not obtains any better results than LMedS with eigen

analysis due to the method used to select the outliers which

is quite permissive. MLESAC is a generalization of

RANSAC obtaining more or less the same results. Besides,

MAPSAC improves considerably the results obtained by

RANSAC but MAPSAC does not improve the results

obtained by LMedS.

Fig. 7 shows the mean computing time spent by the

whole methods in synthetic and real scenarios. On the

whole, computing time is linear dependent to complexity of

the algorithm. So, least-squares turn out to be the quickest

linear method, while Newton–Raphson and gradient

techniques are the quickest iterative methods. Summarizing

the robust methods, M-Estimators are quicker than the

methods in which a set of points have to be selected aleatory

from the images.

Fig. 8(a) shows the matchings obtained by using the

method proposed by Zhang [43,44]. First, a Harris corner

detector is applied to get a list of interesting points. Then

the matching between both images is computed by using

a pixel-based correlation. Note that matches might not

be unique. Finally, a relaxation method is used to

improve the local consistency of matches, reducing

their ambiguity.

Fig. 8(b) shows the list of matchings kept by M-

Estimator based on eigen values. Depending on the

weighting function, the removed matchings vary due to

both noise and outliers. Note that some good matchings are

also removed while potential outliers are kept as inliers.

Fig. 8(c) shows the results obtained by LMedS, while

Fig. 8(d) shows the results obtained by RANSAC. In both

cases, every single outlier is detected and removed,

obtaining comparatively the same results.

Also, the geometry modeled by every robust method is

quite different. Fig. 9(a) and (b) shows the epipolar

geometry given by M-Estimator based on eigen values,

wherein it is shown how the epipolar lines do not cross in a

single epipole due to the rank-3 matrix obtained. LMedS

obtains a completely different geometry in which epipoles

have been located outside the image plane, but they are

unique (see Fig. 9(c) and (d)). RANSAC obtains a geometry

with the epipole located near the image center. Comparing

the obtained geometries related to the position of the camera

Fig. 10. Urban scene and matchings: (a) set of initial correspondences; and the matchings kept by: (b) M-Estimators; (c) LMedS; (d) RANSAC.
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Fig. 11. Points and epipolar lines in the urban scene: (a) left and (b) right views obtained by M-Estimator; (c) left and (d) right views obtained by LMedS; (e)

left and (f) right views obtained by RANSAC.
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and its motion, the geometry modeled by RANSAC is the

closest to reality.

The same study has been done considering the urban

scene showing that the obtained results are a bit different.

The reader can see these results in Figs. 10 and 11. The

number of potential outliers is fewer than in the underwater

scene and the location of image points is more accurate

because of better image quality (see Fig. 10 (a) and (b)

shows the poor results obtained by the eigen value M-

Estimator, in which a lot of matchings are removed while

some of the outliers are kept. In this case, LMedS is the only

method, which detects the set of outliers located in the right

side of the image (see Fig. 10(c)). Besides, RANSAC does

not detect any outlier so results are not accurate enough.

The geometry obtained in the urban scene largely

depends on the method utilized. Fig. 11 shows the three

different geometries given by M-Estimator, LMedS and

RANSAC. In this case, M-Estimator and RANSAC model a

similar geometry in which the epipoles are located outside

the image near the top-right corner, which is not the right

situation. LMedS obtains the right geometry with the

epipoles located in the left side of the image.

5. Conclusions

This article surveys up to 19 of the most used methods in

fundamental matrix estimation. The different methods have

been programmed and their accuracy analyzed in synthetic

and real images. The methodology used has been compared

and a useful overall schema is presented. Experimental

results show that: (a) linear methods are quite good if the

points are well located in the image and the corresponding

problem previously solved; (b) iterative methods can cope

with some gaussian noise in the localization of points, but

they become really inefficient in the presence of outliers; (c)

robust methods can cope with both discrepancy in the

localization of points and false matchings.

Experimental results show that the orthogonal least-

squares using eigen analysis gives better results than the

classic least-squares technique of minimization. Moreover,

a rank-2 method is preferred because it models the epipolar

geometry with all the epipolar lines intersecting at a single

epipole. Moreover, experimental results show that the

corresponding points have to be normalized and the best

results have been obtained by using the method proposed by

Hartley [35]. Summarizing, the recently proposed method

of MAPSAC obtains quite a good results with a low

computing time. However, LMedS still obtain the best

results when a low computing time is not required.

The uncertainty in fundamental matrix computation was

studied in detail by Csurka et al. [45] and Torr and

Zisserman [46]. The surveyed methods model the epipolar

geometry without considering lens distortion, which

considerably influences their discrepancy. Thus, some

efforts have been made recently in presence of radial lens

distortion [47]. In all, LMedS is the most appropriate for

outlier detection and removal. However, with the aim of

obtaining an accurate geometry, it is better to combine it

with M-Estimator, which in our case has modeled a proper

geometry in synthetic data, either in the presence of noise or

outliers.

6. Software

A Matlab Toolkit illustrating all the surveyed methods is

available, please check http://eia.udg.es/~armangue/

research.
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