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A New Approach to Pose Detection using
a Trinocular Stereovision System

O
bject location and tracking is a major issue in computer vision. This problem is normally
solved through the extraction of representative features of the object, and the two-
dimensional coordinates of these image features are used to compute the position of the

object. When more than one camera is used, a certain similarity measure between the image
features extracted from both stereoscopic images helps to match the correspondences. In this way,
three-dimensional measurements can be recovered from the 2D coordinates of the features
extracted from different cameras. In this paper the use of a trinocular system is considered to
estimate both the position and velocity of known objects by using their apparent area, and with
no use of the image-plane coordinates of the object’s features. A high precision low-level image
processor has been developed for performing object labeling and noise filtering of the images at
video rate. Then, a position measurement tool uses the apparent area captured by every camera to
locate the object. This enables us to estimate the position of the object. Finally, a prediction tool
refines the estimation in locating the object. We show the performance of the trinocular system
with a real implementation. This system has been designed to process the images provided by any
conventional of high-speed cameras at video rate.
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Introduction

A lot of effort has been carried out to reconstruct the
spatial geometry of a scene using binocular stereovision
systems. Most of the algorithms used by binocular
systems use a certain similarity measure between both
stereoscopic images in order to match the correspon-
dences. Unfortunately, matching homologous points
between images is not always possible, and false matches
may appear. Thus, given a point in one image,
prediction algorithms must be used to find the position
of the homologous point in the second image. A
computationally effective solution to overcome these
1077-2014/02/$35.00
difficulties relies on the use of trinocular stereovision
systems, reducing the amount of false matches, by using
the epipolar geometry to predict correspondences and,
therefore speeding up the processing [1,2]. However,
calibration represents a great deal of effort [3], since the
focal length of the camera, f, and the two-dimensional
coordinates of the principal point, xc and yc, are
unknown unless they have been determined by some
calibration procedure. Moreover, the coordinates of a
point in the image plane are measured in terms of pixels.
Converting these pixels into units of length (e.g. meters)
also requires calibration. Our aim is to perform
measurements minimizing the problem of calibration,
# 2002 Published by Elsevier Science Ltd.



Figure 1. Block diagram of the system.
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taking advantage of some additional knowledge of both
the scene and the object to be tracked. On the other
hand, it is well known that the precision of the three-
dimensional scene reconstruction depends much on the
distance between the cameras: the larger this distance is,
the better the precision will be [4]. Increasing this
distance also augments the differences between images,
complicating the matching task.

In the literature, one can distinguish between two
sorts of stereo algorithms. Firstly, those that use
calibrated stereo algorithms, which perform measure-
ments by means of the calibration matrix, and secondly,
those using uncalibrated stereo systems, which involve
the computation of invariants [5]. It should be noticed
that our work is far away from such approaches, since
our system takes advantage of the size, and, in some
way, of the shape of the objects. Focusing on this idea,
very few authors have used the apparent area of the
objects for measuring distances. Weldon et al. [6]
determined depth by using the apparent size of a planar
patch, while Huber et al. [7] could settle the basis of a
collision avoidance system in measuring the apparent
separation between two corners of a rigid obstacle. In
both these cases, the camera motion was known, thus
the problem could be solved without knowing the
intrinsic parameters of the camera. Pedersini et al. [8,9]
have more recently proposed a calibrated trinocular
system which takes profit of the apparent area for
removing possible matching ambiguities. On the con-
trary, we propose a trinocular system which does not use
the image coordinates where the extracted features of
the objects are located in order to estimate depth.
However, the system is restricted to those situations
where the apparent shape of the object to track keeps
invariant with respect to its position. For instance, let us
take a racing car in a circuit, always passing in the same
position and orientation in relation to a static camera.
Its apparent area will provide distance information
when approaching the static cameras at every turn. In a
more general way, we can assign a parameter to the
object, say r, which will help us to locate it. This
parameter could be the length or height of the object,
which will vary smoothly as the object moves. The
simplest case of study would be a sphere, where the
parameter can be defined by its diameter. In the case of
the racing car, parameter r can be defined by the
apparent width or height of the car.

Starting from the measure of these parameters, we
will be able to find the position of the object by means of
a specific algorithm as shown in Figure 1. First, an
image processing hardware has been developed for
processing the information provided by every camera.
This hardware provides the parameters that are used by
the trinocular system for determining object position.
Then, the trinocular algorithm gives a first estimation of
the position of the objects, and passes this data to the
filtering module. Next, this module estimates recursively
the state of the system, giving us the objects’ position
and velocity. Finally, this estimation is compared to the
data supplied by the testing platform for obtaining a
measure of the accuracy of the algorithm.

All these algorithms run in real-time granted that: 1)
The image-processing tool computes the image algo-
rithms at video rate, and 2) The trinocular algorithm, as
well as the filtering and prediction can be computed in
the host computer accomplishing the timing require-
ments of the system.

Summarizing, in the next section we introduce the
basic geometry of our trinocular system. Following this,
we discuss two different approaches to compute the
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position of a known object depending on the apparent
area viewed from every camera. Then, the next section
shows the implementation of these algorithms in a
computer vision frame. Finally, some results are
presented, describing the advantages of our system.

Architecture for Real-Time Pose Detection

One of the aims of our system is to measure the position
of the object at video rate. Thus, the development of a
hardware, which could cope with the information
provided by each camera, is absolutely essential.

From a system viewpoint, we consider the existence of
three different ways of implementing specific image
processing algorithms [10]. The first one consists of
programming a general-purpose computer to perform
the processing sequentially (software approach). In this
case, the algorithm is mapped onto a fixed hardware
machine. Another option is to design a specific circuit
implementing the image-processing algorithm (hardware
approach). Here, the machine structure is tailored to the
application. The third alternative is to build a machine
to obtain the versatility of the first approach, and the
performance of the second one. We have applied the
methodology of this last approach merging specific
components for image processing (A/D–D/A video
converters, sync. extractors, analog filters, etc.) with
multiple purpose programmable devices (FPGAs). In
this way, we obtain a real-time image-processing tool,
which can be reconfigured to implement different
algorithms. However, from an algorithmic viewpoint,
the tracking problem is usually divided into three
subproblems: segmentation, correspondence and motion
estimation, usually in this order. Typically, correspon-
dence is established between primitives, i.e. interest
points [11], line segments [12] or planar patches [13], and
it becomes a difficult problem to solve when several
moving objects are present in the scenario. Our
approach tackles the segmentation and the motion
Figure 2. The image-processing algorithm for real-time tracking
estimation problems. Lighting conditions have to
guarantee that the cameras perceive the same object
with similar chromatic characteristics. With the aim of
providing the system with a higher degree of robustness,
we have implemented an algorithm for correcting the
effects of saturation in the CCD, whenever the lighting
conditions generate this problem. In this way, color
attributes are used to overcome the correspondence
problem, assuming the chromaticity of the objects does
not vary under the different projections. No further
attempt has been made in this work to solve correspon-
dences, although it would be a very interesting subject.
This implementation upgrades our previous attempt of
an image processing system presented in [14]. Substan-
tial modifications have been introduced, which help to
provide the system with a higher flexibility for perform-
ing more complex algorithms.

In order to compute the apparent area of the object,
the first step consists of its extraction from the scene. In
order to segment the object, we use the discriminatory
properties of two color attributes: hue and saturation.
Next, low-pass filtering is performed in order to reduce
the inherent noise in the system. The third step consists
of the computation of the apparent area of the object in
the image plane by using the enhanced image from the
segmentation module. The processing hardware pre-
sented in this section provides the sequence of apparent
areas at video rate. As a last step, the measured areas are
filtered in a sequence of images by means of an extended
Kalman filter. Figure 2 shows a block diagram of the
implemented algorithm. The low-level image processing
operations are performed in hardware, while filtering
and prediction is implemented in software.

Since the aim of the system is to estimate motion, we
use regions because they provide more robust estima-
tions than contours [15]. Like this, the proposed
architecture uses a region-based tracking algorithm.
Figure 3 illustrates the relationship between the
algorithm presented in Figure 2 and its hardware
.



Figure 3. Block diagram of the 2D tracking system.

Figure 4. Color spaces belonging to two different green
objects with different levels of saturation.
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implementation. It can be seen how three hardware
processors work in parallel in the images provided by
their respective cameras.

In the following sections a detailed description of this
hardware is given. As shown in Figure 3, it is divided in
three modules: the segmentation module, the filtering
module and the tracking module.

Segmentation module

This module performs a pixel labeling of the image,
assigning a different label to pixels belonging to different
objects. As we want to classify the objects by using their
chromatic features, a real-time color conversion is
performed. The system allows the programming of any
mathematical conversion from RGB to a perceptual
color model [16, 17]. In this case, we have chosen the
model shown in Eqns (1) and (2) because of their scale-
invariance properties. However, depending on the
application, the most adequate model can be pre-
programmed.

Hðr; g; bÞ ¼ tan�1

ffiffiffi
3

p
ðg � bÞ

ðr � gÞ þ ðr � bÞ
ð1Þ

Sðr; g; bÞ ¼ 1�
3minðr; g; bÞ
r þ g þ b

ð2Þ

From the previous equations it can be seen that the
conversion from RGB to HS has the property of
scale-invariance, that is, H(r, g, b)=H(ar, ag, ab) and
S(r, g, b)=S(ar, ag, ab). Thereon, hue and saturation
are stable under variations on the intensity of the
illuminant [18 ,19]. Nevertheless, this linear behavior
does not hold due to the non-linear response of the
camera CCD, especially when one of the RGB
components reaches its maximum value (know as ‘‘color
clipping’’ in the literature). Moreover, when different
sources of light illuminate the scenario non-uniformly,
this linear relationship may not hold true either. We
attenuate the clipping problem by applying a specific
algorithm to minimize the problems of the CCD
saturation, which increases virtually the dynamic range
of the camera. This algorithm is fully described in [20].
Its main idea is to characterize the color of every
object, finding the equations for R, G and B; and then
re-scaling these three equations when one of the
components reaches its maximum value. In this way,
the segmentation module is much more robust against
changes in the lighting conditions, giving the same value
of H or S even when one of the channels of the camera is
saturated.

Therefore, the next step consists of determining the
chromatic characteristics of the objects to be tracked.
These characteristics are defined in the HS color space.
Since we are tracking known targets, minimum and
maximum values of the hue must be defined for every
object. The same operation has to be carried out for the
saturation component. So, every object to be tracked is
defined by a region on the HS space, depending on its
color attributes. Figure 4 shows two different areas
defining the color regions for two green patches with
different saturation. In this figure, the angle of orienta-
tion represents the hue and the radius corresponds to the
saturation (the further from the center, the more
saturated is the color).



Figure 5. Scheme of the segmentation algorithm.

Figure 6. The labeling/segmentation table (LUT).
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Figure 5 shows an example of the procedure we will
follow. As it can be seen, the process starts with a
conversion of the original RGB image to the HS
space (step 1). Next, the hue image is thresholded by
using the minimum and maximum parameters of the
object to be segmented. As Figure 5 shows, more than
one object may have a hue similar to the object to
segment (step 2). Then, the saturation image is also
thresholded. Finally, a Boolean AND operation is
applied to both images, resulting in the segmented
object (step 3).

By using these minimum and maximum thresholds, a
‘‘segmentation table’’ is computed. This table consists of
218 positions of four bits, that is, a four-bit word for
every RGB combination. We will call this four-bit word
the ‘‘segmentation word’’ or ‘‘pixel label’’, and its value
codifies every object in the scene. Every one of the 218

positions is associated to an RGB combination, that is,
six bits for every color component. Then, for every RGB
value, the system validates to which object it belongs. If
it does not belong to any object, the segmentation word
stores ‘‘0000’’. Otherwise, it stores the label of its
corresponding object, codified between one and 15. In
this way, the objects are labeled depending on their color
attributes. Figure 6 shows the segmentation table. In
practice, the board incorporates a 128 k68 bit memory,
with 17 address bits. The least significant bit of the blue
component is used to distinguish between the higher or
lower address.

The computation of the segmentation table is
performed off-line, in the set-up process. Once it has
been calculated and transferred to the memory of the
board, it will perform segmentation and labeling at
video-rate. Therefore, the A/D converters for signals R,
G and B generate a 18-bit address for the segmentation
table, providing a new pixel-label to the FPGA every
100 ns (the converter clock runs at 10MHz). The
resulting segmented image is shown in Figure 7.



Figure 7. (a) Original image; (b) segmented image.
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Filtering module

It is well known that all the vision systems are affected
by an inherent noise that has different sources. Low-pass
filtering usually eliminates this noise, but sometimes it
has a double effect: blurring edges and other sharp
details. An additional problem is that image filtering in
itself requires considerable computation. Since the
objective is to achieve noise reduction rather than
blurring, a valid approach is the use of a mode filter.
This filter counts the number of times that a certain
datum appears in a 363 neighborhood of the processed
pixel. The mode filter is well suited for our architecture,
Figure 8. Two-step mode filter.
allowing noise reduction without loosing the contours.
The filtering module takes as input an image containing
the four-bit labels from the segmentation module, and it
carries out two iterations of the mode filter over the
labeled image. Figure 8 shows how a second filter is
applied in order to decrease the rate of noise of the
image. This two-iteration mode filter is computed at
video-rate in the FPGA using 5% of its capacity.

Tracking module

At this stage, the tracking module computes the
apparent area of the objects to be tracked from the



Figure 9. Photograph of the tracking device.
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image provided by the filtering module. The first phase
consists of a blob classification, detecting how many
objects of interest are present in the scene. After the
processes of color labeling and image filtering, some
noise could still appear in the image. For this reason,
some further steps should be taken to achieve the
most accurate results. First, those blobs which have a
size smaller than a certain threshold are discarded.
This technique filters off most of the noise due to the
existence of objects with a color similar to the objects of
interest. Normally, when more than one object is present
in the scene, different objects are classified with different
labels. However, if two identically colored objects
were present in the scene, they would be assigned the
same label. As detailed before, the labeling process
classifies the objects depending only on their chromatic
features. For this reason, a connected blobs algorithm
checks whether two objects classified with the same
label are present in the image. If this happens,
it assigns every object a different label. Next, the
apparent area of the objects is computed accumula-
ting the number of pixels for every region classified
with a certain label Li. Finally, a set of apparent areas
is provided to the host computer. A photograph
of the hardware image processor is illustrated in
Figure 9.
The modules described above have been implemented
using Hardware Description Languages (VHDL), and
synthesized on an Altera Flex-10K100 Field Program-
mable Gate Array (FPGA). The image processor
incorporates a connector for reprogramming the FPGA
in-system, facilitating the fast prototyping and develop-
ment of algorithms in hardware. Thus, future improve-
ments of the system can easily be carried out. Moreover,
digital cameras can be plugged into the processor
through the digital video connectors, allowing to process
images at a higher frame rate.

Temporal analysis

Most of the image processing systems use a two-step
approach, where one image is being processed while the
next image is being grabbed (stored in most sort of
memory). However, our implementation reduces the
latency of the system by starting the processing with the
first pixel of the image. The use of a dedicated hardware
allows the overlapping of different tasks through a
pipeline technique, as illustrated in Figure 10.

Since we use a multitask operating system without
real-time capabilities (Windows NT), it is difficult to
predict the time needed by the host to carry out the



Figure 10. Timing diagram of the algorithm. The different
data-intensive processes run in parallel.
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reading of the data. The performed tests showed how
this time ranged from 60 to 200 ms, with a typical value
around 150 ms. This reading will depend not only on the
speed of the CPU, but also on the scheduling of the
threads, on their priority and on the load of the system.
Further details on this matter will be exposed in the later
section on temporal issues.

Geometry of the System

The trinocular stereovision system

We present a vision system composed of three cameras
the distribution of which is known to us, and which
Figure 11. Geometry of the trinocular stereovision system.
cover the whole scene. As an example, Figure 11 shows
three cameras shifted 2p/3 radians among them. In
order to locate the objects in the scenario, we define a
world coordinate system centered at Ow, chosen as the
approximate intersection of the optical axes of the three
cameras. A simple computer program can help in the
location of the cameras, settling OW in the center of the
image plane.

The plane defined by the optical centers (Ci) of the
three cameras is parallel to the ground plane (Xw, Yw).

So as to facilitate the comprehension of the system
equations, the positions of the objects are expressed in
polar coordinates (r, y), taking y¼ 0 as the orientation
towards the optical center of camera 1 (see Figure 11).
Initially, we will assume the objects are located in the
plane Zw¼ 0.

A mathematical approach to parameterize the area of the
objects

Our aim is to adjust the trajectory followed by the object
through a mathematical function, which depends on the
radius and the distance between the object and every
camera. To start with, we analyze the function that
governs how the apparent area (A), viewed from one of
the cameras, changes as the object moves. Let us
imagine that a radius r is fixed, and the object moves



Figure 12. Perspective projection of an object on the image
plane.
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describing a circle centered at Ow. As shown in Figure
11(b), the distance L varies depending on the angle y.

Eqn (3) is derived from the triangles shown in Figure
11(b), using the cosine theorem.

L2
i ¼ �2 þ r2 � 2�r cosð�iÞ ð3Þ
Figure 13. Variation of the apparent area of a spherical object w
of the simulation; (b), (c) and (d) results with r¼ 2, r¼ 4 and r¼
As the apparent size of an object is inversely propor-
tional to the distance, it is possible to establish a
relationship between the real size of the object D, and its
apparent size d, depending on the focal length of the
camera (see Figure 12).

Using the pinhole camera model, the origin of the
three-dimensional system (X,Y,Z) is the center of
projection C. The distance between the optical C and
the image plane p is the focal length f. So, as the distance
L from the object to the camera decreases, d augments.
Therefore, applying the geometric law of the perspective
projection [21], we obtain:

di ¼
D � f
Li

: ð4Þ

Fixing r, the apparent size di for every yi, can be found:

di ¼
D � fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 þ r2 � 2�r cos
p

ð�iÞ
ð5Þ
hen it performs a 3608 rotation with a fixed radius r. (a) Scheme
6, respectively. The angle is expressed in degrees.



Figure 14. Variation of the apparent area of a spherical
object with respect to its location. The position of the object is
represented in polar coordinates (radius r and angle y ).

Figure 15. Apparent area function viewed from cameras 2
and 3, located at 2p/3 and 4p/3 radians.

Figure 16. Apparent areas (A1, A2, A3) measured from
cameras 1, 2 and 3, respectively.
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As our di measures are a direct function of Df, we do not
mind about the shape, but only the apparent area. In
Figure 13 we have normalized Eqn (5) by taking Df=1.
For every camera, we are computing the variation in the
apparent area (A) for every angle (yi), obtaining the
graphics shown in Figure 13.

Now, if this set of functions is pictured in a 3D
representation, the function in Figure 14 is obtained. As
it was expected, the apparent area of the object
augments when the distance to the camera decreases.

As we know what the area function is like, depending
on r and y, and since we are dealing with circular
trajectories, we can compute the area functions seen
from the cameras 2 and 3, by shifting the function in
Figure 15 in 2p/3 and 4p/3 radians, respectively. This is
illustrated in Figure 15. Obviously, cameras can be
placed at any different positions.

Placing the object at any position, we can measure
then the apparent area viewed from every camera of the
trinocular system, obtaining three different values
(A1,A2,A3). If we intersect these three values with its
corresponding functions, we obtain the [r, y] candidate
values from every function, as shown in Figure 16.

Analyzing Figure 17, it can be seen that a set of (r, y)
values are possible candidates for every camera. As
an example, let is analyze the function for camera 1.
Figure 18 shows how there exists a direct relationship
between the intersection points and the possible loca-
tions of the object.

Since the (r, y) values we are looking for must be the
same obtained from every camera, we have to be able to
infer this univaluated (r, y) point starting from the
intersection of these three curves. Figure 19 shows this
intersection, illustrating how a single crossing point



Figure 17. Intersection of the three area functions with
planes A1, A2, A3. Every plane corresponds to the measure
of the apparent area of the object captured from its
corresponding camera.

Figure 18. The thick solid line shows the intersection of the
area function for camera 1 and the measured area (plane A1).
Dotted lines show the correspondence with the possible
locations of the object. Depth cannot be computed from one
image by using only the apparent area.

A TRINOCULAR STEREOVISION SYSTEM 83
exists among these functions. It is possible to obtain a
set of candidate points by finding which values of (r, y)
generate a value of the apparent area close enough to the
area measured by every camera. These values are the
intersection of the functions and planes showed in
Figure 18. In this way, we obtain the three functions
shown in Figure 19. These three functions intersect in a
point, giving the adequate (r, y) value. However, this
method needs a high amount of computation. More-
over, the intersection of the three functions generally
gives a few candidate points—the proper solution can be
found by the application of a least squares criteria.

Concluding, we can observe that (r, y) can be
computed from this intersection. However, this
involves a high computational cost. For this reason, a
less expensive method will be discussed in the next
section.

Geometrical computation

Our second approach consists in setting out the problem
in the following way: now, the apparent diameter of the
object will be considered as a measure, so that equations
will be plainly understood. According to the previously
described constraints concerning the objects to be
tracked, we can consider that there is a direct relation-
ship between the real diameter of the object (D) or any
other parameter, and the apparent diameter viewed
from a camera (d), as it was illustrated in Figure 12. If
we assume that such a relationship exists, the following
equations can be obtained, depending on the focal



Figure 19. 2D plot of the intersection of every apparent area
with the theoretical area function for every camera. ——A1; –
— — —A2; . . .. . . A3.

Figure 20. Scheme of the trinocular system.
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length of every camera ( f ):

L1 ¼
Df1

d1
ð6Þ

L2 ¼
Df2

d2
ð7Þ

L3 ¼
Df3

d3
ð8Þ

As we are using three identical cameras with the
same optics, it can be assumed that f1= f2= f3. Then
Eqns. (6–8) can be equaled using the Dfi factor,
obtaining Eqn (9).

L1d1 ¼ L2d2 ¼ L3d3 ð9Þ

Next, we want to find r and y, depending on the
apparent diameters d1, d2 and d3 through a set of
equations. Figure 20 shows a scheme of the trinocular
system.

Using this figure, we can establish a set of equations,
applying the theorem of the cosine to different triangles.
Let us first take OP1 for finding Eqn (10), OP2 for
Eqn (11), and OP3 for Eqn (12),

L2
1 ¼ �2 þ r2 � 2�r cosð�Þ ð10Þ

L2
2 ¼ �2 þ r2 � 2�r cos

2

3
�� �

� �
ð11Þ

L2
3 ¼ �2 þ r2 � 2�r cos

2

3
�þ �

� �
ð12Þ
where L1, L2, L3, y and s are unknowns. As was shown
in Eqns. (6–8), Li can be expressed as a function of D
and di. Then isolating and equaling D, we can obtain:

L2 ¼
L1d1

d2
; and L3 ¼

L1d1

d3
ð13Þ

If we substitute a2 and a3 in Eqns. (10–12), we obtain the
following system:

r2 � 2�r cosð�Þ þ �2 � D2
1 ¼ 0 ð14Þ

r2 � 2�r cos
2

3
�� �

� �
þ �2 �

L1d1

d2

� �2

¼ 0 ð15Þ

r2 � 2�r cos
2

3
�� �

� �
þ �2 �

L1d1

d3

� �2

¼ 0 ð16Þ

In order to simplify the nomenclature we introduce the
following variable changes:

t2 ¼
d1

d2

� �2

; t3 ¼
d1

d3

� �2

; and L ¼ L2
1 ð17Þ

The resulting system, after expanding the cosine, is then
expressed as shown in Eqns (18–20):

r2 � 2�r cosð�Þ þ �2 � L ¼ 0 ð18Þ

r2 þ �r cosð�Þ � �r
ffiffiffi
3

p
sinð�Þ þ �2 � Lt2 ¼ 0 ð19Þ

r2 þ �r cosð�Þ � �r
ffiffiffi
3

p
sinð�Þ þ �2 � Lt3 ¼ 0 ð20Þ

In this way, we have a non-linear system with three
equations and three unknowns. This equation system
has been solved with the aid of a specific software
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package for symbolic calculation. Once the system has
been solved, it can be proved that the angle y satisfies:

� ¼ arctg
ðt3 � t2Þ

ffiffiffi
3

p
t2 � t3 � 2

 !
: ð21Þ

On the other hand, the radius can be expressed as:

r1j j ¼
1

2

ð
ffiffiffiffiffiffi
C1

p
þ

ffiffiffiffiffiffi
C1

p
t2 þ

ffiffiffiffiffiffi
C1

p
t3 �

ffiffiffiffiffiffi
C2

p
Þ�

C1

�����
����� ð22Þ

r2j j ¼
1

2

ð
ffiffiffiffiffiffi
C1

p
þ

ffiffiffiffiffiffi
C1

p
t2 þ

ffiffiffiffiffiffi
C1

p
t3 �

ffiffiffiffiffiffi
C2

p
Þ�

C1

�����
�����; ð23Þ

where C1 ¼ t22 � t2t3 þ t23 � t3 � t2 þ 1, and C2 ¼
�3C1ðt22 � 2t2 þ 1� 2t2t3 � 2t3 þ t23Þ. For all the radius
in the range [0,d] the right value is given by r1.

To sum up, r and y values have been obtained from a
trigonometrical procedure. The advantage of this
approach, in comparison with the previous one solved
in the last section last, is based on the fact that it is faster
to compute. Moreover, these (r, y) functions can be
easily preprogrammed using Look Up Tables (LUTs).

Pose estimation and prediction

In the previous section we have seen how an estimation
of the position of the object can be obtained from its
apparent area. In order to achieve the most accurate
results, some sort of filtering has to be introduced in the
system. Then, a first estimation of the position of the
object is obtained through the use of Eqns (21–23).

First, the apparent area of the object is obtained from
the image processors described in the previous section.
Next, a first order filter carries out a noise filtering of the
measured apparent areas (A1,A2,A3). Because this filter
just takes into account the present value of every
variable (Ak) and its previous estimation (Ak71), it is
very fast to compute. The equation of the filter is as
follows [22]:

eAAk ¼ eAAk�1 þ k � Ak � eAAk�1

	 

; ð24Þ

where eAAk is the estimated value of the apparent area a,
measured from one of the cameras at instant tk, and k is
a constant of the filter. An Extended Kalman Filter
(EKF) uses these data in order to filter and predict the
position of the object in the future time instants. Tests
have shown that these equations provide a good
prediction of future locations of the object, even when
taking noisy measurements.

It should be noted that the testing scenario described
previously is only a tool to validate the accuracy of the
results. Obviously, the system allows the computation of
trajectories which are less constrained than the motion
of the ball placed on the freight car. This track has just
been used for testing, so that we could compare the real
position of the object with the one estimated by the
trinocular system. Thus, our system tracks the objects in
unconstrained situations, where the object can move
freely, instead of going along a predetermined track.

Temporal issues

Previously, we have analyzed the temporal character-
istics of the image-processing algorithm. It should be
noted that the cycle time of the image-processing
algorithm is 20ms when using standard PAL cameras.
Therefore, in order to keep the cycle time of the whole
system within 20ms, the computation of r and y, and the
later filtering have to satisfy this explicit response-time
constraint of 20ms. Failing that, any further action or
computation derived from our measures (like, for
instance, the instantaneous velocity of the object) would
entail system failure [23]. On the other hand, the choose
of a host computer and an operating system should
ensure that the response time of the system meets the
critical requirements of a real-time application. The tests
were carried out on a computer with a Pentium III
450Mhz processor. As said before, we used a multitask
operating system without real-time capabilities (Win-
dows NT). However, the computational requirements of
the trinocular algorithm and the subsequent filtering
more than allow the use of this platform, including the
host computer and the operating system. In this way, the
host has 20ms to perform these computations until the
next data from the image-processing tool is available,
and we obtain a cost-effective solution without the need
of a more expensive real-time operating system.

Experimental Work

The experimental set-up

In order to test the results of our system, a calibrated
structure has been built. Figure 21 shows a scheme of
the platform we have used.



Figure 21. Testing platform. Angle a has been initially
set to 0.

Figure 22. Photograph of our trinocular system.
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This platform was built in a tubular structure
equipped with mechanical facilities to adjust pitch and
roll degrees of freedom, as explained below. As derived
from the equations in the last section, the geometry of
the system relies on the fact that the three cameras are
distributed around the scenario at any known positions.
Eqns (17) and (18) have assumed that the angle between
the cameras is 2p/3 radians. This constraint is not a
prerequisite of the system, since any known angle
among the cameras could be used. In order to test the
reliability of the results, it is also necessary to know
what happens when there is some kind of inaccuracy in
the angles formed by the position of the cameras. To
start with, our structure provides approximately 2p/3
radians among the three cameras. Then, the extrinsic
parameters of the three cameras have been found by
means of a calibration algorithm [24]. In this way, we
know the real position and orientation of the cameras.
The testing structure is granted analog sensors suited to
each camera (angular potentiometers), which allow the
modification of the pitch angle with 0.05 degrees of
precision. In such a way, the orientation angle of the
cameras can be properly adjusted, allowing the feedback
from the sensorial system. For our initial tests the
structure has been adjusted to exactly 2p/3 radians.
Then, these angles have been modified in order to test
the system. It will be shown later in this paper, how
small unknown variations in these angles appear to
deteriorate the results in quite a small factor.

The scenario of our testing platform consists of three
concentric tracks, on which an electric train circulates,
as shown in Figure 22. With the aim of capturing the
three images at the same time instant, cameras 2 and 3
work synchronized by the master one (camera 1). With
this purpose, we have used three JVC TK1270 cameras
with synchronism input.

The train drags a freight car on which a ball has been
placed. In order to know the accuracy of r and y
provided by our trinocular algorithm, we need to know
the real polar coordinates of the ball. Since the radius of
these tracks is already known, we only need to evaluate
the angle. With this purpose, a high precision incre-
mental encoder has been placed at the center of the
platform, as shown in Figure 23. Then, a rigid rod has
been attached to its axis, revolving jointly around the
encoder. The other side of the rod has been attached to
the freight car, where the ball is located. Thus, as the
train revolves, the platform provides a real measure of
the angle value, which is compared with the value
computed by our trinocular algorithm.

As we will see in the results section, the accuracy of
the system demonstrates the validity and usefulness of
the presented method.



Figure 23. The testing scenario; a train drags a freight car on
which a ball has been placed
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Experimental results

The theoretical results presented in the last section for
computing the position of an object have been verified in
real–world experiments. The accuracy and stability of
the object position has been studied with respect to
various factors, such as pixel noise, due to the
Figure 24. Raw apparent areas (A1, A2, A3) measured respective
data.
segmentation thresholds and calibration errors. In our
tests we have considered a spherical ball with a diameter
of 42mm, placed over a wagon. We first experimented
over a sequence of 415 real images, where the train
performed a whole translation over the rail track. Real-
time segmentation and tracking from the three cameras
is performed in parallel by using three processing cards
like the one detailed previously. Figure 24 illustrates
the changes of the apparent area of the ball, measured
from cameras 1, 2, and 3 as the object performs a
complete turn. A detail over these area functions is also
shown.

By using these three measured values of apparent area
at every time instant (A1,A2,A3), the position of the
object can be determined by means of Eqns (21–23),
as described in the section on geometrical computa-
tion. For every image over the sequence, a new
measurement of the apparent areas from every camera
allows the computation of the new position of the object
(radius and angle). Representing these computed co-
ordinates of the position of the object in polar
coordinates, a reconstruction of the measured path
followed by the train can be obtained, as shown in
Figure 25.

In can be seen from Figure 25 how there exists some
sort of inaccuracy in the measurements of the position
of the object. With the aim of reducing this noise, the
first order filter described in Eqn (24) has been used.
Figure 26 shows the result of filtering the measurements
of the three cameras.
ly by camera 1, 2 and 3, and zoom on the marked zone of the raw



Figure 25. Measured train track. Figure 27. Filtered train track.
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Now, we can use this filtered data for applying Eqns
(26–28). Figure 27 shows the obtained results, plotted in
polar coordinates.

Since we can guarantee the accuracy of our measure-
ments thanks to the described experimental setup, the
estimations of the trinocular system can be compared
with the real measurements, as we know the real radius
of the train track, and the encoder provides the real
Figure 26. (a) Filtered areas with k¼ 0.2; (b) zoom over the
filtered function.
angle. Errors in the angle estimation can be computed
from Table 1.

From Table 1 it can be seen that filtering the data
provides a significant improvement in the accuracy of
the results. On the other hand, Table 2 shows the
differences between the real and the estimated radius
before and after filtering.

Next, a measure of the error should help to evaluate
and compare our different approaches. Table 3 shows
the quadratic error in the estimation of the radius and
angle.

As said before, the cameras can be oriented to any
position, provided that the relative angles among the
cameras and the world coordinate center are known. A
different problem is that derived from inaccuracies in the
orientation angles of the cameras, due to calibration
errors. Then, we should analyze what happens when
there exists some sort of inaccuracy in the estimation of
the angles formed by the cameras. It was explained
previously that the testing structure is provided with
angular potentiometers, which allow the modification of
the pitch angle of the cameras with high precision.
Hence, these sensors have been used for modifying the
position of the cameras in the following way: camera 2
was moved one degree to the right, and camera 3 was
moved 2 degrees also to the right. In this way the relative
angles of the cameras were 0, 121 and 242 degrees,
respectively. Next, the equations were applied, consider-
ing the theoretical 2p/3 radians among them. The results
achieved by the system are illustrated in Table 2, and a
reconstruction of the path followed by the freight car is
shown in Figure 28.



Table 1. Computed and filtered angle measurements

Real y
Before filtering After filtering

(in radians) Computed y Dy Filtered y Dy

73.124139 73.115878 0.008261 73.125878 0.001739
73.106686 73.109911 0.003225 73.106718 0.000032
73.089233 73.085901 0.003332 73.092808 0.003576
73.071779 73.079807 0.008027 73.069802 0.001978
73.054326 73.059276 0.004950 73.054780 0.000454
73.036873 73.041431 0.004558 73.032440 0.004433
73.019420 73.019408 0.000012 73.020340 0.000920
73.001966 72.994984 0.006983 73.000084 0.001883
72.984513 72.995053 0.010540 72.982484 0.002029
72.967060 72.991344 0.024284 72.969146 0.002086
72.949606 72.972304 0.022697 72.957670 0.008063
72.932153 72.920355 0.011798 72.937554 0.005401
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On the other hand, we wanted to test the accuracy of
the system with respect to pixel noise due to inadequate
segmentation thresholds. With this purpose we have
computed the theoretical apparent area of the object,
measured from cameras 1, 2 and 3, and we have
introduced Gaussian noise with E[x(n)]=0 and var
[x(n)]=0.89, as shown in Figure 29. This noise has
the same distribution as pixel noise in imaging
systems.

Again, a reconstruction of the path followed by the
freight car is shown in Figure 30, expressed in polar
coordinates.

As we can see, the accuracy on the object position
decreases considerably with pixel noise, while it keeps
quite stable with small calibration errors.
Table 2. Computed and filtered radius measurements

Before filtering

Real r (cm) Computed r

40.5500 41.0339
40.5500 40.9036
40.5500 40.9312
40.5500 40.6789
40.5500 40.4819
40.5500 40.5974
40.5500 41.1886
40.5500 40.8985
40.5500 40.7780
40.5500 40.6549
40.5500 40.5601
40.5500 40.9075
A second test has been carried out by using a more
complex object than a sphere. Figure 30 shows a toy
train placed over the freight car. In this case, the exact
position of the cameras is unknown. The equations are
found through a calibration turn, in which the apparent
areas captured from every camera are stored. The
knowledge of the position of the freight car at every
time instant allows the representation of the functions
shown in Figure 31(b).

This set-up can be applied to any situation where the
object describes a repetitive motion, like a racing car in a
circuit, or industrial applications like detecting part
objects moving on a conveyor belt. In this case, the
calibration turn should be performed at a known
velocity in order to find the equations illustrated in
Figure 31(b). The resulting motion in illustrated in
Figure 32.
After filtering

Dr Filtered r Dr

0.4839 40.5181 0.0319
0.3536 40.5869 0.0369
0.3812 40.6443 0.0943
0.1289 40.6323 0.0823
0.0681 40.5814 0.0314
0.0474 40.5680 0.0180
0.6386 40.6858 0.1358
0.3485 40.7107 0.1607
0.2280 40.7000 0.1500
0.1049 40.6488 0.9888
0.0101 40.5804 0.0304
0.3575 40.6134 0.0634



Table 3. Quadratic error measurement

Before filtering After filtering

e2r e2� e2r e2�

0.28803677 0.39177788 0.06396748 0.15064421

Figure 28. Reconstruction of the train track with error in the
camera positions.
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Further Work and Conclusions

In this paper we have presented a new mathematical
procedure for finding the position of an object through a
mathematical modelization of a trinocular system, based
on the apparent area of the objects. The accuracy
achievable with this method depends largely on the
nature of the pixel noise present in the image after the
segmentation procedure. For this reason, a careful
image filtering and signal post-filtering have to be
performed. Due to the system’s geometry, the accuracy
of the method does not significantly decrease due to
small errors in the calibration parameters of the
cameras. A hardware processor has also been developed
for real-time tracking, through color segmentation,
image filtering and apparent area measurement. The
developed hardware can track up to 15 objects, as long
as they present well-defined and distinguishable chro-
matic characteristics. High-density programmable logic
devices (FPGAs) have been used as a flexible technology
for implementing real-time vision algorithms. The
system allows the use of high-speed digital cameras,
disabling the analog video converters and entering
digital video. The shape of the objects is indifferent to
the system, provided that they present the same
apparent area when they are placed at the same position
with respect to the camera. In order to prove the
accuracy of the trinocular system an experimental
platform has also been developed.

We have proposed a trinocular system where the
intrinsic parameters of the camera are not needed, and a
slight idea of the extrinsic parameters is enough for
estimating depth. It has been proved that a careful use of
filtering can help in performing measures without the
Table 4. Quadratic error measurement introducing camera
calibration errors

After filtering

e2r e2�

0.18120454 0.36240536
help of any matching points or structured light. The
obtained results show how real-time performance is
attained, since image processing is performed at video-
rate through a specialized hardware while post-proces-
sing (computation of the trinocular algorithm and the
subsequent filtering) is also achieved at video-rate by
means of a standard PC computer. As post-processing
can be realized more than enough in less than 20ms,
there is no need to run a real-time operating system on
the PC host.

The system is being tested in a racing circuit in order
to detect the instantaneous velocity of a motorbike rider
in a curved area. In this case, the tracked object was the
biker’s jacket, which has well-known hue and saturation
parameters. The biker was always approaching the static
Figure 29. Area measured from cameras 1, 2 and 3 artificially
affected with Gaussian noise.



Figure 30. Resulting train track, after adding Gaussian noise
to the apparent areas viewed from the three cameras.

Figure 31. (a) A more complex object is used to measure its
apparent area; (b) area measured from cameras 1, 2 and 3.
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cameras in the same position and orientation of his
body. Thus, we could establish a relationship between
the apparent area of the jacket and the position of the
vehicle. The most interesting parameters in this applica-
tion are deceleration and acceleration entering and
exiting the curves.

For testing purposes, we are also applying the system
to the robotic soccer competitions [25]. Here, the
problem to be solved is controlling several moving
robots playing soccer in an artificial field. There exist
several categories depending on the size of the robots
and the field [26]. In the medium and large size
categories, it is not possible to cover the whole field by
means of an overhead camera facing down. For this
reason, perception and computation has to be per-
formed on-board the robot. However, we are investigat-
ing the possibility of adapting our trinocular system in
order to have a global view of the ‘‘world’’, simplifying
the pose detection of the objects. It has been proved that
fast spatial sensing is very important for these kinds of
emulated competitions: the faster the spatial sensing, the
faster feedback loops for controlling robot movements,
and, thus, the better the team can play [27]. For this
reason, a real-time vision system suits this application
efficiently. Moreover, not only the ball can be tracked in
Table 5. Error measurement for the path reconstruction

After filtering

e2r e2�

0.7567615 1.6670101
an efficient manner, but the robots can be tracked also
by using the knowledge of their apparent area.

In the future, the system should be able to handle
occlusions. One possible solution goes through taking
into account the object dynamics, for instance using a
global KF. We are also concerned about the behavior of
Figure 32. Reconstructed train track.



Table 6. Error measurement for the reconstruction of the
path described by the toy train.

After filtering

e2r e2�

0.10364789 0.19074945
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our mathematical models when the objects move in 3D.
Thus, the scenario is being modified generating known
undulations on the tracks. In this way, the same testing
platform can simulate 3D motions, by means of gentle
curves and slopes. These vertical motions can be
detected by the different cameras as a displacement of
the object in the y axis of the image, and it can be
processed independently from the 2D variables (r, y).
Thus, finding the height is reduced to a simple
calibration problem, which is independently considered
for each camera. This calibration depends totally on the
computed distance between the object and each camera.

The possible applications of this system include
object-tracking tasks, where either high processing speed
is needed or video-rate performance is necessary.
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