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Abstract

Camera calibrating is a crucial problem for further metric scene measurement. Many techniques and some studies
concerning calibration have been presented in the last few years. However, it is still di1cult to go into details of a
determined calibrating technique and compare its accuracy with respect to other methods. Principally, this problem
emerges from the lack of a standardized notation and the existence of various methods of accuracy evaluation to choose
from. This article presents a detailed review of some of the most used calibrating techniques in which the principal
idea has been to present them all with the same notation. Furthermore, the techniques surveyed have been tested and
their accuracy evaluated. Comparative results are shown and discussed in the article. Moreover, code and results are
available in internet. ? 2002 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

Camera calibration is the ;rst step towards computa-
tional computer vision. Although some information con-
cerning the measuring of scenes can be obtained by using
uncalibrated cameras [1], calibration is essential when
metric information is required. The use of precisely cali-
brated cameras makes the measurement of distances in a
real world from their projections on the image plane pos-
sible [2,3]. Some applications of this capability include:

1. Dense reconstruction: Each image point determines
an optical ray passing through the focal point of the
camera towards the scene. The use of more than a
single view of a motionless scene (taken from a stereo-
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scopic system, a single moving camera, or even a
structured light emitter) permits crossing both opti-
cal rays to get the metric position of the 3D points
[4–6]. Obviously, the correspondence problem has
to be previously solved [7].

2. Visual inspection: Once a dense reconstruction of a
measuring object is obtained, the reconstructed object
can be compared with a stored model in order to de-
tect any manufacturing imperfections such as bumps,
dents or cracks. One potential application is visual in-
spection for quality control. Computerized visual in-
spection allows automatic and exhaustive examination
of products, as opposed to the slow human inspection
which usually implies a statistical approach [8].

3. Object localization: When considering various im-
age points from diHerent objects, the relative position
among these objects can be easily determined. This
has many possible applications such as in industrial
part assembly [9] and obstacle avoidance in robot nav-
igation [10,11], among others.
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4. Camera localization: When a camera is placed in the
hand of a robot arm or on a mobile robot, the position
and orientation of the camera can be computed by
locating some known landmarks in the scene. If these
measurements are stored, a temporal analysis allows
the handler to determine the trajectory of the robot.
This information can be used in robot control and path
planning [12–14].

Camera calibration is divided into two phases. First,
camera modelling deals with the mathematical approxi-
mation of the physical and optical behavior of the sensor
by using a set of parameters. The second phase of camera
calibration deals with the use of direct or iterative meth-
ods to estimate the values of these parameters. There are
two kinds of parameters in the model which have to be
considered. On the one hand, the intrinsic parameter set,
which models the internal geometry and optical charac-
teristics of the image sensor. Basically, intrinsic param-
eters determine how light is projected through the lens
onto the image plane of the sensor. The other set of pa-
rameters are the extrinsic ones. The extrinsic parameters
measure the position and orientation of the camera with
respect to a world coordinate system, which, in turn, pro-
vides metric information with respect to a user-;xed co-
ordinate system instead of the camera coordinate system.
Camera calibration can be classi;ed according to sev-

eral diHerent criteria. For instance, (1) Linear versus
non-linear camera calibration (usually diHerentiated
depending on the modelling of lens distortion) [15]. (2)
Intrinsic versus extrinsic camera calibration. Intrinsic
calibration is concerned only with obtaining the physical
and optical parameters of the camera [16,17]. Besides,
extrinsic calibration concerns the measurement of the po-
sition and orientation of the camera in the scene [18,19].
(3) Implicit [20] versus explicit [21] calibration. Implicit
calibration is the process of calibrating a camera without
explicitly computing its physical parameters. Although,
the results can be used for 3D measurement and the gen-
eration of image coordinates, they are useless for camera
modelling as the obtained parameters do not correspond
to the physical ones [22]. Finally, (4) the methods which
use known 3D points as a calibrating pattern [23,24] or
even a reduced set of 3D points [25,26], with respect to
others which use geometrical properties in the scene such
as vanishing lines [27] or other line features [28,29].
These diHerent approaches can also be classi;ed re-

garding the calibration method used to estimate the pa-
rameters of the camera model:

1. Non-linear optimization techniques. A calibrating
technique becomes non-linear when any kind of lens
imperfection is included in the camera model. In
that case, the camera parameters are usually obtained
through iteration with the constraint of minimizing
a determined function. The minimizing function is

usually the distance between the imaged points and
the modelled projections obtained by iterating. The
advantage of these iterating techniques is that almost
any model can be calibrated and accuracy usually
increases by increasing the number of iterations up
to convergence. However, these techniques require a
good initial guess in order to guarantee convergence.
Some examples are described in classic photogram-
metry [30] and Salvi [31].

2. Linear techniques which compute the transformation
matrix. These techniques use the least squares method
to obtain a transformation matrix which relates 3D
points with their 2D projections. The advantage here
is the simplicity of the model which consists in a sim-
ple and rapid calibration. One drawback is that linear
techniques are useless for lens distortion modelling,
entailing a rough accuracy of the system. Moreover,
it is sometimes di1cult to extract the parameters from
the matrix due to the implicit calibration used. Some
references related to linear calibration can be found in
Hall [20], Toscani-Faugeras [23,32] and Ito [15].

3. Two-step techniques. These techniques use a linear
optimization to compute some of the parameters and,
as a second step, the rest of the parameters are com-
puted iteratively. These techniques permit a rapid cali-
bration considerably reducing the number of iterations.
Moreover, the convergence is nearly guaranteed due
to the linear guess obtained in the ;rst step. Two-step
techniques make use of the advantages of the previ-
ously described methods. Some references are Tsai
[24], Weng [33] and Wei [22].

This article is a detailed survey of some of the most fre-
quently used calibrating techniques. The ;rst technique
was proposed by Hall in 1982 and is based on an implicit
linear camera calibration by computing the 3×4 transfor-
mation matrix which relates 3D object points with their
2D image projections [20]. The latter work of Faugeras,
proposed in 1986, was based on extracting the physi-
cal parameters of the camera from such a transformation
technique, thus it is explained as the second technique
[23,32]. The following methods are based on non-linear
explicit camera calibration, including the modelling of
lens distortion. Hence, the ;rst one is a simple adaptation
of the Faugeras linear method with the aim of including
radial lens distortion [31,34]. The widely used method
proposed by Tsai, which is based on a two-step tech-
nique modelling only radial lens distortion, is also de-
tailed [24]. Finally, the complete model of Weng, which
was proposed in 1992, including three diHerent types of
lens distortion, is explained as the last technique [33].
Note that one of the principal problems to understand
a calibrating technique in detail is the lack of notation
standardization in mathematical equations and the use
of diHerent sets of coordinate systems. Both limitations
complicate the comparing of techniques, thus a great deal
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Fig. 1. The geometric relation between a 3D object point and its 2D image projection.

of eHort has been made to present the survey using the
same notation. All ;ve techniques are explained herein
and their 2D and 3D accuracy shown and discussed. A
brief overview of camera accuracy evaluation [35] is in-
cluded with the aim of using the same tools to compare
diHerent calibrating techniques implemented.
This article is structured as follows. Section 2 deals

with camera modelling and how the camera model is
gradually obtained by a sequence of geometrical transfor-
mations is explained. Section 3 describes the ;ve diHer-
ent techniques of camera calibration, which estimate the
parameters of the camera model. Then, a few methods
for accuracy evaluation of camera calibrating techniques
are explained in Section 4. Finally, both 2D and 3D ac-
curacy of each calibration technique have been measured
and their results are shown and compared. The paper ends
with conclusions.

2. Camera model

A model is a mathematical formulation which approx-
imates the behavior of any physical device by using a set
of mathematical equations. Camera modelling is based
on approximating the internal geometry along with the
position and orientation of the camera in the scene. There
are several camera models to choose from depending on
the desired accuracy [15]. The simplest are based on lin-
ear transformations without modelling the lens distortion.

However, there are also some non-linear models which
accurately model the lens. These are useful for some ap-
plications where greater precision is required.
The simplest model is the one proposed by Hall [20].

The goal is to ;nd a linear relationship among the 3D
points of the scene with their 2D projecting points on the
image plane. This relationship is approximated by means
of a transformation matrix, 1 as shown in the equation.


 s IXds IYd

s


=


 A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34






WXw
WYw
WZw
1


 : (1)

Then, given a 3D point Pw, expressed with respect
to the metric world coordinate system (i.e. WPw), and
applying the transformation matrix proposed by Hall, the
2D point Pd in pixels with respect to the image coordinate
system is obtained, i.e. IPd=( IXd; IYd).
However, camera modelling is usually broken down

into 4 steps, as is detailed in the following list (see also
Fig. 1).

1. The ;rst step consists of relating point WPw from the
world coordinate system to the camera coordinate sys-
tem, obtaining CPw. This transformation is performed
by using a rotation matrix and a translation vector.

1 The appendix at the end of the paper details the used
nomenclature.
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2. Next, it is necessary to carry out the projection of point
CPw on the image plane obtaining point CPu, by using
a projective transformation.

3. The third step models the lens distortion, based on a
disparity with the real projection. Then, point CPu is
transformed to the real projection of CPd (which should
coincide with the points captured by the camera).

4. Finally, the last step consists of carrying out another
coordinate system transformation in order to change
from the metric coordinate system of the camera to
the image coordinate system of the computer in pixels,
obtaining IPd.

In the following, the diHerent camera models of
Faugeras–Toscani [32], Faugeras–Toscani with distor-
tion [34], Tsai [24] and Weng [33] are explained in detail
with attention on how they carry out the above four steps.

2.1. Changing from the world to the camera
coordinate system

Changing the world coordinate system to the camera
coordinate system is carried out in the same way in all the
surveyed models. This transformation is modelled using
a translation vector and a rotation matrix, as shown in
the equation.


CXw
CYw
CZw


= CRW




WXw
WYw
WZw


 + CTW : (2)

Then, given a point WPw related to the world coordi-
nate system, and applying Eq. (2), the point CPw in re-
lation to the camera coordinate system is obtained. Note
that CRW expresses the orientation of the world coordi-
nate system {W} with respect to the axis of the camera
coordinate system {C}, and that CTW expresses the po-
sition of the origin of the world coordinate system mea-
sured with respect to {C}.

2.2. Projection of the 3D point on the image plane

Consider that any optical sensor can be modelled as a
pinhole camera [2]. That is, the image plane is located at
a distance f from the optical center OC , and is parallel
to the plane de;ned by the coordinate axis XC and YC .
Moreover, given an object point ( CPw) related to the
camera coordinate system, if it is projected through the
focal point (OC), the optical ray intercepts the image
plane at the 2D image point ( CPu). This relation is shown
in the equation.

CXu=f
CXw
CZw

; CYu=f
CYw
CZw

: (3)

All the various models reviewed solved the projective
transformation by using the same Eq. (3).

2.3. Lens distortion

The third step is based on modelling the distortion
of the lenses. However, each model surveyed required
a diHerent approach. Eqs. (4) transform the undistorted
point CPu to the distorted point CPd, where �x and �y
represent the distortion involved.
CXu= CXd + �x;

CYu= CYd + �y: (4)

The camera model proposed by Faugeras and Toscani
[32] does not model the lens distortion, therefore, CPu
and CPd are the same point. In this case �x and �y are
zero, as shown in the equations.

�x=0; �y=0: (5)

The Faugeras–Toscani model however can be im-
proved by modelling the radial lens distortion [34]. Tsai
[24] has modelled distortion in the same way. As shown
in Eqs. (6), �x and �y represent the radial distortion [30].
This type of distortion is mainly caused by Lawed radial
curvature of the lens. See also [33].

�x= �xr ; �y= �yr: (6)

The displacement given by the radial distortion dr can
be modelled by Eqs. (7), which consider only k1 the ;rst
term of the radial distortion series. It has been proved
that the ;rst term of this series is su1cient to model the
radial distortion in most of the applications [24].

�xr = k1
CXd(

CX 2
d + CY 2

d ); �yr = k1
CYd(

CX 2
d + CY 2

d ):
(7)

The model of Weng [33] considers three types of dis-
tortion: radial distortion, decentering distortion and thin
prism distortion. The total distortion will be the sum of
these three distortions.

�x= �xr + �xd + �xp; �y= �yr + �yd + �yp: (8)

However, Weng proposed to model the lens distortion
from the undistorted image point ( CXu; CYu) instead of
the distorted one ( CXd; CYd). Although both approaches
can be considered, it also has to be taken into account
that the calibrating parameters will be diHerent. Hence,
Eqs. (4) have to be substituted by the equations.
CXd=

CXu + �x; CYd=
CYu + �y: (9)

The radial distortion is modelled in the same manner
Tsai proposed, except that Weng used the undistorted
points.

�xr = k1
CXu( CX 2

u + CY 2
u ); �yr = k1

CYu( CX 2
u + CY 2

u ):
(10)

The decentering distortion is due to the fact that the
optical center of the lens is not correctly aligned with
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the center of the camera [33]. This type of distortion
introduces a radial and tangential distortion [30], which
can be described by the following equations:

�xd=p1(3
CX 2

u + CY 2
u ) + 2p2

CXu CYu;

�yd=2p1
CXu CYu + p2(

CX 2
u + 3 CY 2

u ): (11)

The thin prism distortion arises from imperfection in
lens design and manufacturing as well as camera assem-
bly. This type of distortion can be modelled by adding
a thin prism to the optic system, causing radial and tan-
gential distortions [33]. This distortion is modelled by

�xp= s1(
CX 2

u + CY 2
u ); �yp= s2(

CX 2
u + CY 2

u ): (12)

By adding the three Eqs. (7), (11) and (12), and carry-
ing out the following variable replacement: g1 = s1 +p1;
g2 = s2+p2; g3 = 2p1 and g4 = 2p2, the following equa-
tions are obtained:

�x = (g1 + g3)
CX 2

u + g4
CXu CYu + g1

CY 2
u

+k1
CXu( CX 2

u + CY 2
u );

�y = g2
CX 2

u + g3
CXu CYu + (g2 + g4)

CY 2
u

+k1
CYu( CX 2

u + CY 2
u ): (13)

2.4. Changing from the camera image to the computer
image coordinate system

This ;nal step deals with expressing the CPd point with
respect to the computer image plane in pixels {I}. This
change of coordinates can be made in two diHerent ways
according to the camera models surveyed.
The camera model proposed by Faugeras–Toscani,

Faugeras–Toscani with distortion and by Weng use the
following equations to carry out such a transformation:
IXd=− ku CXd + u0; IYd=− kv CYd + v0; (14)

where (ku; kv) are the parameters that transform frommet-
ric measures with respect to the camera coordinate sys-
tem to pixels with respect to the computer image coordi-
nate system, and (u0; v0) are the components that de;ne
the projection of the focal point in the plane image in pix-
els, i.e. the principal point. They are used to determine
the translation between both coordinate systems.
The camera model of Tsai proposed other equations to

carry out the same transformation. These equations are
the following:
IXd=− sxd′−1C

x Xd + u0;
IYd=− dy −1CYd + v0; (15)

where (u0; v0) are the components of the principal point
in pixels, sx is the image scale factor, d′x=dxNcx=Nfx; dx
is the center to center distance between adjacent sen-
sor elements in the X direction, dy is the center to cen-
ter distance between adjacent sensor elements in the Y

direction, Ncx is the number of sensor elements in the X
direction, and Nfx is the number of pixels in an image
row as sampled by the computer.

3. Calibrating methods

The calibrating method depends on the model used to
approximate the behavior of the camera. The linear mod-
els, i.e. Hall and Faugeras–Toscani, use a least-squares
technique to obtain the parameters of the model. How-
ever, non-linear calibrating methods, as with Faugeras–
Toscani with distortion, Tsai and Weng, use a two-stage
technique. As a ;rst stage, they carry out a linear approx-
imation with the aim of obtaining an initial guess and
then a further iterative algorithm is used to optimize the
parameters. In this section, each calibrating method is
explained detailing the equations and the algorithm used
to calibrate the camera parameters.

3.1. The method of Hall

Themethod used to calibrate the model of Hall is based
on expressing Eq. (1) in the following form:

IXu=
A11

WXw + A12
WYw + A13

WZw + A14

A31
WXw + A32

WYw + A33
WZw + A34

;

IYu=
A21

WXw + A22
WYw + A23

WZw + A24

A31
WXw + A32

WYw + A33
WZw + A34

: (16)

By arranging the variables, the following expressions
are obtained:

0 = A11
WXw − A31

IXu WXw + A12
WYw

−A32
IXu WYw + A13

WZw − A33
IXu WZw

+A14 − A34
IXu;

0 = A21
WXw − A31

IYu WXw + A22
WYw

−A32
IYu WYw + A23

WZw − A33
IYu WZw

+A24 − A34
IYu: (17)

Finally, the unknowns Aij are arranged in a 12-
parameter vector (A), obtaining the following equation:

QA=0; (18)

where A is the vector of 12 unknowns of Eq. (19). Q
is a matrix of 2n×12 where n is the number of pair
points used to calibrate the camera. A pair of points is
formed by a 3D point expressed with respect to the world
coordinate system {W} and its 2D projection expressed
in coordinates from the image plane {I}.
A=(A11 A12 A13 A14 A21 A22 A23 A24 A31 A32 A33 A34 )

T:
(19)
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Each pair of points adds to the Q matrix the two
following rows:

Q2i−1 =




WXui
WYui
WZui
1

0

0

0

0

− IXui
WXwi

− IXui
WYwi

− IXui
WZwi

− IXui




T

; Q2i=




0

0

0

0
WXui
WYui
WZui
1

− IYui
WXwi

− IYui
WYwi

− IYui
WZwi

− IYui




T

:(20)

Consider then that the 3D position of a set of n cal-
ibrating points and their corresponding 2D projection
in the image are known (n should be bigger or equal
to 6). Moreover, consider without loss of generality
that A34 = 1. This approximation can be assumed since
the transformation matrix is de;ned up to a scale fac-
tor [2]. Then, all the elements of the A vector can be
obtained by using a linear least-squares technique as
the pseudo-inverse [20]. With the aim of applying the
pseudo-inverse, it becomes necessary to modify Eq. (18)
considering that A34 = 1, obtaining:

Q′A′=B′; (21)

where

A′=(A11 A12 A13 A14 A21 A22 A23 A24 A31 A32 A33 )
T (22)

and

Q′
2i−1 =




WXui
WYui
WZui
1

0

0

0

0

− IXui
WXwi

− IXui
WYwi

− IXui
WZwi




T

; Q′
2i=




0

0

0

0
WXui
WYui
WZui
1

− IYui
WXwi

− IYui
WYwi

− IYui
WZwi




T

:(23)

B′2i−1 = ( IXui); B′2i=( IYui): (24)

Finally, the vector of unknowns (A) is computed by
applying the pseudo-inverse shown in the following
equation:

A′=(Q′TQ′)−1Q′TB′: (25)

3.2. The method of Faugeras

In order to obtain the complete model of the cam-
era proposed by Faugeras and Toscani, it is neces-
sary to combine Eqs. (2)–(5) and (14), obtaining the
equations.

IXu=− kuf r11
WXw + r12 WYw + r13 WZw + tx

r31 WXw + r32 WYw + r33 WZw + tz
+ u0;

IYu=− kvf r21
WXw + r22 WYw + r23 WZw + ty

r31 WXw + r32 WYw + r33 WZw + tz
+ v0:

(26)

Note that Eqs. (26) can be expressed in a matricial
form in the following manner:


s IXds IYd

s


=

%u 0 u0 0

0 %v v0 0
0 0 1 0





r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz
0 0 0 1






WXw
WYw
WZw
1


 ;
(27)

where %u= − fku and %v= − fkv. Then, by computing
the product of both matrices, the transformation matrix
A is obtained.


 s IXds IYd

s


=


 %ur1 + u0r3 %utx + u0tz%vr2 + v0r3 %vty + v0tz

r3 tz






WXw
WYw
WZw
1


 :
(28)

A=


 %ur1 + u0r3 %utx + u0tz%vr2 + v0r3 %vty + v0tz

r3 tz


 : (29)

The camera parameters can be extracted from the
symbolic matrix (A) by equalling it to the numeric
matrix obtained by calibrating the camera with the
technique of Hall. Note that the orientation of the
vectors ri must be orthogonal and that it is also
known that the dot product between two vectors
is equal to the multiplication of their norms multi-
plied by the cosine of the angle they form. Using
these relationships, the four intrinsic parameters (%u;
%v; u0; v0) and the six extrinsic ones (r1; r2; r3; tx; ty; tz)
can be extracted from Eq. (29) in the following
manner:

u0 =A1A
T
3 ; v0 =A2A

T
3 ;

%u=− (A1A
T
1 − u20)1=2; %v=− (A2A

T
2 − v20)1=2;
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r1 =
1
%u

(A1 − u0A3); tx=
1
%u

(A14 − u0A34);

r2 =
1
%v
(A2 − v0A3); ty=

1
%v
(A24 − v0A34);

r3 =A3; tz =A34; (30)

where the numerical matrix A is

A=


 A1 A14

A2 A24

A3 A34


 : (31)

However, before estimating the camera parameters,
the A matrix has to be calculated. Faugeras proposed a
slightly diHerent method of estimating A from the one
proposed by Hall. Hence, the terms of Eq. (1) have been
rearranged in the following way:

A1
WPw + A14 − IXu(A3

WPw + A34)= 0;

A2
WPw + A24 − IYu(A3

WPw + A34)= 0: (32)

Both equations are then factorized with respect to the
unknowns, obtaining,

IXu=
A1

A34

WPw +
A14

A34
− A3

A34

WPw IXu;

IYu=
A2

A34

WPw +
A24

A34
− A3

A34

WPw IYu: (33)

At this point, a set of 5 parameters is considered
X =(T1; T2; T3; C1; C2)T; which are T1 =A1=A34; T2 =
A3=A34; T3 =A2=A34; C1 =A14=A34 and C2 =A24=A34.

IXu=T1
WPw + C1 − T2 WPw IXu;

IYu=T3
WPw + C2 − T2 WPw IYu: (34)

Then, the value of the vector X is obtained by using a
linear least-squares technique.

B=QX; (35)

where

Q =




· · ·
WPT

wi − IXui
WPT

wi 01x3 1 0
01x3 − IYui

WPT
wi

WPwi 0 1
· · ·


 ;

B=




· · ·
IXui
IYui
· · ·


 : (36)

Hence, vector X is computed using Eq. (35).

X =(QTQ)−1QTB: (37)

Finally, the camera parameters are extracted from X
by using Eq. (28).

T1 =
r3
tz
u0 +

r1
tz
%u; C1 = u0 +

tx
tz
%u;

T2 =
r3
tz
;

T3 =
r3
tz
v0 +

r2
tz
%v; C2 = v0 +

ty
tz
%v: (38)

At this point, it has to be considered that the norm
of the three orientation vectors ri is equal to unity by
de;nition. By using Eqs. (38), the parameter tz can then
be computed. Hence, considering r3 = 1;

tz =
1

||T2|| : (39)

The rest of the parameters can be obtained using the
properties of the dot product and the cross product be-
tween vectors, which are

v1v2 = ||v1|| ||v2||cos %; v1 ∧ v2 = ||v1|| ||v2||sin % (40)

so that,

rirTj =0; i 	= j; ri ∧ rj =1; i 	= j;
rirTj =1; i= j; ri ∧ rj =0; i= j: (41)

The intrinsic parameters can then be obtained in the
following way:

u0 =
T1TT

2

||T2||2 ; v0 =
T1TT

3

||T2||2 ;

%u=− ||TT
1 ∧ TT

2 ||
||T2||2 ; %v=− ||TT

2 ∧ TT
3 ||

||T2||2 : (42)

Moreover, the extrinsic parameters which model the ori-
entation are the following:

r1 =− ||T2||
||TT

1 ∧ TT
2 ||

(
T1 − T1TT

2

||T2||2 T2
)
;

r2 =− ||T2||
||TT

2 ∧ TT
3 ||

(
T3 − T2TT

3

||T2||2 T2
)
;

r3 =
T2

||T2|| : (43)

Finally, the extrinsic parameters that model the transla-
tion are also obtained from (38).

tx=− ||T2||
||TT

1 ∧ TT
2 ||

(
C1 − T1TT

2

||T2||2
)
;

ty=− ||T2||
||TT

2 ∧ TT
3 ||

(
C2 − T2TT

3

||T2||2
)
;

tz =
1

||T2|| : (44)
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By using the ri vectors in Eqs. (43), the rotation matrix
CRW is directly obtained. The three angles %; & and ' can
then be computed by equalling the symbolic rotation ma-
trix to the numeric matrix obtained by calibration. At this
point, all the parameters of the linear model of Faugeras
are obtained. These parameters determine the relation-
ship between the 3D object points with their projections,
as shown in Eq. (28). However, the model of Faugeras
can be more accurate if radial lens distortion is included.

3.3. The method of Faugeras with radial distortion

When a bright accuracy is necessary, the linear method
of Faugeras becomes useless. However, it can be easily
modi;ed by including the radial lens distortion as it has
been shown in Section 2.3. However, the equations be-
come non-linear, and the linear least-squares technique
has to be replaced by an iterative algorithm.
Note that by combining Eqs. (2)–(4), (6) and (7), the

following equations are obtained:

CXd +
CXdk1r

2 = f
r11 WXw + r12 WYw + r13 WZw + tx
r31 WXw + r32 WYw + r33 WZw + tz

;

CYd +
CYdk1r

2 = f
r21 WXw + r22 WYw + r23 WZw + ty
r31 WXw + r32 WYw + r33 WZw + tz

;

r =
√

CX 2
d + CY 2

d : (45)

Moreover, Eqs. (14) have to be used to transform
from metric coordinates to pixels, Then, Eq. (46) de;nes
the vector of unknowns which can be computed by us-
ing an iterative method as, for instance, the method of
Newton-Raphson or Levenberg-Marquardt, among oth-
ers [36].

x=(%; &; '; tx; ty; tz ; ku; kv; u0; v0; k1)
T: (46)

For example, the general method of Newton-Raphson
minimizes the following equation:

G(xk) ≈ G(xk−1) + JNxk ; (47)

where x is the unknown vector, G(x) is the minimization
function, G(xk) is a value close to the solution, and J
represents the jacobian matrix of the function G(x). With
the aim of ;nding a solution of Nxk ; it is necessary to
equal G(xk) to zero.

G(xk)=0: (48)

Note that one of the problems of convergence in itera-
tive algorithms is the initial guess. However, an initial
guess can be obtained by calibrating the linear method
of Faugeras–Toscani without including lens distortion,
and assuming k1 = 0. Moreover, the diHerence between
the initial value and the estimated parameters will be the

error of the function. For each iteration it is necessary
to calculate the value of Nxk to know the new value
of x.

JNxk =− G(xk−1): (49)

By, applying Eqs. (45) and (14), and passing all the
terms from the equality to the same side, functions U (x)
and V (x) are de;ned.

U (x) =f
r11 WXw + r12 WYw + r13 WZw + tx
r31 WXw + r32 WYw + r33 WZw + tz

− ( IXd − u0)
−ku

− k1
((

( IXd − u0)
−ku

)2
+
(
( IYd − v0)

−kv

)2)

· ( IXd − u0)
−ku ;

V (x) =f
r21 WXw + r22 WYw + r23 WZw + ty
r31 WXw + r32 WYw + r33 WZw + tz

− ( IYd − v0)
−kv

− k1
((

( IXd − u0)
−ku

)2
+
(
( IYd − v0)

−kv

)2)

· ( IYd − v0)
−kv : (50)

In continuation, with the aim of solving the system,
it is necessary to apply Eqs. (50) to the n calibrating
points. However, in order to apply Eq. (49), it is nec-
essary to get the symbolic function G(x) and its partial
derivative matrix J , as it is shown in the following
equations:

G(xk−1)=



U1(xk−1)

V1(xk−1)
...

Vn(xk−1)


 : (51)

J =




9U1(xk−1)
9%

9U1(xk−1)
9& · · · 9U1(xk−1)

9k1
9V1(xk−1)

9%
9V1(xk−1)

9& · · · 9V1(xk−1)
9k1

...
...

. . .
...

9Vn(xk−1)
9%

9Vn(xk−1)
9& · · · 9Vn(xk−1)

9k1



: (52)

Finally, the parameters of the model are obtained by
applying the pseudo-inverse of Eqs. (53) in each itera-
tion. The more iterations done, the higher the accuracy
obtained until convergence is achieved.

Nxk =− (J TJ )−1J TG(xk−1);

xk = xk−1 + Nxk : (53)
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Fig. 2. Illustration of the radial alignment constraint [24].

3.4. The method of Tsai

The non-linear method of Faugeras was based on ;x-
ing the initial guess without considering lens distortion.
Moreover, a large number of iterations are usually nec-
essary to obtain an accurate value of the camera parame-
ters. The method of Tsai [24] also models the radial lens
distortion but assumes that there are some parameters of
the camera which are provided by manufacturers. This
fact reduces the number of calibrating parameters in the
;rst step where an initial guess is estimated. Moreover,
although all the parameters are iteratively optimized in
the last step, the number of iterations is considerably re-
duced by using the calibrating algorithm proposed by
Tsai.
Firstly, by combining Eqs. (2)–(4), (6) and (7), Eqs.

(45) are obtained. Note that at this point model of Tsai
is equivalent to the previous model of Faugeras with
distortion (45).
Once CX ′

d and CY ′
d are obtained in metric coordinates

by using Eq. (15), they can be expressed in pixels IXd
and IYd and the following equations are obtained:

CX ′
di=− ( IXdi − u0)d′x; CY ′

di=− ( IYdi − v0)dy; (54)

where

CX ′
di=

CXdisx;
CY ′
di=

CYdi: (55)

It is necessary therefore to ;nd a relationship between
the image point Pd (in metric coordinates) with respect
to the object point Pw. Fig. 2 shows how the radial dis-
tortion aHects the camera model. It can be observed that
the segment ORPd is parallel to the segment PozPw. Con-
sidering this constraint, the following relationship is es-
tablished:

ORPd==PozPw ⇒ ORPd × PozPw=0: (56)

By using Eq. (56), the following equations are ob-
tained:

ORPd × PozPw=0; (57)

( CXd;
CYd)× ( CXw; CYw)=0; (58)

CXd
CYw − CYd

CXw=0: (59)

Eq. (59) can be arranged expressing the object point
Pw with respect to the world coordinate system, instead
of expressing it with respect to the camera coordinate
system.

CXd(r21
WXw + r22

WYw + r23
WZw + ty)

= CYd(r11
WXw + r12

WYw + r13
WZw + tx): (60)
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Operating Eq. (60) and arranging the terms,

CXd =
CYd

WXw
r11
ty

+ CYd
WYw

r12
ty

+ CYd
WZw

r13
ty

+ CYd
tx
ty

− CXd
WXw

r21
ty

− CXd
WYw

r22
ty

+ CXd
WZw

r23
ty
: (61)

In order to compute Eq. (61) for the n points obtained
from Eqs. (54), it is necessary to combine Eq. (61) with
the Eqs. (55), obtaining,

CX ′
di =

CY ′
di
WXwi

sxr11
ty

+ CY ′
di
WYwi

sxr12
ty

+ CY ′
di
WZwi

sxr13
ty

+ CY ′
di
sxtx
ty

− CX ′
di
WXwi

r21
ty

− CX ′
di
WYwi

r22
ty

+ CX ′
di
WZwi

r23
ty
: (62)

At this point, a system with n equations and 7 un-
knowns is obtained, which can be expressed in the fol-
lowing form:


CY ′
di
WXwi

CY ′
di
WYwi

CY ′
di
WZwi

CY ′
di

− CX ′
di
WXwi

− CX ′
di
WYwi

− CX ′
di
WZwi




T


t−1
y sxr11

t−1
y sxr12

t−1
y sxr13

t−1
y sxtx

t−1
y sxr21

t−1
y sxr22

t−1
y sxr23




= CX ′
di: (63)

In order to simplify the notation, the 7 unknown com-
ponents of the vector can be renamed ai.

a1 = t
−1
y sxr11; a5 = t

−1
y r21;

a2 = t
−1
y sxr12; a6 = t

−1
y r22;

a3 = t
−1
y sxr13; a7 = t

−1
y r23;

a4 = t
−1
y sxtx: (64)

Note that the ai components can be easily computed
by using a least-squares technique. Therefore, the point
of interest is to extract the calibrating parameters of the
camera from these ai components. First ty can be obtained
by using Eqs. (64) in the following manner:

ty=
||r2||

||a5;6;7|| (65)

and Eq. (65) is simpli;ed because the norm of
the vector r2 is equal to the unity, obtaining the

parameter ty.

|ty|= 1√
a25 + a

2
6 + a

2
7

: (66)

However, Eq. (66) is insu1cient since it does not pro-
vide the sign of the ty component. In order to determine
this sign, a point ( IXd; IYd) located at the periphery of
the image, far from the center, is taken from the set of
test points (its corresponding 3D point is also kept). It
is then supposed that the ty sign is positive, and the fol-
lowing equations are computed:

r11 = a1ty=sx; r21 = a5ty;

r12 = a2ty=sx; r22 = a6ty;

r13 = a3ty=sx; r23 = a7ty;

tx= a4ty: (67)

By using the corresponding 3D point (WXw; WYw; WZw),
the linear projection of this 3D point on the image plane
(sans lens distortion) can be computed by using the
equations

CXu= r11
WXw + r12

WYw + r13
WZw + tx;

CYu= r21
WXw + r22

WYw + r23
WZw + ty: (68)

At this point the ty sign can be veri;ed. If both com-
ponents of the point ( CXu; CYu) have the same sign as the
point ( IXd; IYd), it means that the ty sign was correctly
chosen as positive. Otherwise, it has to be considered
negative.
The second parameter to be extracted is the scale fac-

tor (sx). Note that by arranging Eqs. (64), the following
equation is obtained:

sx=
||a1;2;3||ty

||r1|| ; (69)

where it is known that the norm of r1 is the unity and
the scale factor is always positive. Then, sx is obtained
by using the equation.

sx=
√
a21 + a

2
2 + a

2
3|ty|: (70)

Furthermore, the 2D points, with respect to the camera
coordinate system ( CXd; CYd), can be computed from the
same point with respect to the image coordinate system,
that is ( IXd; IYd), by using Eqs. (55). Moreover, by using
Eqs. (67) the r1 and r2 vectors of the rotation matrix CRW,
and the ;rst element of the translation vector CYW, i.e.
tx, can be calculated. Nevertheless, the third orientation
vector (r3) can be computed by a cross product between
r1 and r2 because of the property of orthogonality, (note
also that the determinant of any rotation matrix is the
unity, i.e. | CRW|=1). At this point, the ;rst three steps
of the method of Tsai are completed, see Fig. 3.
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Compute image co-ordinate
CXd and CYd

Compute from a1 until a7

Compute CRW, tx and ty

Compute of an approxi-
mation of f and tz position

Compute the exactly
solution for f, tz and k1

Compute 3D orientation,
position ( tx and ty)

and scale factor

Compute effective focal
 length f, distortion

coefficients k1 and tz position

Non-linear full
optimitzation

Parameters
optimitzation

Fig. 3. Flowchart of the method of Tsai.

However, the following parameters are still unknown:
the focal distance (f), the radial lens distortion coe1-
cient (k1), and the translation of the camera with respect
to the Z axis (tz). In order to compute these last three
parameters, a linear approximation is ;rst used without
considering the k1 parameter. The linear approximation
is shown in Eq. (71), which was obtained from Eqs. (45).

(r21
WXwi + r22

WYwi + r23
WZwi + ty − CYd)

(
f
tz

)

=(r31
WXwi + r32

WYwi + r33
WZwi) CYd: (71)

Eq. (71) has now been applied to the whole set of
test points, obtaining a system of n equations and two
unknowns. The linear approximation of both unknowns,
f and tz ; is obtained by using a pseudo-inverse. However,
in order to calculate a better approximation including the
k1 parameter, it is necessary to iterate Eqs. (45) by using
an optimization method considering the linear method
with k1 = 0 as an initial solution.
Finally, all the parameters are optimized iteratively

with the aim of obtaining an accurate solution. The entire
process is explained in Fig. 3.

3.5. The method of Weng

The method of Tsai is based on modelling radial lens
distortion. The accuracy obtained by Tsai is su1cient
for most applications. However, in some cases where the
camera lens needs to be accurately modelled, a simple
radial approximation is not su1cient. In such situations,

Linear optimization

'
min ' ' '

W
A W B+

Orthonormal R

Non-linear optimitzation

min
d

Qd C+
Linear optimization

Non-linear optimitzation

Terminate?

m

m

m

,m d

,m d

,m d

,m d

No

Yes

( )min ,0
m

G m

( )min ,
m

G m d

~

Fig. 4. Flowchart of the method of Weng [33].

Weng [33] modi;es the model proposed by Faugeras–
Toscani [32] including up to three types of lens distortion,
as has been explained in Section 2.3. This fact increases
the number of steps needed to calibrate the camera. A
Lowchart of the entire process is detailed in Fig. 4.
The ;rst step is to obtain the complete model of Weng.

However, Weng proposes to simplify the equations by
introducing a variable substitution. Hence, equalling Eqs.
(9) and (14), the following equations are obtained:
CXu + �x( CXu; CYu)= ( IXd − u0)= − ku;
CYu + �y( CXu; CYu)= ( IYd − v0)= − kv: (72)

At this point, two new unknowns are introduced, in
the following manner:
CX̂ d=( IXd − u0)=%u; CŶ d=( IXd − v0)=%v: (73)

A substitution is then applied to simplify Eqs. (72),
obtaining the equations
CXu
f

= CX̂ d − �x( CXu; CYu)
f

;

CYu
f

= CŶ d − �y( CXu; CYu)
f

: (74)
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This replacement of unknowns is necessary because
the value of ( CXu; CYu) cannot be obtained by observa-
tion. This fact makes it necessary to compute the dis-
tortion from the observed points after representing them
with respect to the camera coordinate system, that is from
( CX̂ d; CŶ d) [30,33]. This replacement is reasonable be-
cause the distortion on the image plane suHered by the
point ( CXu; CYu) is approximately equal to the distor-
tion suHered by the point ( CX̂ d; CŶ d). Therefore, the dis-
tortion coe1cients in �′x and �′y will be estimated from
( CX̂ d; CŶ d); instead of �x and �y; which was estimated
from ( CXu; CYu). As a result, the equations which relate
distorted to undistorted points are the following:

CXu
f

= CX̂ d + �
′
x(
CX̂ d;

CŶ d);

CYu
f

= CŶ d + �
′
y(

CX̂ d;
CŶ d): (75)

Finally, rede;ning the coe1cients k1 and g1 up to g4;
and combining Eqs. (2), (3) and (75) the complete cam-
era model is obtained,

r11 WXw+r12 WYw+r13 WZw+tx
r31 WXw+r32 WYw+r33 WZw+tz

= CX̂ d+(g1 + g3)
CX̂

2
d

+g4
CX̂ d

CŶ d + g1
CŶ

2
d + k1

CX̂ d(
CX̂

2
d +

CŶ
2
d);

r21 WXw + r22 WYw + r23 WZw + ty
r31 WXw + r32 WYw + r33 WZw + tz

= CŶ d + g2
CX̂ d

+g3
CX̂ d

CŶ d + (g2 + g4)
CŶ

2
d + k1

CŶ d(
CX̂

2
d +

CŶ
2
d):

(76)

In order to be able to calibrate all the parameters of the
model, Weng proposes to obtain a ;rst approximation of
the linear parameters, i.e. the extrinsic and intrinsic pa-
rameters without distortion. The m vector is now de;ned
containing these linear parameters.

m=(u0; v0; %u; %v; tx; ty; tz ; %; &; ')
T: (77)

Furthermore, the non-linear parameters which model
the lens de;ne a new vector d.

d=(k1; g1; g2; g3; g4)
T: (78)

Moreover, the calibration is based on the 3D test points
and their projections. Let us call F the camera model, 0
the set of 3D points, and ! the set of their projections.
Then, the calibration problem is the same as optimizing
the parameters (m∗; d∗) which minimize the equation F
by using both sets of test points.

F(0;!;m∗; d∗)=min
m;d

F(0;!;m; d): (79)

This problem of optimization can be solved by using
a non-linear method, in the following manner:

1. Fix d=0.
2. Calculate m; which minimizes F by ;xing d; that is:

minm F(0;!;m; d)
3. Calculate d; which minimizes F by ;xing m; that is:

mind F(0;!;m; d)
4. Return to step 2 until the minimization error is su1-

ciently tolerable.

This method of optimization is used to solve diverse
problems. First, the vector d can be coupled with mmak-
ing the minimization of F false. Second, the intrinsic pa-
rameters cannot be optimized until a su1cient approx-
imation of the extrinsic parameters is achieved. Third,
since m corresponds to an approximation of the linear
parameters, it cannot be the best solution if a signi;cant
distortion is presented.
With the aim of obtaining a good estimation of m with

a non-linear optimization method, it is necessary to ob-
tain an initial guess before iterating. Therefore, the ini-
tial guess is calculated supposing d=0. Then, the model
of Weng removing distortion, see Eqs. (74), is applied
to the n calibrating points, obtaining 2n equations of the
form:

( IXui − u0)WXwi r31 + ( IXui − u0)WYwi r32
+( IXui − u0)WZwi r33 + ( IXui − u0)tz − %u WXwi r11

−%u WYwi r12 − %u WZwi r13 − %utx=0;

( IYui − v0)WXwi r31 + ( IYui − v0)WYwi r32
+( IYui − v0)WZwi r33 + ( IYui − v0)tz − %v WXwi r21

−%v WYwi r22 − %v WZwi r23 − %vty=0: (80)

By using Eqs. (80), all the m parameters can be
calculated. As the m vector has 10 unknowns, it is
necessary to use at least 5 test points. Nevertheless, a
large number of points is used in order to obtain a more
accurate solution. The following parameters are then
de;ned:

W1 = %ur1 + u0r3; w4 = %utx + u0tz ;

W2 = %vr2 + v0r3; w5 = %vty + v0tz ;

W3 = r3; w6 = tz ; (81)

where the vectors r1; r2 and r3 correspond to each
row of the matrix CRW; respectively. Moreover, the
set of Eqs. (80) is expressed in matricial form
as

AW =0; (82)
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where A is a matrix with 2n rows and 12 columns.

A=




−WPT
w1 01x3

IXu1
WPT

w1 −1 0 IXu1

01x3 −WPT
w1

IYu1
WPT

w1 0 −1 IYu1
...

...
...

...
...

...

−WPT
wn 01x3

IXun
WPT

wn −1 0 IXun

01x3 −WPT
wn

IYun
WPT

wn 0 −1 IYun



: (83)

However, the vector W =(W1; W2; W3; w4; w5; w6)T

cannot be directly calculated because of the homogene-
ity of the system, which deals with multiple solutions.
However, only one of these potential solutions satis;es
the following conditions: (a) The norm of the W3 vector
has to be the unity because it is the third row of the
rotation matrix; (b) The w6 sign has to coincide with the
position of the optical center with respect to the image
plane: positive if the z-axis intersects the image plane,
and negative if otherwise.
With the aim of avoiding the homogeneity of the sys-

tem of Eq. (82), it is necessary to impose the following
temporary restriction:

w6 = tz =1: (84)

Hence, Eq. (82) is modi;ed, obtaining

A′W ′ + B′=0; (85)

where A′ is the ;rst 11 columns of the A matrix, B′ is the
last column of A and W ′ is a vector of the 11 unknowns,
i.e. W ′=(W1; W2; W3; w4; w5). Then, W ′ is computed by
using the pseudo-inverse,

W ′=(A′TA′)−1A′T(−B′): (86)

At this point, W ′ is the solution of the system shown
in Eq. (85). However, in order to be a solution of Eq.
(82) as well, it has to accomplish the two constraints.
Therefore, the solution is divided by ||W3||, which forces
the norm of W3 to be the unity, and replaces the w6 sign
if necessary. See the equation.

S =




S1
S2
S3
s4
s5
s6




=± 1
||W3||




W1

W2

W3

w4

w5

w6



: (87)

Moreover, knowing that the vectors r1; r2 and r3 are
orthogonal, Eqs. (81) can be applied to obtain a ;rst
approximation of the m vector.

u 0 = S
T
1 S3; Pv0 = S

T
2 S3;

P%u=− ||S1 − u 0S3||; P%v=− ||S2 − Pv0S3||;
Ptx=(s4 − u 0s6)= P%u; Pr1 = (S1 − u 0S3)= P%u;

Pty=(s5 − Pv0s6)= P%v; Pr2 = (S2 − Pv0S3)= P%v;

Ptz = s6; Pr3 = S3: (88)

However, this ;rst approximation does not imply that
the matrix C PRW is orthonormal. The next step consists of
calculating the orthonormal matrix CR̃W. The ;rst step is
to verify,

|| CR̃W− C PRW ||=min
CRW

|| C PRW− CRW ||: (89)

With the aim of solving Eq. (89), it is rewritten in-
cluding a 3× 3 identity matrix I .

|| CR̃WI − C PRW ||=min
CRW

|| C PRW− CRW ||: (90)

A 4× 4 matrix B is then de;ned

B=
3∑
i=1

BT
i Bi; (91)

where

Bi=

(
0 (ii − Pri)T

Pri − ii ( Pri + ii)×

)
(92)

and where I =(i1; i2; i3)T, and (x; y; z)× is the antisym-
metric matrix of the vector (x; y; z), that is

(x; y; z)×=


 0 −z y

z 0 −x
−y x 0


 : (93)

The vector q=(q0; q1; q2; q3)T is then obtained by cal-
culating the eigenvalues associated with matrix B; where
qi is an eigenvalue and qi6 qi+1. Finally, the solution of
the matrix CR̃W is shown in the following equation:
CR̃W=

q20 + q

2
1−q22−q23 2(q1q2−q0q3) 2(q1q3 + q0q2)

2(q2q1 + q0q3) q
2
0−q21 + q22−q23 2(q2q3−q0q1)

2(q3q1 + q0q2) 2(q3q2 + q0q1) q
2
0−q21−q22 + q23


 :

(94)

With the orthonormal rotation matrix, the rest of the pa-
rameters are recalculated once more, obtaining:

ũ 0 = S
T
1 r̃3; ṽ0 = S

T
2 r̃3;

%̃u=− ||S1 − ũ 0r̃3||; %̃v=− ||S2 − ṽ0r̃3||;
t̃x=(s4 − ũ 0s6)=%̃u;

t̃y=(s5 − ṽ0s6)=%̃v;
t̃z = Ptz : (95)

An iterative method is then used to recalculate, for
the third time, the values of m, assuming zero distortion.
Finally, a two-stage iterative method is used. In the ;rst
stage, the parameters of d are linearly obtained by using
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least-squares. The second stage computes the values of
m iteratively. These stages are repeated as many times as
needed depending on the desired accuracy.

3.5.1. Stage of non-linear optimization of m by
@xing d.
The camera model of Weng is expressed in Eq. (96),

see also Eqs. (76).

U (x) =
r11 WXw + r12 WYw + r13 WZw + tx
r31 WXw + r32 WYw + r33 WZw + tz

− CX̂ d − (g1 + g3)
CX̂

2
d − g4 CX̂ d CŶ d − g1 CŶ 2

d

−k1 CX̂ d( CX̂ 2
d +

CŶ
2
d);

V (x) =
r21 WXw + r22 WYw + r23 WZw + ty
r31 WXw + r32 WYw + r33 WZw + tz

− CŶ d − g2 CX̂ 2
d − g3 CX̂ d CŶ d − (g2 + g4)

CŶ
2
d

−k1 CŶ d( CX̂ 2
d +

CŶ
2
d): (96)

Eq. (97) shows the function of minimization that has
to be used in optimization.
n∑
i=1

{( IXdi − IXdi(m; d))
2 + ( IYdi − IYdi(m; d))

2}: (97)

At this point any optimization algorithm such as
Newton-Raphson or Levenberg-Marquardt can be used
to optimize Eqs. (96).

3.5.2. Stage of linear optimization of d by @xing m
Note that by arranging Eqs. (14) and (76), the equa-

tions which have to be optimized become linear. There-
fore, they can be optimized by using the pseudo-inverse
technique. The linear equations obtained are the follow-
ing:

IXd(m; d)− IXd= u0 + %u
CX̂ d − IXd

= u0 + %u

(
r11 WXw + r12 WYw + r13 WZw + tx
r31 WXw + r32 WYw + r33 WZw + tz

− (g1 + g3)
CX̂

2
d − g4 CX̂ d CŶ d − g1 CŶ 2

d

−k1 CX̂ d( CX̂ 2
d +

CŶ
2
d)

)
− IXd;

IYd(m; d)− IYd= v0 + %v
CŶ d − IYd

= v0 + %v
(
r21 WXw + r22 WYw + r23 WZw + ty
r31 WXw + r32 WYw + r33 WZw + tz

− g2 CX̂ 2
d − g3 CX̂ d CŶ d − (g2 + g4)

CŶ
2
d

−k1 CŶ d( CX̂ 2
d +

CŶ
2
d)
)
− IYd; (98)

where the function to minimize is expressed in the
equation

min
d

||Qd+ C||; (99)

where

C=




u0 + %u
(
r11

WXw1+r12
WYw1+r13

WZw1+tx

r31 WXw1+r32
WYw1+r33

WZw1+tz

)
− IXd1

v0 + %v
(
r21

WXw1+r22
WYw1+r23

WZw1+ty

r31 WXw1+r32
WYw1+r33

WZw1+tz

)
− IYd1

...

u0 + %u
(
r11

WXwn+r12
WYwn+r13

WZwn+tx

r31 WXwn+r32
WYwn+r33

WZwn+tz

)
− IXdn

v0 + %v
(
r21

WXwn+r22
WYwn+r23

WZwn+ty

r31 WXwn+r32
WYwn+r33

WZwn+tz

)
− IYdn




:

(100)

Q=




−%u CX̂ d1 ( CX̂
2
d1 +

CŶ
2
d1 ) −%u( CX̂ 2

d1 +
CŶ

2
d1 )

−%v CŶ d1 ( CX̂
2
d1 +

CŶ
2
d1 ) 0

...
...

−%u CX̂ dn( CX̂
2
dn +

CŶ
2
dn) −%u( CX̂ 2

dn +
CŶ

2
dn)

−%v CŶ dn( CX̂
2
dn +

CŶ
2
dn) 0

0 −%u CX̂ d1 −%u CX̂ d1 CŶ d1
−%v( CX̂ 2

d1 +
CŶ

2
d1 ) −%v CX̂ d1 CŶ d1 −%v CŶ d1

...
...

...

0 −%u CX̂ dn −%u CX̂ dn CŶ dn
−%v( CX̂ 2

dn +
CŶ

2
dn) −%v CX̂ dn CŶ dn −%v CŶ dn



:

(101)

The solution for d can now be obtained by using the
pseudo-inverse in the following way.

d=− (QTQ)−1QTC: (102)

4. Accuracy evaluation

The systems used to evaluate the accuracy of camera
calibration can be classi;ed in two groups. The ;rst group
is based on analyzing the discrepancy between the real
position of the 3D object point with respect to the 3D
position estimated from its 2D projection. The second
group compares the real position in pixels of a 2D image
point with the calculated projection of the 3D object point
on the image plane. In the following text, some of the
most frequently used methods of accuracy evaluation are
described.
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4.1. 3D measurement

1. 3D position obtained from stereo triangulation. In the
;rst step, two images are acquired from a set of 3D test
points whose 3D coordinates are known. In the second,
the estimated 3D coordinates of the same points are
computed from their projections using the calibrated
parameters. Finally, the discrepancy between real and
estimated positions is compared.

2. Radius of ambiguity in the calibrating plane. First,
a set of 3D test points, which lay on test plane and
whose coordinates in the world coordinate system are
known, is acquired. Second, for each image point, the
calibrated model is used to project the optical ray back
from the focal point through the 2D projection. The
transverse of the optical ray with the test plane deter-
mines the intersection point. The distance from the 3D
test point to this intersection point de;nes a radius of
ambiguity around the 3D point.

3. Distance with respect to the optical ray. This method
is a generalization of the previous method. In this case,
the discrepancy to be measured is the distance of the
3D test points from the optical ray generated from their
projections.

4. Normalized Stereo Calibration Error (NSCE) [33].
The array of pixels in an image is projected back to
the scene so that each back-projected pixel covers a
certain area of the object surface. This area indicates
the uncertainty of the basic resolution at this distance.
The orientation of the surface has been ;tted to a plane
which is orthogonal to the optical axis. Let the depth
of this plane be equal to CZw, and the row and col-
umn focal lengths be %u and %v. The back projection
of the pixel on this plane is a rectangle of a× b size.
Let the real coordinates of the ith 3D object points
( CXwi; CYwi; CZwi) be represented in the camera co-
ordinate system, and let its coordinates obtained by
back-projecting the pixel and intersecting it with the
surface plane ( CX̂ wi; CŶ wi; CẐwi) be also represented
in the camera coordinate system. With these given, the
NSCE is de;ned as

NSCE=
1
n

n∑
i=1

[
( CX̂ wi− CXwi)2+( CŶ wi− CYwi)2

CẐ
2
wi(%−2

u +%−2
v )=12

]1=2
:

(103)

4.2. 2D measurement

1. Accuracy of distorted image coordinates. First, take
an image of a set of 3D test points. Then, calculate
the 2D position of each 3D point on the image plane,
taking into account lens distortion. Accuracy is ob-
tained by measuring the discrepancy between the real
2D points (obtained from image segmentation) and the
estimated ones (obtained by using the camera model).

Table 1
Accuracy of 3D coordinate measurement

3D position (mm) NSCE

Mean 6 Max

Hall 0.1615 0.1028 0.5634 n=a
Faugeras 0.1811 0.1357 0.8707 0.6555
Faugeras NR1 without 0.1404 0.9412 0.0116 0.6784

distortion
Faugeras NR with 0.0566 0.0307 0.1694 0.2042

distortion
Tsai 0.1236 0.0684 0.4029 0.4468
Tsai optimized 0.0565 0.0306 0.1578 0.2037
Tsai with principal 0.0593 0.0313 0.1545 0.2137

point of Tsai optimized
Tsai optimized with 0.0564 0.0305 0.1626 0.2033

principal point of Tsai
optimized

Weng 0.0570 0.0305 0.1696 0.2064
1Newton-Raphson.

2. Accuracy of undistorted image coordinates. First,
take an image of a set of 3D test points. Calculate
the linear projection of the 3D points on the image
plane, without taking lens distortion into account.
Continue by determining the real 2D points through
image segmentation and remove the lens distortion by
using the camera model to obtain a set of undistorted
points. Finally, accuracy is obtained by measuring the
discrepancy between the linear projections and the
undistorted points.

5. Experimental results

Instead of using our own experimental setup, we
decided to download a list of corresponding points
from the well-known Tsai’s Camera Calibration
Software Webpage (http:==www.cs.cmu.edu=∼ rgw=
TsaiCode.html). Actually, results are always condi-
tioned to the structure of the 3D points and the image
processing tools used in segmentation and further points
extraction. Hence, this decision was just taken to allow
the scienti;c community to reproduce the same condi-
tions. Then, the surveyed calibrating techniques have
been implemented and their accuracy measured using
the following criteria: (a) Distance with respect to the
optical ray; (b) Normalized Stereo Calibration Error;
(c) Accuracy of distorted image coordinates; and (d)
Accuracy of undistorted image coordinates.
The ;rst two criteria calculate the accuracy with re-

spect to a world coordinate system. The other two cal-
culate the discrepancy on the image plane. First, Table 1
shows the accuracy measured by using the ;rst criteria
and the second criteria, respectively. Note that the NSCE
method is not applicable to Hall because the method of
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Table 2
Accuracy of 2D coordinate measurement

2D distorted image (pix.) 2D undistorted image (pix.)

Mean 6 Max Mean 6 Max

Hall 0.2676 0.1979 1.2701 0.2676 0.1979 1.2701
Faugeras 0.2689 0.1997 1.2377 0.2689 0.1997 1.2377
Faugeras NR without distortion 0.2770 0.2046 1.3692 0.2770 0.2046 1.3692
Faugeras NR with distortion 0.0840 0.0458 0.2603 0.0834 0.0454 0.2561
Tsai 0.1836 0.1022 0.6082 0.1824 0.1011 0.6011
Tsai optimized 0.0838 0.0457 0.2426 0.0832 0.0453 0.2386
Tsai with principal point of Tsai optimized 0.0879 0.0466 0.2277 0.0872 0.0463 0.2268
Tsai optimized with principal point of Tsai optimized 0.0836 0.0457 0.2500 0.0830 0.0454 0.2459
Weng 0.0845 0.0455 0.2680 0.0843 0.0443 0.2584

Hall does not provide the camera parameters. Second,
Table 2 shows the results of calculating the accuracy by
using the third and fourth criteria, respectively. Note that
the ;rst three calibrating methods which do not include
the modelling of lens distortion (i.e. Hall, Faugeras–
Toscani and iterative Faugeras–Toscani without distor-
tion) obviously give the same accuracy with distorted and
undistorted 2D points as has been considered Pd=Pu.
These tables show the accuracy obtained by each of

the camera calibration techniques surveyed. It can be ob-
served that the techniques, which do not model lens dis-
tortion (the ;rst three rows in the tables) provide less
accuracy than the others, which do model the lens. More-
over, the technique of Hall appears as the best undis-
torted lens method because it is based on computing the
transformation matrix without including any constraint.
The other two techniques are based on a model which
imposes a determined form of the transformation matrix.
This fact ill eHects the calibration. However, the dis-
crepancy between their accuracy is not signi;cant. Fur-
thermore, the results show that the use of an iterative
algorithm does not improve the accuracy obtained by
using the pseudo-inverse in the technique of Faugeras–
Toscani without distortion. This fact demonstrates that
pseudo-inverse is the best approximation in undistorted
models. In order to improve accuracy it has to go to lens
modelling.
It can be observed from the tables that the non-linear

techniques, which model lens distortion (the last 6 rows
of the tables), obviously obtain better results than the
undistorted techniques. However, the improvement ob-
tained by the method of Tsai without optimization (;fth
row) is not very signi;cant because only a few parame-
ters are iteratively optimized (i.e. f; tz and k1). Never-
theless, when the whole set of parameters is optimized,
the method of Tsai (sixth row) shows the best accuracy
obtainable despite needing more computing time. Note
that accuracy is limited due to image segmentation and
also that the model used always approximates the real be-
havior of the image sensor. However, if a real principal

point is known instead of the image center approxima-
tion, the Tsai method without optimization is as accurate
as any iterative method, and allows a rapid computation.
Note that the use of the Tsai optimized method by us-
ing the real principal point in the initial guess does not
suggest an important improvement in the obtained accu-
racy. Finally, the results show that any iterative method
which models lens distortion provides the same accuracy
without depending on the kind of modelled lens. That is,
the complete method of Weng does not obtain a better
accuracy than the simple iterative method of Faugeras
modelling only radial distortion. Even so, the accuracy is
slightly less due to the complexity of this model which
ill eHects the calibration. The modelling of a camera in-
cluding a large quantity of parameters does not imply
that the accuracy obtained will be better.

6. Conclusions

This article surveys some of the most frequently used
calibrating techniques. EHort has been made to unify the
notation among these diHerent methods, and they have
been presented in a way the reader can easily understand.
We can see that the diHerences among these techniques
are mainly in the step concerning lens modelling. Also,
the transformation from camera to image coordinates is
slightly diHerent in the method proposed by Tsai.
Furthermore, a survey on accuracy evaluation has been

done. The methods surveyed have been implemented and
their accuracy has been analyzed. Results show that only
non-linear methods obtain a 3D accuracy smaller than
0:1 mm with a reasonable standard deviation. Moreover,
the accuracy of non-linear methods on the image plane
is much better than linear methods. Results show more-
over that the modelling of radial distortion is quite suf-
;cient when high accuracy is required. The use of more
complicated models does not improve the accuracy sig-
ni;cantly. It should be kept in mind that segmentation
introduces a discrepancy between observable and mod-
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elled projections which poses conditions on the accuracy.
Moreover, when a low accuracy is su1cient, the fast and
simple method of Hall is su1cient for most applications.
When comparing the obtained results, it can be seen

that a relationship exists between the diHerent criteria.
Accuracy measuring methods obtain similar results if
they are relatively compared. That is, good calibrating
algorithms obtain acceptable accuracy results indepen-
dently from the accuracy evaluation method used. Obvi-
ously, the results only prove something already demon-
strated by the authors. However, in this article the ac-
curacy has been measured by using the same test points
for all the methods so results can be reliably compared.
Hence, the reader can choose one or another method de-
pending on the accuracy required. Moreover, once the
calibrating method is chosen, the reader can take equa-
tions directly from this article to use in the desired cali-
brating algorithm.

7. Summary

In this article, we present a comparative study of the
most commonly used camera calibrating methods of the
last few decades. These techniques cover a wide range
of the classical hard calibration of image sensors which
begin from a previous knowledge of a set of 3D points
and their corresponding 2D projections on an image plane
in order to estimate the camera parameters. Hence, this
study is presented describing a total of 5 diHerent camera
calibrating techniques which include implicit vs. explicit
calibration and linear vs. non-linear calibration.
A great deal of attention has been paid to use the same

nomenclature and a standardized notation in the presen-
tation of all the techniques. Actually, this is one of the
greatest di1culties which appears when going into the
details of any calibrating technique. This problem usu-
ally arises because each method de;nes a diHerent set
of coordinate systems and camera parameters. There-
fore, all the techniques have been re-arranged so as to
allow a comparative presentation. The reader is intro-
duced to calibration with the implicit linear technique of
the pseudo-inverse presented by Hall, afterwards the ex-
plicit linear calibration of Faugeras-Toscani is presented.
Furthermore, the article describes an easy modi;cation
of the Faugeras method in order to include radial lens
distortion, the well-known method of Tsai and Tsai opti-
mized, and ;nally the complete method of Weng which
models up to three diHerent kinds of lens distortion.
In order to compare the accuracy provided by each

technique surveyed, a brief description of accuracy eval-
uation is presented. Each calibrating technique has been
implemented and its accuracy evaluated. The same set
of test points has been used for all the techniques, which
allows the results to be reliably compared. Hence, the
reader can choose one or another method depending on

the required accuracy. Moreover, once the calibrating
method is chosen, the reader can take the equations di-
rectly from this article and easily use them in the desired
calibrating algorithm.
There are numerous advantages thanks to an accurate

calibration. For instance, dense reconstruction of 3D ob-
jects and surfaces has applications in visual inspection
and medical imaging, such as quality control in indus-
trial manufacturing and reconstruction of human backs
and skulls for the detection of deformations or surgery.
Another problem is the 3D pose estimation of an object
in a scene, which has many applications such as obstacle
avoidance, landmark detection and industrial part assem-
bly, among others.

Appendix

This appendix synthesizes the nomenclature used to
express coordinate systems and camera parameters in the
article.

{H} de;nes a coordinate system H, which is com-
posed of an origin OH and either two {XH ; YH} or three
{XH ; YH ; ZH} axis, depending on the number of dimen-
sions de;ned.
The article de;nes the following coordinate systems:

• {W}= {OW; XW; YW; ZW} de;nes the world coordinate
system.

• {C}= {OC; XC; YC; ZC} de;nes the camera coordinate
system located at the focal point OC.

• {R}= {OR; XR; YR} de;nes the retinal coordinate sys-
tem located at the principal point OR=(u0; v0).

• {I}= {OI; XI; YI} de;nes the computer image coordi-
nate system located in the upper-left corner of the im-
age plane.

Each point P is always related to a coordinate system.
Hence, HP relates the point P with respect to {H}, where
HP=( HX; HY; HZ). Each point can be related to any co-
ordinate system. However, the following notations are
the only ones used:

• WPw=(WXw; WYw; WZw) expresses a 3D test point from
the world (scene) expressed with respect to {W}.

• CPw=( CXw; CYw; CZw) expresses a 3D test point from
the world (scene) expressed with respect to {C}.

• CPu=( CXu; CYu; f)= ( CXu; CYu) expresses the linear
projection of a point CPw on the image plane related
to {C}, without including lens distortion.

• CPd=( CXd; CYd; f)= ( CXd; CYd) expresses a 2D im-
age point, including lens distortion, related to {C}.

• IPd=( IXd; IYd) expresses a 2D image point related to
the image coordinate system {I}, in pixels. This point
is the observable point from image acquisition.
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In order to distinguish a single point from a set, i.e.
the set of test points, a second sub-index is used. Then,
Pui indicates the ith point on a set, where i=1; : : : ; n.
A rigid transformation between a two coordinate

system is expressed by a transformation matrix, i.e. JKH
expresses the coordinate system {H} with respect to
{J}. Moreover,

JKH =
( JRH

JTH
01×3 1

)
;

where R=(r1; r2; r3)T expresses the orientation of {H}
measured with respect to the axis of {J}: R can also be
given related to the three rotation angles, i.e. %; & and
'. Moreover, T =(tx; ty; tz)T expresses the position of the
origin of {H} with respect to {J}.
Finally, the following camera parameters are used:

• k1 is the ;rst coe1cient of a series which models the
radial lens distortion.

• g1 up to g4 are the coe1cients which model the de-
centering and thin prism lens distortion.

• f is the focal distance, i.e. the distance from the focal
point OC to the image plane.

• (u0; v0) are the two components of the principal point,
i.e. the projection of OC on the image plane.

• ku; kv are the two components which permit to trans-
form a point from metric coordinates to pixels.

• %u; %v are de;ned as %u=fku and %v=fkv.
• sx is the scale factor.
• d′x=dxNcx=Nfx
• dx; dy are the center to center distances between adja-
cent sensor elements with respect to X direction and
Y direction of the CCD sensor, respectively.

• Ncx is the number of sensor elements in the X direction
of the CCD sensor.

• Nfx is the number of pixels in an image row as sampled
by the computer.
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