
How to self-calibrate a structured light sensor?

Abstract.  This paper deals with self-calibration and its adaptation to structured light vision. A brief survey on self-
calibration for stereovision is first proposed. Then, after having described the geometry of a structured light sensor
and the constraints it imposes, a method based on the generation of Euclidean constraints is detailed. It is mainly
shown how the projection of a known pattern is used to retrieve these constraints. Experimental results are presented
and validate the method.

1 Introduction

A vision sensor is said calibrated whether it is possible to infer a Euclidean reconstruction from the
measurements it provides. Likewise, a sensor is said self-calibrated whether it provides a Euclidean
reconstruction of the observed scene only from the image points. This paper will not deal with hard-
calibration but only with self-calibration and its adaptation to structured lighting. It has been verified that
self-calibration is poorly studied for structured light vision, or even not studied at all. Nevertheless, the
use of a slide projector and the fact that it has to be focused to ensure a certain image quality makes self-
calibration important, if not essential.
This article is organized as follows.  The section two presents a synthetical survey on self-calibration:
only the three main classes of methods are described. Then, section three details the geometry of a
structured light sensor and proposes a self-calibration method adapted to it. Section four presents
experimental results and the article ends with conclusions.

2 Uncalibrated Euclidean Reconstruction

In this section, the main methods of self-calibration are reviewed and presented in a synthetical manner.
We first present the "classical" methods based on Kruppa's equations and epipolar geometry. Then, we
present the methods based on the stratification of the geometry for which the reconstruction is performed
in two steps: a projective reconstruction first, then a Euclidean reconstruction by constraining the intrinsic
parameters or the scene geometry.

2.1 Kruppa's Equations

Austrian mathematician Kruppa brought to the fore the relationship between the absolute conic and the
intrinsic camera parameters. The Kruppa's equations was rediscovered later by Faugeras, Maybank and
Luong [3] and used for self-calibration. Let us recall the equation of the absolute conic Ω:
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It is invariant under similarity transforms (displacement and scale factor), thereby, its image ω is
independent on the position and orientation of the camera: it only depends upon intrinsic parameters. Let
us consider the following projection matrix:

[ ]tRAP = (2)



Whether a point M belongs to the absolute conic, one can easily deduce that ( )T0XM =  and that the

equation of the conic is 0=XXT . Projecting the point M onto the image plane leads to ARXm =  and

mARX 1−= T ; the equation of ω can now be formulated:

011 == −−−− mAAmmARRAm TTTTT (3)

where 1−− AA T  is the matrix representing the image of the absolute conic. Therefore, TAAK =  denotes
the matrix of the dual of the image of the absolute conic, also called Kruppa coefficent matrix. K is
symmetric and positive-definite, it can be formulated as follows:
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When K is known, the matrix of the intrinsic parameters A can be retrieved by means of Choleski
factorization.
Recently, Hartley [7] demonstrated that the Kruppa's equations could be explicitly obtained through the
singular value decomposition of the fundamental F :
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Kruppa's equations can thus be written:
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Equations (6) give two independent quadratic equations on the five parameters of K for each fundamental
matrix, i.e. for each displacement of the sensor.

2.2 Stratified Reconstruction

Unlike the previous method, which gives directly a Euclidean reconstruction of the scene, this section
presents the methods that perform in two step by rectifying a projective reconstruction into a Euclidean
one. A projective reconstruction is given by the following sequence of projection matrices:

[ ] [ ]iii
projproj qQP0IP ==       0 (7)

It is known that Euclidean transformations are a sub-group of projective transformations (collineations),
in other words, a 4×4  non-singular matrix H exists and:



HPP i
proj

i
eucl ≈ (8)

where ≈ denotes the projective equality. There are two different ways to assess the entries of H in order to
perform a Euclidean reconstruction: the first one consists in assuming that the intrinsic parameters left
constants (which is to say, the scene is observed by a single moving camera whose zoom, focus and
aperture remain unchanged from one view to another), the second one consists in translating the
Euclidean geometry of the scene into mathematical constraints on H. Both of the methods will be
described in the following.

2.2.1 Constant Intrinsic Parameters

The sequence of projection matrices, now expressed in the Euclidean space, is given by:

[ ] [ ]iii
eucleucl tRAP0IAP ==       0 (9)

Where A represents the intrinsic parameters. From this, it can be deduced that H has the following form:
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where v is a 3-vector and s is a scale factor which may be fixed to 1. Equations (9) lead to:

[ ]iTiii
proj

i
eucl qvqAQHPP +=≈ (11)

And seeing that:

[ ] [ ]iiiii
eucl AtARtRAP == (12)

It is obtained:

iTii ARvqAQ ≈+ (13)

The matrix A gives five unknowns and the vector v gives three. R is a rotation matrix, Q and q are given
by the projective reconstruction. Equation (13) is the basic equation of this class of methods. In order to
estimate the eight unknowns, at least three views are required.

2.2.2 Euclidean Constraints

Let us go back to equation (8), the Euclidean constraints method consists in adding geometrical
knowledge about the scene in order to assess the entries of H and thus, transforming a projective
reconstruction into Euclidean. The main work achieved from this approach is due to Boufama, Mohr and
Veillon [2]. H is a 4×4 matrix which therefore admits 15 degrees of freedom. Whether the Euclidean
coordinates of five points (at least) are known, it is easy to assess the entries of H (3 coordinates × 5
points = 15 equations). If the Euclidean coordinates of five points are not available, it is possible to



generate another constraints as alignment or distance between two points, parellelism or orthogonality of
two lines.

Let us set down 4,1, ≤≤ jiijw as the (i,j) entry of the matrix 1−= HW .  For a point projM  expressed in a

projective frame and the same point euclM expressed in a Euclidean frame, it is obtained:

projeucl WMM ≈ (14)

The knowledge of the Euclidean coordinates of a point gives these three equations:
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Likewise, a vertical alignment of two points M and M' gives these two equations:
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Seeing that eucleucl xx '=  and eucleucl yy '= . Generally speaking, so as to generate constraints on the

entries of W, the equation given by Euclidean knowledge will be first formulated and then developped
thanks to equation (14). Fifteen independent equations have to be generated in order to estimate the
matrix.

3 Structured Light Vision

This section describes the geometry of a structured light sensor and proposes a method to self-calibrate
this kind of sensor taking into account its own characteristics. Constraints imposed by structured lighting
are defined which permits to reject some of the previously described methods.

3.1 Geometry and Constraints

3.1.1 Principle

In a structured light system, the second camera is replaced by a light source that projects a known pattern
of light onto the scene, as shown in Figure 1. Note that this paper only concerns the projection of bi-
dimensional light patterns [1] and leaves out the mono-dimensional ones as laser beams or light planes.



Geometrically, a projector can be seen as a camera acting in reverse by inverting the line of sight: from
the scene to the image plane for a camera, from the projector frame to the scene for a projector. Hence, a
projector can be modeled in the same way a camera is. Thus, one could think that the stereovision
algorithms would also applied to structured light vision, but it would be losing sight of essential
characteristics of structured light sensors. These characteristics are described in the next sub-section.

Figure 1: Geometry of a structured light sensor

3.1.2 Structured Light Constraints: The Motion Problem

Any movement of the sensor, and particularly of the projector, produces a sliding of the projected points
on the observed surfaces. In other words, the points illuminated before the movement are different from
the ones illuminated after the movement. As a consequence, stereovision algorithms using more than two
views (that is, one view and one projection for structured light) cannot be adapted to structured light
vision. Besides, due to the heterogeneity of the sensor, composed by a camera and a projector, the
constancy of intrinsic parameters cannot either be assumed. Hence, methods based on Kruppa's equations
and methods based on constant intrinsic parameters are unsuited to structured light vision.
There is only one choice left: performing a projective reconstruction first and rectifying it by using
Euclidean constraints grabbed from the scene geometry. It is shown in the next sub-section what kind of
projective reconstruction method may be used and how to generate constraints by using the geometry of
the light pattern.

3.2 Self-Calibrating a Structured Light Sensor

3.2.1 Projective Reconstruction

It was demonstrated that from a weakly calibrated system (i.e. whose epipolar geometry is known), it is
possible to retrieve a projective reconstruction of the environment [4]. However, structured light vision
imposes, as seen before, that the sensor does not move during the calibration process. Mohr, Boufama and
Brand [8] proposed a method based on the global estimation of the projection matrices and the 3D
structure of the environment which set free from epipolar geometry and only requires two views. Luong
and Viéville [6] proposed a projective formulation, called canonical representation, of the projection
matrices (for two or more views) consistent with the fundamental matrix. The latter two methods have
been tested and appear to be implementable for structured light vision.

projectorcamera



3.2.2 From Projective to Euclidean

From now, it is assumed that the geometrical behaviour of the sensor is affine. In addition, let us suppose
that the light pattern is an orthogonal grid (which does not represent a loss of generality: the same
constraints can be generated with any pattern).
Projecting a square onto a planar surface, the more generic quadrilateral formed onto the surface is a
parallelogram whether an affine model is assumed. Furthermore, a parallelogram captured by an affine
camera forms a parallelogram onto the retina. Hence, a parallelogram within the image corresponds to the
image of a parallelogram on a 3-D plane. Relative positioning of the four points A, B, C and D in space
(Figure 2a) is such as:

BDAC,CDAB ==   (17)

( ) ( ) ( ) ( )BD//AC,CD//AB   (18)

It leads to a redundant set of constraints on W. As projective geometry keep unchanged alignment and
coplanarity, equations (17) and (18) determine the same configuration of points. It has to be said that,
likewise, a parallelogram completely determines a 3-D plane. Therefore, for each plane composing the
scene, a unique set of parallelogram constraints is sufficient.
The projection of a line produces a light plane in space. The projection of two orthogonal lines (AB) and
(AC) produces two orthogonal light planes (Figure 2c). When light planes intersect planar surfaces, they
produce light stripes on them whose will be imaged by the camera. We have thus two lines (A’B’) and
(A’C’) in space, which belong to orthogonal planes. Since A' and B' belong to the same horizontal plane
and A' and C' belong to the same vertical plane, whether the world co-ordinate system is fixed at the
projector, it is obtained:
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Thus:

( ) ( ) 'C'A'B'A zzzz'C'A'B'A ==⇔⊥ or    (21)

If the conditions imposed by (21) are satisfied, we obtain an orthogonality constraint, otherwise we
obtain the following reduced orthogonality constraint:

( )( ) ( )( ) 0'''''''' =−−+−− CABACABA yyyyxxxx (22)

Each projected horizontal or vertical line of the pattern generates a light plane in space, which can be
considered as a horizontal or vertical 3-D plane in the projector co-ordinate system, respectively (Figure
2b). Indeed, what it is imaged by the camera are the intersections of light planes with the surfaces
composing the scene, therefore points belonging to horizontal and/or vertical planes. If a point P belongs
to the horizontal plane of the Euclidean frame in which the scene will be reconstructed, then yA = 0.



Likewise, the homologue constraint xA = 0 can be expressed. Besides, two points belonging to the same
plane have a component in common, which provides a constraint between the co-ordinates of both points.
Furthermore, an arbitrary distance can be set between two successive horizontal planes or vertical planes.
Finally, the cross-point (which appears in the image as the intersection of two light stripes) of the planes y
= 0 and x = 0 can be defined as the origin of the Euclidean frame by equalling its three components to
zero.

Figure 2. Euclidean Constraints

4 Experimental Results

We have reconstructed 70 points of a real scene, which represents a cube (see Figure 3a). We have
performed the Euclidean reconstruction using the constraints defined in the previous section. The
projective reconstruction method performed here is the one proposed by Mohr et al. [8]. To illustrate the
accuracy of the method, a comparison between hard-calibrated and uncalibrated reconstruction is
presented on Figure 3d. As we did not have real 3-D co-ordinates but only 3-D co-ordinates computed by
hard-calibration, a quantitative evaluation of the reconstruction method is not possible. However, the
comparison with results obtained by hard-calibration shows that uncalibrated reconstruction from grid
coding obtains good results (in a qualitative way). On Figure 4, we present results of Euclidean
reconstruction performed from an image grabbed under realistic condition. Only the highlighted lines
have been reconstructed. It can be noted that parallelism and orthogonality are well-recovered and relative
distances are respected. The Levenberg-Marquardt algorithm is used to perform the reconstruction, only a
few iterations are necessary to perform a Euclidean reconstruction from a projective one.



(a) Gray-level image
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(b) First Euclidean view
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(c)  Second Euclidean view
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(d) Comparison with hard-
calibration (circles)

Figure 3. Euclidean Reconstruction by geometrical constraints

(a) Structured light image
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(b) First Euclidean view

0

50

100

150

0

50

100
0

20

40

60

80

xy

z

(c) Second Euclidean view
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(d) Third Euclidean view

Figure 4. Euclidean Reconstruction by geometrical constraints



5 Conclusions

This paper first presents a synthetical survey on self-calibration methods. Then, after having studied the
geometry of a structured light sensor, constraints which prevent the use of certain stereovision methods
are listed and a method, based on the stratification of the geometries, is proposed to self-calibrate a
structured light sensor. The method of Euclidean constraints is used and it is shown how geometrical
knowledge of the scene as parallelism or orthogonality can be retrieved by projecting a known light
pattern onto the scene. The main advantage provided by structured lighting is that the constraints are
partly independent from the scene. Moreover, structured lighting permits to ensure there is known scene
structure which can be used to upgrade the reconstruction to Euclidean and provides numerous
constraints. Furthermore, as no constraints are required on projection matrices, the presented approach
allows us to reconstruct changing the focus, the aperture and the zoom of both the camera and the
projector. Therefore, the sensor can be involved in visual tasks which require self-adaptability with
numerous applications as autonomous navigation, visual exploration, among others.
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