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Abstract

This paper presents a new coded structured light pattern which permits to solve the correspondence problem by a

single shot and without using geometrical constraints. The pattern is composed by the projection of a grid made by

coloured slits in such a way that each slit with its two neighbours appears only once in the pattern. The technique

proposed permits a rapid and robust 3D scene measurement, even with moving objects. Ó 1998 Elsevier Science B.V.

All rights reserved.
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1. Introduction

There are some essential problems in stereo vi-
sion which make it di�cult to solve the corre-
spondence problem between both image planes.
Some authors consider to solve the problem of
matching from singular points, i.e. ®nding points
in both image planes with more or less the same
neighbourhood characteristics, classifying them as
corners and vertexes. Since both 2D images are
projections of the same scene, images taken from
di�erent positions may be quite di�erent one from
the other. Consequently, this hypothesis is rather
poor and becomes even poorer if we take into

account that the precision of the 3D measurement
depends on the distance between both cameras.
The more this distance increases, the more the
measurement will be precise. However, when one
increases the distance between both cameras, the
projective images of the 3D scenes become more
di�erent, constraining considerably their match
using similarity. Of course, we must also consider
that in the same 3D scene more than one object
with approximately the same shape and size could
be present. In this case it becomes rather di�cult
to match the images from the mere concept of
singular points. However, some geometrical con-
straints can be used to reduce the problem of
matching. One of the most popular constraints is
known as the epipolar constraint imposed by the
geometrical relationship between both cameras
(Faugeras, 1993, p. 169). The epipolar constraint
allows us to reduce the searching of the
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correspondence from the two-dimensional space of
the image plane into the one-dimensional one of
the epipolar line. However, we must be aware that
some points in an image plane might not have a
correspondence on the other one due to a surface
occlusion or simply because it has been projected
out of the scope of the camera. Note that we are
unable to know a priori whether a point has a
correspondence or not, which makes the matching
enormously di�cult and imposes the use of a
posterior step to remove false matching mostly by
using a region growing algorithm. At this point
another constraint which arises from the structure
of the objects of the scene can be used. It could be
assumed that the scene surfaces vary in depth
smoothly almost everywhere. This constraint is
known as the disparity gradient. Although this
constraint can be used to reduce false matches
obtained from the geometrical properties of the
epipolar line, the reader must know that it cannot
be used at depth discontinuities. Note that depth
discontinuities principally produce the edges and
vertexes that will be used as tokens to the matching
process. We must also note that almost all stereo
vision systems restrict the obtaining of 3D infor-
mation from the vertexes and corners of the ob-
jects. Hence the disparity gradient could not be
used except if we obtain 3D information following
the edges which de®nitely complicates the match-
ing process increasing the computing time.

It is known that the correspondence problem
can be alleviated leaving o� stereo vision, and
going to the structured light concept. Here, the
second stereo camera is replaced by a light source,
which projects a known pattern of light on the
measuring scene. The ®rst stereo camera images
the illuminated scene and, analysing the deforma-
tions of the imaged pattern with respect to the
projected one, can obtain the desired 3D infor-
mation. Of course, depending on the chosen pat-
tern, some correspondences between the projected
pattern and the imaged one should be solved.
Most of the proposed structured light techniques
are based on the projection of regular patterns on
the measuring scene (e.g. Will and Pennington,
1971; Hu and Stockman, 1989; Wang and Pandey,
1991). All these methods obtain 3D information
from the geometric constraint propagation, espe-

cially from the epipolar constraint, and some of
them are rather limited to measure surfaces with
depth discontinuities.

In recent years a new structured light technique
has increased in importance. This technique is
based on a unique codi®cation of each token of
light projected on the scene. When the token is
imaged by the camera, this codi®cation allows us
to obtain the correspondence, i.e. to know where it
comes from. Then 3D measurements are directly
obtained as we are not to use hard computational
geometric constraints. This technique is basically
known as coded structured light. Several coded
structured light techniques have been proposed in
the past, which have been discussed and compared
in a quite recent survey (Batlle et al., 1997). The
techniques are mostly based on coded dot projec-
tion (e.g. Vuylsteke and Oosterlinck, 1990; Yee
and Gri�n, 1994; Ito and Ishii, 1995) and coded
slit projection (e.g. Boyer and Kak, 1987; Tajima
and Iwakawa, 1990; Maruyama and Abe, 1993).

Our goal is to propose a new coded structured
light pattern. The technique is based on obtaining
3D scene information from a single pattern shot
projection, so that it could be used to measure
static and dynamic scenes. The projecting pattern
has been designed such that it could be easily and
robustly segmented, allowing us to e�ciently solve
the correspondence problem without spending a
lot of computing time.

The paper is divided as follows. Firstly, the new
pattern is presented. Secondly, the system model-
ling and the iterative calibration method are ex-
plained. Then, the segmentation process and some
experimental results are shown and discussed. Fi-
nally, conclusions are presented.

2. Pattern design

Our intention is to perform the measurement of
any static or dynamic scene by the projection of a
coded structured light pattern on the measuring
objects. Therefore, a single pattern shot projection
is allowed as the scene could be composed by
moving objects. Furthermore, the pattern must be
segmented without a signi®cant amount of com-
puting time. If we project a straight line on planar
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surfaces, straight segments of such line will be
imaged leading to an easy segmentation. That is
why we propose to use a pattern based on the
projection of straight lines. Several authors have
proposed striped pattern projection coded along a
single axe (e.g. Boyer and Kak, 1987; Tajima and
Iwakawa, 1990), because a single axe codi®cation
of the projected pattern is needed to infer the 3D
information from the 2D points grabbed by the
camera (to demonstrate this deduction the reader
is referred to (Hall et al., 1982)). Nevertheless, we
suggest to improve the robustness of the matching
using a grid pattern projection coded along both
axes. 3D information is inferred from the least-
squares method. Quite a few techniques based on
both axes codi®cation have been proposed. For
instance, Gri�n et al. (1992) proposed to project
uniquely encoded dots. The code of a given dot is
made by the colour of that dot and of its four
neighbours. However, due to an absence of links
among dot neighbours, the identi®cation of the
neighbours of a given dot is highly determined by
the measuring scene. Two years later, Yee and
Gri�n (1994) used the same principle of codi®ca-
tion to project uniquely encoded binary dots. The
dots were linked, making easy the identi®cation of
the neighbours. However, the segmentation of the
pattern and further dot identi®cation become
harder as dots are coded by using di�erent shapes.
That is the reason why we propose to use a grid
pattern which may be easily segmented.

We propose to code the grid by colouring its
horizontal and vertical slits. Although it is known
that high saturated colour objects may produce
further segmentation errors, we assume that they
are not abundant in the scene. We must also note
that a system based on light projection is mostly to
be used under scene light control. Whereas only
the light coming from the pattern is allowed if a
good segmentation is required, slender light is
permitted if a high power projector lamp is used.
Note that slender light will not produce the albedo
e�ect which could make di�cult the segmentation
of the pattern.

We propose to project a grid made by coloured
slits. Although the pattern has been printed in
greyscale in Fig. 1, it is a coloured one. Six dif-
ferent colours have been used. As an example we

have chosen red, green and blue to code the hori-
zontal slits; and magenta, cyan and yellow to code
the vertical ones. But, what is important is that we
must chose well-spaced colours in the HSI cone,
through which they can be well segmented using
their hue and saturation components. We have
used a codi®cation similar to the one used by
Gri�n et al. (1992). More precisely, Gri�n et al.
are interested in obtaining the uniquely coded
maximum matrix from a determined basis. We are
only interested in the maximum vector, that is, the
maximum sequence of triplets that can be made
without repetition. Given a basis p, the maximum
vector is de®ned by a sequence of numbers in the
1 . . . p range, as shown by Eq. (1).

The problem can be solved using the graph
theory. Given a p basis we can obtain a set of
nodes S where each node is de®ned by a triplet of
three elements of P � f1; 2; . . . ; pg, that is
S�VRp

3 obtaining up to p3 nodes. A node is de-
®ned by a triplet ijkji; j; k 2 P . At this point, the
graph can be constructed. Each node N� ijk has p
inputs and p outputs, but the nodes where i� j� k
as they have p ) 1 inputs and p ) 1 outputs. Then,
the problem is reduced to construct the sequence
of triplets by visiting all the nodes of the graph
only once, which can be easily solved by graph

Fig. 1. The coloured pattern.
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theory. Note that we can go from the node N� ijk
to the node N0 � i0j0k0 only if j� i0 and k� j0. (For a
more detailed explanation the reader is referred to
Gri�n et al., 1992, p. 611.)

In our example, we have chosen a basis equal to
3, then we obtain a sequence of 29 numbers in the
range 1 . . . 3. This sequence de®nes a coloured slit
sequence. Horizontal slits are obtained substitut-
ing 1, 2 and 3 by red, green and blue, respectively;
and the vertical slits substituting 1, 2 and 3 by
magenta, cyan and yellow. What is important is
that each slit colour with its two neighbour slits
colours forms a triplet that exists only once in the
whole pattern. Slits are constantly spaced forming
a regular grid of 29 ´ 29 cross-points. The reso-
lution of the pattern may be increased by simply
changing the p basis, i.e. using more colour prim-
itives.

In the aim of testing the proposed pattern, a lab
scenario has been set (see Fig. 2). The system is
composed by an RGB camera, a computer and an
electronic slide projector. In Fig. 2, the camera
calibrating pattern is also shown. The coloured
pattern is shaped in a 512 ´ 512 RGB image which
is projected on the measuring scene using the
electronic slide projector, and the scene is then
captured by the camera into the computer mem-
ory.

3. Calibration

The hard calibration method is based on ob-
taining the intrinsic and extrinsic parameters of the
camera model and the projecting system model
knowing the coordinates of the 3D object points.
In fact, the problem is reduced to the computation
of the transformation equations which models the
relation between the 3D object points (xr, yr, zr)
and their 2D observable correspondence point (uk,
vk) in the image plane of the camera (or their 2D
projecting points of the projector system). The
linear relation is modelled by a 3 ´ 4 transforma-
tion matrix. This matrix contains the 6 extrinsic
parameters de®ned by the three rotation angles (a,
b, c), expressed as a 3 ´ 3 rotation matrix R, and
the translation vector t � �tx; ty ; tz�; and the 4 in-
trinsic parameters de®ned by the projection of the
optical centre in the image plane (or projector
frame) (uo, vo), and the perspective parameters
�au; av� (the reader is referred to (Toscani, 1987)
for a wide explanation). However, as a result of
some types of imperfections in the design and as-
sembly of the lens composing the optical system, a
linear relation does not hold true (see Tsai, 1987).
These kinds of imperfections, known as lens dis-
tortion, can be modelled by a radial and tangen-
tial approximation. Radial distortion causes an

Fig. 2. The scenario of the 3D measuring system.
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inward or outward displacement of a given image
point from its ideal location, and it has been
demonstrated to be quite important in camera
modelling (see (Weng and Cohen, 1992) for a de-
tailed explanation). Radial lens distortion can be
approximated by nonlinear equations governed by
the ®rst coe�cient k1. The relation between a 3D
object point and its observable image point (or
projective point) is then modelled by Eqs. (1) and
(2).

U � Xu ÿ Xd ÿ k1r2Xd ; �1�

V � Yu ÿ Yd ÿ k1r2Yd ; �2�
where

X

Y

Z

0B@
1CA � �R t�

xr

yr

zr

1

0BBB@
1CCCA; r2 � X 2

d � Y 2
d ;

Xu � f
X
Z
; Yu � f

Y
Z
;

Xd � �uk ÿ u0�
ku

; Yd � �vk ÿ v0�
kv

;

we have expanded the au and av parameters as
follows:

au � f ku; av � f kv:

Let us consider Eqs. (1) and (2) like two func-
tions G which depend on 11 unknowns. These 11
unknowns are arranged in a vector called X, that is
X � fu0; u1; . . . ; u10g. The obtaining of the X vec-
tor is the main objective of the calibrating method.
As a result of the inclusion of the lens distortion in
the camera model, G has become a nonlinear
equation. That is why we have to use an iterative
calibrating method to minimise G in order to ob-
tain X.

We want to calculate the values of X which
solve the equation G(X)� 0 iterating from an ini-
tial solution X0. The initial solution is computed
using the method of Toscani assuming no lens
distortion (k1� 0). We have used the widely
known Newton±Raphson iterative method of
function minimisation. Then, from a determined
iteration k, we can approximate the next values of
X from the last ones, using Eq. (3). Note that the

solution we want to ®nd is vector X of the un-
knowns, which solve Eq. (4).

G�Xk� � G�Xkÿ1� � J�Xkÿ1�DXk; �3�

G�Xk� � 0: �4�
Then Eq. (5) is derived, which may be solved

from the least-squares method expressed in
Eq. (6).

DXk � ÿJÿ1�Xkÿ1�G�Xkÿ1�; �5�

DXk � ÿ JT�Xkÿ1�J�Xkÿ1�
ÿ �ÿ1

JT�Xkÿ1�G�Xkÿ1�:
�6�

If we consider that n di�erent correspondence
matchings are obtained, then G(Xkÿ1) is an n-di-
mensional vector. J(Xkÿ1) is an n ´ 11 matrix in
which each column is a partial derivative of G
from each unknown and each row and evaluation
of these derivatives from each correspondence
couple points. DXk is an 11-vector which contains
the estimated error of the 11 unknown parameters
to be determined. Eq. (6) is computed by the it-
erative algorithm. After each iteration, the error
found in each parameter is added to its value ob-
taining the new value for the next iteration. We
must iterate until Eq. (7) is reached.

DXk < e: �7�
We have computed intrinsic and extrinsic pa-

rameters using the method proposed by Toscani.
However, the maximum discrepancy between the
modelled projections and the observable points is
rather large as it was around 2.8 pixels. The main
problem is due to the fact that Toscani does not
take into account the lens deformation and that it
is a non-iterative method. Then an iterative algo-
rithm is quite interesting to decrease this discrep-
ancy, readjusting the intrinsic and extrinsic
parameters of the system. We have used the iter-
ative method without modelling the lens defor-
mation and we obtain a maximum error around
1.2 pixels, which improves considerably Toscani's
method. Then, we have modelled the lens defor-
mation. We start the iterative algorithm from the
parameters obtained by Toscani and a null radial
distortion. The focal distance f has been ®xed,
otherwise the system is unstable because several
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combinations of (f, ku, kv) can be obtained without
changing the (au, av) values. That is why we have
®xed f� 10 mm. We have compared the initial
solution with the ®nal parameters. The maximum
discrepancy between the modelled projections and
the observable points with the obtained parame-
ters was around 0.0053 and 0.0069 pixels for the
camera and the projector system, respectively. In-
creasing the number of iterations, which is about
the order of 20, does not improve the accuracy of
the system. Table 1 shows the initial solution and
the resulting intrinsic and extrinsic parameters
obtained by the iterative algorithm.

A calibrating pattern made by two orthogonal
planes have been set to calibrate the system (see
Fig. 2). In order to calibrate the camera each plane
is composed by a set of equidistant squares, ob-
taining a pattern like the one shown in Tsai (1987).
The square vertexes are merely used to calibrate
the camera. On the other hand, a millimetric sheet
of paper is ®xed on each calibrating plane in order
to calibrate the projector. The coloured grid pat-
tern is projected on both millimetric sheets of paper
obtaining the 3D position of the slits intersections
which are used to calibrate the projector.

4. Pattern segmentation

An RGB camera snaps an image of the pattern
projected on the scene. The ®rst step is the trans-

formation of the image from the RGB model to the
HSI perceptual model, close to human perception.
In this way, the slits can be well segmented as we
know the projected colour, and we have assumed
that the scene is composed by pale and neutral
colour objects. With this goal, we have used a real-
time pre-processor composed by three (256 Kbytes)
LUTs which are addressed by an 18 bits bus, 6 bits
per each RGB channel, at video rate, obtaining the
transformation from the three basic colours to the
HSI model. Actually, LUTs are loaded with the
hue, saturation and intensity values of the selected
colours. The rest of the memory cells are all loaded
with zeros. In fact, the pre-processor allows to deal
with any mathematical colour conversion (the
reader is referred to (Garcia-Campos et al., 1996)
for a wide explanation of this card). Then, the HSI
image containing the segmented scene is captured
by a Matrox Meteor acquisition card into the
memory of a PC Pentium.

At this point, we have three images corre-
sponding to the previous chosen hue, saturation
and intensity values into the memory of the per-
sonal computer. The six colours have been coded
by six di�erent grey levels in a single image. Then,
this image has to be processed to detect straight
segments for each grey level. We have used an easy
methodology which involves image ®ltering, thin-
ning and edge reconstruction. Fig. 3 shows the
segmentation of the blue colour straight segments
obtained after edge reconstruction of the ®rst ex-

Table 1

Intrinsic and extrinsic parameters obtained by the process of calibration

Camera parameters Projector parameters

Initial solution Iterative solution Initial solution Iterative solution

a (rad) 1.6605 1.7294 1.8091 1.7511

b (rad) )1.2051 )1.2537 )0.7090 )0.7042

c (rad) )3.0980 )3.0325 )2.9961 )3.0324

tx (mm) 19.7 )84.9 )79.8 )61.8

ty (mm) 144.9 106.3 )82.7 )14.3

tz (mm) 1829.4 2432.1 1772.1 1910.8

f (mm) 10 10 10 10

ku (px/mm) 316.05 421.07 251.93 272.80

kv (px/mm) 332.57 442.43 261.31 282.66

uo (px) 223.43 405.19 376.22 350.82

vo (px) 227.25 297.80 560.48 460.09

k1 (ad) 0 )0.03505 0 )0.00309

rad: radians; mm: millimetres; px: pixels; ad: adimensional
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perimental example. Straight segments will be
useful to solve the correspondence problem.
However, segments can not be used to detect the
pattern cross-points due to their high discontinu-
ity. Note that it is essential to obtain well seg-
mented cross-points as they are directly used to
infer 3D information.

The main idea is that cross-points have been
detected by searching for local maximum in the
intensity image. Actually, cross-points are made by
the intersection of two slits with two di�erent in-
tensity levels. Then, the cross-point must have an
intensity of approximately the sum of both which

value de®nes a dynamic threshold. This threshold
has been used to segment a region containing the
cross-point which is further detected by computing
the gravity centre. Fig. 4 shows the cross-point
detection of an image portion of the ®rst example.

Using the coloured codi®cation of the segments
which forms the cross-point in the image plane, the
matching, i.e. the determination of the position of
the same point in the projector image plane, is
carried out. Then, 3D object point coordinates are
obtained from both 2D positions of their projec-
tive points in the image plane and in the projected
pattern.

Fig. 3. Segmentation and edge reconstruction of blue colour.

Fig. 4. A sample showing two cross-points detection. (a) A portion of the Intensity image showing three slits. (b) The segmented

regions of both cross-points obtained by local thresholding.
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5. Experimental results

Hereafter, two examples are shown. The ®rst
example is composed by a scene with three geo-
metric and achromatic objects illuminated by the
coloured pattern, as shown in Fig. 5. Fig. 6 shows
the measured correspondence points in the pro-
jector and camera frame, and Fig. 7 shows the 3D
reconstruction. The second example is based on
the 3D reconstruction of the mask shown in Fig. 8.
Fig. 9 shows the 3D reconstruction.

In order to compare 3D geometric information
inferred by the proposed coded structured light
system and the real 3D information of the scene,

we have projected the coloured pattern on a single
plane. Several images have been taken while
moving the plane. We have measured the 3D real
point, and we have inferred the 3D object point
from both projective 2D points. The (X, Y, Z)
error measured is the discrepancy between real
coordinates and the inferred ones. We have mea-
sured the error in approximately 100 points. The
average values of the error deviate 0.728 mm
(0.31%) from the X axes, 0.624 mm (0.27%) from
the Y axes, and 0.465 mm (0.20%) from the Z axes.
The results are quite interesting if we take into
account that the deviation degree is highly in¯u-
enced by the segmentation process, i.e. by the

Fig. 6. The matching obtained from Fig. 5. (a) The Matching points from the 576 ´ 768 camera image plane. (b) The Matching points

from the 512 ´ 512 projected pattern frame.

Fig. 5. (a) A real scene composed by three geometric objects (not used to infer 3D information). (b) The scene illuminated by the

coloured pattern.
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Fig. 8. A real scene composed by an illuminated mask.

Fig. 7. The reconstruction of the 3D objects shown in Fig. 5. (a) A perspective view from the right side. (b) A top view.

J. Salvi et al. / Pattern Recognition Letters 19 (1998) 1055±1065 1063



image noise and the problem of grabbing the
projected lines of the pattern with di�erent thick-
ness.

On the other hand, the percentage of correctly
identi®ed intersections reaches the 100% of cross-
point identi®cation, measuring a planar surface
under scene light control. However, the identi®-
cation is completely constrained by the kind of
scene to be measured and the light conditions.
Then, when the light conditions decrease, the
projection of colour weaks considerably the use of
such a kind of pattern. Of course, the utilisation of
a digital light projector with a higher resolution, or
even a more powerful lamp, will increase the av-
erage of correctly identi®ed intersections.

6. Conclusions

In order to obtain a 3D measurement of either
static or dynamic scenes, we propose to project a
new coloured grid pattern on the measuring ob-
jects. The columns and rows of the grid are codi-
®ed using six well-de®ned colours of the HSI cone.
In the presented example, the pattern uses the
three primary colours (red, green and blue) to code
the rows. The magenta, cyan and yellow colours
are used to code the columns. The slits have been
coloured with the aim that each slit, with its two
neighbours, forms a unique triplet in the whole
pattern. Such a codi®cation permits that the pat-
tern could be used to obtain 3D information of the
illuminated scene from a single shot projection.

Then, an easy and quick decoding step allows the
pattern to be used in dynamic 3D measurements.
Experimental results of object measurement and
3D reconstruction have been presented in the pa-
per. Some applications of the sensor could, in
particular, be used within the scope of scene in-
terpretation in mobile robot navigation and
tracking of moving objects, and, in general, in any
3D scene measurement where a single shot is al-
lowed and a quick response of the system is re-
quired.

As a further work, we are interested in the fre-
quency shifting of the imaging colour with respect
to the projecting one as a result of the intrinsic
colour of the measuring objects. If the pattern
colours are well chosen, this discrepancy may allow
us to obtain the intrinsic colour of the scene ob-
jects. Then the proposed system might be used to
obtain 3D information and coloured information
of any scene by a single pattern shot projection.
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