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Abstract. Recommendations by salespeople are always based on knowl-
edge about the products and expertise about your tastes, preferences, in-
terests and behavior in the shop. In an attempt to model the behavior of
salespeople, AI research has been focussed on the so called recommender
agents. Such agents draw on previous results from machine learning and
other advances in AI technology to develop user models and to antic-
ipate and predict user preferences. In this paper we introduce a new
approach to recommendation, based on Case-Based Reasoning (CBR).
CBR is a paradigm for learning and reasoning through experience, as
salesmen do. We present a user model based on cases in which we try
to capture both explicit interests (the user is asked for information) and
implicit interests (captured from user interaction) of a user on a given
item. Retrieval is based on a similarity function that is constantly tuned
according to the user model. Moreover, in order to cope with the utility
problem that current CBR system suffer from, our approach includes a
forgetting mechanism (the drift attribute) that can be extended to other
applications beyond e-commerce.

1 Introduction

In the real world, if you always go to the same grocery store to buy your food,
then the salespeople there will get to know a great deal about you. Based on the
products that you normally buy, they might recommend new items that they
think might interest you. For instance, if you always buy a certain brand of milk,
a salesperson might recommend, with a good chance of success, another similar
product that has a discount that particular week. They will also notice the
changing interests of the customers over time. If you do not buy a given product
for a long time, salespeople gradually stop recommending similar products. They
guess that you are not interested in them anymore. The recommendations of
salespeople are always based on knowledge about the products as well as about
your tastes, preferences, interests and behavior in the grocery store. In short,
your activity in the grocery guides salespeople to improved sales.
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In an attempt to model the behavior of salespeople, AI research has been
focussed on the so-called recommender systems [19]. The main task of a recom-
mender system is to locate items, information sources and people related to the
interest and preferences of a single person or a group of people [20]. This involves
the construction of user models and the ability to anticipate and predict user
preferences.

In addressing these types of tasks, recommender systems draw on previous
results from machine learning and other AI technology advances. Among the
various machine-learning technologies we concentrate on Case-Based Reasoning
(CBR) as a paradigm for learning and reasoning through experience, as sales-
people do. Previous recommender systems based on CBR include, for example,
the Broadway approach [10, 24], WebSell [6], Adaptive Place Advisor [9] and
Entree [2].

Recently, a quite exhaustive experimentation on similarity metrics, performed
with Entree, showed that the quality of recommendations increases if they are
based on knowing the reasons behind user preferences rather than on simply hav-
ing large amounts of information [2]. So, learning that user A does not like an
item that was recommended because it was successfully recommended to a sim-
ilar user B, and knowing the reasons for such a difference between these similar
users, increases accuracy. The experiments performed with Entree lend support
to the case representation approach presented in this paper, based on two main
parts: objective attributes of items (the problem) and subjective attributes (the
solution), in which we capture the user’s explicit interests (the user is asked) as
well as his/her implicit interests (the user interaction is recorded) for a given
item. Moreover, in order to cope with the utility problem, our CBR approach in-
cludes a forgetting mechanism that can be extended to other applications beyond
e-commerce. Our view is in line with current trends in recommender systems de-
velopment and follows agent-based approaches, and so we speak about personal
recommender agents. The agent acts as the grocery salespeople: proactively rec-
ommending new products to the user and giving prompted answers to queries
from the user.

The outline of this paper is as follows: the next section introduces a new
approach to applying CBR to the recommendation domain. The following sec-
tions define the case base structure and each CBR phase of this new approach.
Finally, section 8 presents related work and section 9 concludes this article.

2 Overview of the CBR Approach to Recommendation

The core of CBR is a case base which includes all the previous experiences
that can give us information about new problems. Then, through the similarity
concept, the most similar experiences are retrieved. However, similarity is not
a simple or uniform concept. Similarity is a subjective term that depends on
what one’s goals are. For instance, two products with the same price would get
maximum similarity if the user was interested in products with that same price,
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but would get very different similarity for other concepts, such as quality or
trademark.

In our approach, the case base consists of a set of previous items explicitly
and/or implicitly assessed by the user. Assuming that the user’s interest in a
new item is similar to the user’s interest in similar items, in order to evaluate
whether a new item could interest the user, the agent searches the case base for
similar items. If the interest the user showed in them is high enough, the new
item is recommended to the user.

With regard to the CBR cycle:

1. In the retrieval phase, as from a new item, the system searches similar items
in the case base in order to find out whether the user might be interested
in it. Local similarity measures are based on item attributes, the relevance
of which is computed in each retrieval time. Thus, the similarity metric is
automatically maintained.

2. In the reuse phase, as from the retrieved set of similar items, the system
calculates a confidence value of interest, to recommend the new item to the
user, based on explicit and implicit interests and the validity of the case
according to the current user’s interests.

3. In the revision phase, as from the relevance feedback of the user, the sys-
tem evaluates the user’s interest in the new item. The idea is to track user
interaction with the system to get to know relevant information about the
user’s interest in the recommended item, as well as explicit and implicit
information, in order to retain the new case.

4. In the retain phase, the new item is inserted in the case base with the interest
attributes that were added in the revision phase. In order to control the case
base size, it is also important to know whether the user never gives new
feedback about items in the case base. In such a case, it is necessary to
forget these interests with time. We propose the use of a new attribute that
we call the drift attribute, that will be aware of such changes in the user
preferences and contribute to case maintenance.

The CBR cycle is applied both when the agent gives prompted recommen-
dations in the course of answering the user’s queries, as well as when the agent
proactively recommends something to the user looking for new products. For
example, the latter case happens periodically when the recommender agent con-
tacts the restaurants server looking for new restaurants similar to the one that
best fits the user preferences.

In the following sections the structure of the case base and the different CBR
phases of the new approach are described.

3 The Case Base

A case-based reasoner is heavily dependent on the structure / representation and
content of its collection of cases. Moreover, the size of the case base is also an
open problem, since it affects the performance of the system. Below, we introduce
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Fig. 1. An Example of Case Representation in the Restaurants Domain

the case base representation we use for recommendation and how we solve the
utility problem with a control attribute called the drift attribute.

3.1 The Case Base Representation

In our approach a case is split into two parts: the first, a set of attributes describ-
ing the item (the definition of the problem in CBR terminology) and the second,
a set of attributes describing the user’s interest (the solution to the problem in
CBR terminology). We decided to make the agent handle items from just one
topic (e.g., restaurants). Extending the recommender system to other topics can
be carried out in a cooperative environment (see for example [18]). In order to
constrain the domain, we simplify the case base, since items from the same topic
have the same attributes. As shown in Figure 1 from the restaurants recom-
mendation domain, the case representation consists of a set of item attributes

describing the restaurant (product description) and a set of interest attributes

describing the opinion of the user about the restaurant (product assessment).
Firstly, in order to create a set of attributes for an item, we must use what-

ever available information there is about the item’s qualities. Item descriptions
in general do not tend to be very complex, consisting largely of descriptive ad-
jectives, nouns or values. For example, when the CBR goal is to recommend
restaurants, the system can deal with features of capacity (e.g., ”100 places” or
”150 places”), qualities of the cuisine (e.g., ”traditional”, ”creative” or ”bland”)
or approximate price (e.g., ”from $10 to $15” or ”from $20 to $30”).

Secondly, interest attributes keep all the information the agent gathers from
the user. These attributes depend on the technique used to obtain the relevant
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feedback: explicit or implicit [17]. Explicit feedback relies on the fact that any
information can be asked of the user explicitly, such as quality-price relation or
quantity of food. On the other hand, implicit information can be captured from
the interaction between the user and the system, for example, the consulted
items, the time spent consulting items, the number of visits to the web page or
the number of queries made where the restaurant was retrieved as an answer.

Explicit attributes are the most relevant and accurate, since the user states
his opinion. However, it can be a great nuisance to the user and, therefore, it
is not always possible to obtain [5]. Implicit attributes are a lot less accurate,
but there is no annoyance to the user, since the system just tracks his or her
behavior and learns about it. Thus, we deal with both kinds of feedback and we
represent the case interests through both explicit and implicit attributes.

Finally, if a case represents the user interest on a given item, the complete
case base constitutes the user profile representation which models the user. So,
each recommender agent keeps a case base that is the representation of the user
on whose behalf the agent is acting.

3.2 The Case Base Maintenance

The main idea of the CBR is to solve new problems by adapting the solutions
given for old ones. It should be remarked that, presumably, with a larger set
of cases the system gives better results as long as cases cover a wide range of
problems. However, several authors claim that when the case base reaches a
certain number of cases, the performance of the system remains the same and
sometimes decreases [12].

Thus, one of the main drawbacks of the CBR is the utility problem: the
uncontrolled growth of case bases may degrade system performance as a direct
consequence of the increased cost in accessing memory.

Therefore, a need arises for a technique that controls the case base size by
forgetting irrelevant cases. Some approaches handle this problem by storing new
cases selectively (for example, only when the existing cases in memory lead to a
classification error) and deleting cases occasionally [11]. Other approaches incor-
porate a restricted expressiveness policy into the indexing scheme by planning
an upper bound on the size of a case that can be matched [8]. More recently,
McKenna and Smyth [15] proposed a competence model for CBR that has been
followed by other researchers defining different performance-based metrics (e.g.,
[13]). Most of the measures proposed are based on case base coverage.

In the context of recommender agents, however, maintenance is even harder
since it is necessary to handle the change of the human interests over time.
Mitchell et al proposed learning the description of the user’s interests only from
the latest observations, with a time window [16]. Maloof and Michalski suggested
giving examples an age and deleting instances from the partial memory that are
older than a certain age [14]. Billsus and Pazzani implemented a dual user model
consisting of both a short-term and a long-term model of user’s interests [1].
Finally, Webb and Kuzmycz introduced forgetting old interests with the gradual
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forgetting function [26]. The main idea behind this, is that natural forgetting is
a gradual process.

Based on this last approach, we propose the drift attribute in order to
adapt to the user interests over time and to solve the utility problem of the
CBR systems. The drift attribute is one of the interest attributes (see Figure 1)
and its function is to age the cases in the case base. There is one drift attribute
per case and it is updated according to the user-system interaction.

The drift attribute works as follows:

– The drift attribute value is confined to the [0-1] interval.
– New items are inserted in the case base with the maximum drift value when

the user shows some interest about them.
– The value of the drift attribute is decreased over time, emulating the gradual

process of people losing interest in something. The decreasing function is a
simple one where the drift attribute δq of a case q is decreased by multiplying
the last drift value by a factor β of between 0 and 1 (see Equation 1).

δq = δq ∗ β (1)

The key issue then, is when to apply the decreasing function. We have to take
into account that different users interact with the system more frequently
than others. Therefore, the decreasing function should depend on the user
interaction, rather than on a certain number of days or weeks. Our system
decreases drift attributes each time a new item is incorporated into the case
base.

– The value of the drift attribute is increased (rewarded) if the retrieved case
results in a successful recommendation. The rewarding function is as simple
as the decreasing one. The drift attribute δq of a case q is increased by
dividing the last drift value by a factor λ of between 0 and 1 (see Equation 2).

δq = δq/λ (2)

When a case reaches a drift value under a certain threshold (ξ), it is discarded.
If the drift value is low enough, it does not make sense to retain the item in the
case base. The confidence value for the interest that this item gives is insignificant
and it is a useless case that only contributes to increasing the size of the case
base and decreasing the performance of the system. Therefore, removing cases
with a low drift value is the best solution for automatically controlling the size
of the case base.

Initiating the case base adaptation needs a setup phase where the parameters
are optimized to get the best performance out of the system. In other words,
we will obtain different results by changing the rewarding function (λ), the de-
creasing function (β) and the threshold (ξ). Finding out the optimal values is
an empirical task based on metrics to evaluate the system.

Finally, we want to point out that other authors have applied a gradual
forgetting function to their systems in order to adapt the user profile to new
interests [26, 21]. However, they have a weight/age for all the items of a given
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topic and when some event affects one of the items in the topic this weight/age is
modified in such a way as to affect all the items in that topic. We think that this
reduces system performance, especially when the same topic includes a large set
of items. Because if in the same interest topic there is one single item that the
user is interested in, the topic never drifts, even if the user is not interested in
all the other items in the set. Alternatively, in our approach we assign a weight
to each item, thus, every case is treated individually, hence solving this problem.

3.3 The Initial Case Base Generation

It is desirable to find out as much as possible from the user so that recommender
agents provide satisfactory results from the very beginning. In our approach, the
training set [17] seems to be the best technique to generate the initial profile (case
base), since the training set list of items given by the user with the appropriate
attributes of interest can be the initial case base.

Analyzing the initial profile generation techniques stated in [17], we found
different advantages and drawbacks. In manual generation, the user tailors his
or her own profile, thus it is a really transparent method. But it bothers the
user to have to do this and it is difficult for users to define their preferences
explicitly. The empty approach needs potentially a long time to get to know the
user’s preferences, that is, the initial recommendations are low quality. But in
this case, the user is not bothered. The usual approach is to interview the user
with a quick manual questionnaire that won’t annoy him or her too much, but
people are reluctant to give personal data. Typically, the user does not fill in the
questionnaire or provides false data. The training set approach depends totally
on the profile learning technique (case retain in CBR ), since the user just gives
a list of items that he likes and/or dislikes, and the learning technique generates
the profile. There is nothing to annoy the users and the users easily define their
preferences.

4 The Retrieval Phase

In CBR terminology, the retrieval task starts with a new problem description
and ends when the best matching set of previous cases has been found. When we
apply CBR to recommendation, this phase has the same purpose, but instead of
retrieving similar problems, the system retrieves similar items. Thus, the retrieval
task ends when the set of best matching previous items has been found (see
Figure 2).

The most important step in the retrieval phase of CBR is to define the
degree of similarity between cases. The success of CBR systems widely depends
on the capacity of the system to exhibit how similar two cases are. With an
efficient similarity measure, given a case, we can obtain an ordered list of similar
cases. Taking advantage of this concept, when a user likes an item, his/her
recommender agent can recommend to him/her a list of similar items that the
user should like.
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Fig. 2. Retrieve Phase

The degree of similarity between two items is computed by a global similar-
ity function. Typically, the global similarity function is a weighted ponderation
of the different attribute similarities based on the user model. For example, a
particular user considers that two restaurants are similar if they have a similar
price, but another user considers that they are similar if they have a similar
cuisine. To get these attribute preferences you can ask the user explicitly when
he /she asks the recommender agent for advice. However, such preferences are
not available when a recommender agent proactively looks for new items. There-
fore, we distinguish two roles of the agent that enforce two different similarity
functions:

– Making prompted recommendations to the user when answering his/her
queries. In our system the user can explicitly give his/her preferences on
the attributes of the restaurant with a numerical value in [1-5] when he/she
is looking for a new one. Then, we implement the global similarity function
as a Weighted Average (WA) [23], since we can use a normalization in [0,1]
of the preference values prefi given explicitly by the user as weights. In our
model, we use the following function:

Sim(q, c) =

n
∑

i=1

wi ∗ sim(qi, ci) (3)

where:

• n is the number of item attributes of a case,

• qi are the item attributes of case q,

• ci are the item attributes of case c,

• sim(qi, ci) are the different attribute similarities between qi and ci,

• and wi are the weights of the ponderation, so that wi ∈ [0, 1]∀i and
∑

i wi = 1.
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In order to calculate the weights wi based on the preference values prefi, we
use the following function:

wi =
prefi

∑n

i=1 prefi

(4)

– Making proactive recommendations to the user who is looking for new prod-
ucts. When acting proactively, the agent has no information about the prefer-
ences of the user on item attributes. Thus, we implement the global similarity
function as an Ordered Weighted Average (OWA) [28], since we are dealing
with different preferences of the user and such preferences can be ordered
according to their importance. Then, the similarity between cases q and c is
calculated as:

Sim(q, c) =

n
∑

i=1

wi ∗ simσ(i)(qi, ci) (5)

where:

• n, qi, ci and wi have been already explained in equation 3,
• simσ(i)(qi, ci) are the different attribute similarities between qi and ci

and
• σ(i) is a permutation of the values 1, ..., n so that

simσ(i−1)(qi−1, ci−1) ≥ simσ(i)(qi, ci) ∀i = 2, ..., n.

Thus, the key of the global similarity function is to define the weights wi. In
our model, we use the following function:

wi =







1
n−i

if i < n
2

1
n

if i = n
2

1
n+2∗(i−n

2
) if i > n

2

(6)

Attribute similarities sim(qi, ci) depend on the type of attribute. In our case
base, we deal with both numerical and labelled attributes, thus, we consider the
typical similarity metrics for both kind of attributes [27, 7].

Once the similarities between the new case and the cases in the case base are
calculated, a set of best matches is chosen. In our implementation, we select the
n best cases provided which exceed a minimum selection threshold.

5 The Reuse Phase

The reuse phase consists of adapting the old solutions of the retrieved cases to
the new problem based on the differences among them. Once the system has
retrieved a set of previous items (the most similar ones), the system knows the
user’s interest in similar items through the interest attributes (solution in CBR
terminology ). Assuming that the user’s interest in a new item is similar to
the user’s interest in similar items, in the reuse phase, the recommender agent
calculates an interest confidence value for the new item. This value is used to
decide whether to recommend the new item to the user.
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Fig. 3. Reuse Phase

The interest confidence value is a composite of the item interest value of the
similar items selected in the retrieve phase (see Figure 3). We calculate it in a
two-step process.

First, the item interest value V of each case is computed based on its interest
attributes (see Equation 7). Given the following case representation:

Problem/ Solution / Interest Attributes
Case/ Item
Item Attributes Explicit Implicit Drift

Attribute

p p1, p2, ..., pn pe
1, pe

2, ..., pe
ne

pi
1, pi

2, ..., pi
ni

δp

q q1, q2, ..., qn qe
1 , qe

2 , ..., qe
qe

qi
1, qi

2, ..., qi
ni

δq

where p and q are items, p1, p2, ..., pn and q1, q2, ..., qn are the item attributes,
pe
1, p

e
2, ..., p

e
ne

and qe
1, q

e
2, ..., q

e
ne

are explicit attributes, pi
1, p

i
2, ..., p

i
ni

and qi
1, q

i
2, ..., q

i
ni

are implicit attributes and dap and daq are drift attributes; the item interest
value of the item p is calculated as follows:

Vp = δp ∗ g(fe(pe
1, ..., p

e
ne

), f i(pi
1, ..., p

i
ni

)) (7)

where fe is the function that combines the explicit interest, f i is the function
that combines the implicit attributes, g is the function that combines the results
of fe and f i, and finally δp is the drift attribute (the temporal parameter related
to the relevance of the product explained above). Aggregation techniques like [23]
can be used for implementing f e and f i. We use the OWA operator for both f e

and f i (see equation 5), applying the same procedure to obtain the weights that
we showed in equation 6.

Finally, function g is a weighted arithmetic average (WA):

g(e, i) = αe ∗ e + αi ∗ i (8)

The explicit attributes are the most relevant, since the user stated his/her
opinion. Therefore, g gives more importance to explicit attributes (objective
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ones) than to the implicit ones (subjective). For instance, we use αe = 0.7 and
αi = 0.3.

Second, the interest confidence value I of a new item r is a weighted ponder-
ation function of the item interest value of each similar item:

Ir =

∑x

i=1(Sim(r, i) ∗ Vi)
∑x

i=1 Sim(r, i)
(9)

where x is the number of similar items, Simi is the similarity between the
item r and the item i (computed in the retrieve phase) and Vi is the item interest
value of the item i. In this way, the most similar items are the most relevant in
the final result.

Finally, if the interest confidence value of the new item is greater than a
certain value (a confidence threshold), the item is recommended to the user.
Otherwise, in the prompted role, the agent provides negative advice to the user
regarding the queried item, while on the proactive role, the agent ignores it, the
CBR cycle finalizes and there is no recommendation to the user. The item is not
interesting enough to the user and the agent should not bother him/her with it.

6 The Revision Phase

Typically, the revision phase consists of evaluating the case solution generated
by the reuse phase and learning about it. If the result is successful, then the
system learns from the success (case retainment), otherwise it is necessary to
repair the case solution using domain-specific knowledge. With regard to our
approach, in the revision phase, as in the case of the relevance feedback of the
user, the system is able to evaluate the user’s interest in the recommended item.
The idea is to track the user interaction by filling in the interest attributes of
the item (case).

As shown in Figure 1, the interest attributes are distributed in two main
groups: implicit and explicit attributes. Obviously, implicit attributes come from
implicit feedback from the user, and explicit attributes come from explicit feed-
back. The idea is to find out the user’s interest based on a hybrid relevance
feedback system [17]. The user is explicitly asked about the new item, but, tak-
ing into account that users are very reluctant to give explicit feedback [5], the
system tracks the user interaction with the system and tries to include additional
information.

In CBR systems the solution is successful or wrong. When the solution is
successful, the system retains the case inserting it into the case base. But when
the solution fails, the system is interested in retaining the reason for the failure
as well as the good solution, thus, there is an investigation task to find out
additional information about the case. In the recommendation field, the user’s
interest can also be positive or negative, but, oppositely to the previous situation,
the system is interested in retaining both positive and negative feedback. It is
equally important to keep positive and negative information about the interests
of the user, since it is useful to know what the user really ”loves” and what the
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user really ”hates”. Thus, in this approach, in contrast to what usually happens
in CBR systems, there is no investigation task to find out why the user is not
interested in the new item, we simply retain the item as not interesting to the
user. Therefore, in avoiding the investigation task, typically accomplished by a
human expert, we get a completely automatic system.

7 The Retain Phase

In our approach, the new item is inserted into the case base with the interest
attributes that were added in the revision phase. But, if the user did not give
either explicit or implicit feedback, the item has no interest attributes and the
case is not introduced into the case base. Only items with positive or negative
interest are retained.

Moreover, when the user gives explicit or implicit feedback about an existing
item in the case base, the case is updated. For example, if the user consults the
web page of an item, the interest attribute representing the number of visits to
the web page, and the attribute representing the time spent looking at the web
page, are increased.

In order to control the case base size, it is also important to know whether the
user ever gives new feedback about items in the case base. If not, it is necessary
to forget these interests with time. This problem is solved with the drift attribute
explained in section 3.2.

8 Related Work

A few research groups are investigating the application of CBR concepts and
techniques to recommendation. Cunningham et al apply retrieval and adaptation
techniques from CBR to intelligent product recommendation agents, particularly
to their WebSell system [6]. As in our approach, the core of such application is a
product database that describes the specific features of each available product.
As a user profile, Websell keeps two selection lists of products which are used for
collaborative recommendation service. These selection lists contain both inter-
esting and not interesting products that, as in our approach, are used as a case
base to pro-actively recommend new products to the user. Besides the lists, user
profiles store more information (e.g., personal information, domain preferences),
which can be compared to our approach (explicit information). The main differ-
ence is that we explicitly keep a set of interest attributes as a solution for each
case, instead of general domain preferences deduced from the lists as WebSell
does.

All ”FindMe” systems [4] implement a similar CBR. They contain a database
from which they retrieve items that meet certain constraints, and they rank
the retrieved results by some criteria. For instance, the restaurant recommender
Entree [3] makes its recommendations by finding restaurants in a new city similar
to restaurants the user knows and likes. The main difference with our system is
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that Burke et al do not use an interest extensive representation of items in the
case base as we do.

The Broadway approach [10, 24] also combines explicit and implicit informa-
tion on cases by means of the use of a behavior summary of the user interaction.
Similarly, we keep a detailed information of the user interests and, then, in the
reuse phase, we aggregate such information. Moreover, they use interests in re-
trieval and adaptation while we are only using interests attributes in adaptation.

Adaptive Place Advisor [9] introduces an innovative approach to the retrieval
phase based on diversity, which controls the repetition of the same recommen-
dation to a user. Thus, they avoid recommending the same restaurant in a short
period of time to the user. In our view, this approach, although innovative, could
lead to somewhat suspicious behavior of a system which, with the same inputs,
gives different outputs in successive moments, one of which must be untruthful
or untrustworthy.

Another important difference between these systems and ours is that they
do not handle the change of the user interests over time and, therefore, they
do not take into account the maintenance of the case base . Other approaches,
outside recommender systems, such as [13, 15] deal seriously with the problem
of case maintenance since it is the principal drawback of CBR. However, we
think that the metrics proposed are far from being useful in open domains as
recommender agents. The alternative we propose is the drift attribute, which
tackles the problem of maintenance in a way which is as natural as forgetting
is for humans. Using the drift attribute is a new idea that we have introduced
into the CBR, as applied to recommendation, thus, there is no previous work
on this concept. However, this idea is based on the gradual forgetting function
that some researchers have applied to other CBR systems. This concept was
introduced by [26] and later applied in systems such as SiteIF [22] or LaboUr
[21].

9 Conclusions

We have presented a new approach to recommendation based on CBR. The
first contribution of this approach concerns case representation. Each case of the
case base consists of a first set of attributes describing the item (as a problem
definition) and a second set of attributes describing the user’s interest (as a
solution to a problem ). Assuming that the user has a similar opinion about
similar items, we can use the interest attributes of old cases to guess whether a
new item will be of interest to the user.

The second contribution concerns the similarity metric. The relevance of
attributes is computed every retrieval time and is based on information stored
in cases. Such an approach reduces the need for maintenance of similarity metrics
as well as the fact that no additional learning method is required to acquire the
relevance.

Another contribution of this approach is the drift attribute. The drift at-
tribute represents the age of the case in the case base and lets the personal
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agent distinguish between current and old interests. Consequently, the newest
cases will be more confidently recommended than the oldest ones. However, the
most important advantage of applying the drift attribute is that the utility prob-
lem is mitigated. Drift cases are deleted and the number of cases in the case base
becomes stable while the performance of the system is maintained.

We have provided a detailed design of our system. Currently we have a pro-
totype with some of the features implemented. Obviously we need to perform
evaluations of the system. We plan to do this in the restaurants domain, based
on our previous work [25].
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18. S. Ontañon and E. Plaza. Collaboration policies for case-based reasoning agents. In
Proc. Workshop on Learning Agents Autonomous (Agents’2001). Montreal, 2001.

19. P. Resnick and H. Varian. Recommender systems. In Communications of the ACM,
pages 56–58, 1997.

20. R. Sanguesa, U. Cortés, and B. Faltings. W9. workshop on recommender systems.
In Autonomous Agents, 2000. Barcelona, Spain, 2000.

21. I. Schwab, A. Kobsa, and I. Koychev. Learning user’s interests through positive
examples using content analysis and collaborative filtering, 2001. Submitted.

22. A. Stefani and C. Strappavara. Personalizing access to web sites: The siteif project.
In Proc. 2nd Workshop on Adaptive Hypertext and Hypermedia HYPERTEXT’98,
1998.

23. V. Torra. On the integration of numerical information: from the arithmetic mean
to fuzzy integrals. In Torra V. (Ed). Information fusion in data mining. Physiin-
Verlag. (Forthcoming), 2001.

24. B. Trousse, M. Jaczynski, and R. Kanawati. Using user behavior similarity for
recommendation computation: The broadway approach. In Proceedings of the 8th
international conference on human computer interaction (HCI’99), Munich, 1999.

25. R. Vilà and M. Montaner. Implementació d’un sistema multiagent distribuit format
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